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Abstract
Modelling of precipitation in concentrated binary alloys requires to revisit the fundamentals of pre-
cipitation. While no experimental approach can provide information accurate enough for this purpose,
Atomic Kinetic Monte Carlo simulations (AKMC) can generate large amounts of data produced in
well-controlled conditions.

Recently, the extensive analysis of such data has revealed new features about the evolution of clusters
during precipitation. In particular, it has been shown that their free energy evolves linearly with the
chemical potential of monomers µ1. Their volume is another complex function which evolves with
µ1. This quantity can be easily extracted from AKMC simulations: its variable part depends on C1,
the concentration of monomers and M1, the concentration of pure matrix sites, neglected in classical
approaches.

Cluster dynamics (CD) behaves as a bridge between atomistic simulations and phenomenological
models. CD can be applied to concentrated alloys provided one can describe the evolution of the free
energy and the volume of clusters as functions of µ1. Therefore, modelling of M1 is the last obstacle to
build a complete CD scheme, no longer limited by the concentration or the supersaturation of alloys.

For this purpose, two methods are examined and to predict the evolution of M1 during precipitation
and compared with the results of AKMC simulations. One is derived from a generalisation of the exact
solution in 1D while the other extrapolates the results of AKMC simulations.

Keywords: AlLi alloys, precipitation, computer simulation, clusters, Monte Carlo

1. X-scale modelling of precipitation

The so-called KWN framework (e.g. [1]) derived from the work of Wagner and Kampmann [2] is a
powerful numerical means to model precipitation in various industrial situations [3, 4]. The strength
of this framework is to rely on simple phenomenological laws to describe nucleation, growth and
coarsening. Some of the parameters necessary to set up these laws can be obtained from thermodynamic
databases and others can be identified through dedicated experiments [5, 6]. Nevertheless, concerning
the case of concentrated alloys or alloys of moderate concentrations but of high supersaturation, the
validity of these phenomenological laws is at least questionable.

Improving these laws requires first a deeper understanding of precipitation in concentrated alloys.
For this purpose, the best candidates are certainly not modern industrial alloys with many components,
very anisotropic and incoherent precipitates or with a complex architecture. To optimise our chances
to bring out new features specific to concentrated alloys, it is much better to consider binary alloys
as simple as possible. Similarly, while modern experimental techniques are essential for the study of
real alloys, for our concern, numerical simulations and in particular AKMC simulations is the only
means to rise the reliable information we need. However, to validate or to update the required classical
phenomenological laws, it is necessary to complete AKMC simulations with another numerical tool:
Cluster Dynamics (CD).

Indeed, CD is an alternative method closely related to the Classical Nucleation Theory (CNT) [7, 8].
CD is based on mesoscopic parameters, the so-called condensation and emission coefficients (βn and
αn) which can be defined consistently with the atomic potential used to perform AKMC simulations or

mailto:joel.lepinoux@grenoble-inp.fr


with quantities which can be directly extracted from such simulations [9]. In that sense, it is a valuable
link between atomistic simulations and phenomenological approaches. It is also an invaluable tool to
check the validity of our understanding of precipitation, while it is absolutely not adapted to treat
complex industrial situations.

In section 2 we briefly recall our choice for a model alloy and the four cases we consider as in our
previous works, e.g. [10]. In addition we provide some information about computing time. Section 3
is devoted to the ingredients necessary to succeed the transition between AKMC simulations and CD
calculations. We recall how to define µ1, the chemical potential of monomers, which allows for the
managing of free energy and volume of clusters during precipitation. Then we recall the notion of
exclusion volume, to be used in section 4, devoted to the modelling of M1, the key factor to define µ1.
In section 4, first we briefly recall the previous attempts to account for the exclusion effect. Then we
propose two ways to model M1. Both have advantages and drawbacks and are likely to complement
each other to better secure the managing of µ1.

2. The model material and the simulation method

2.1. A model alloy

The high solubility limit of δ’ Al3Li clusters in aluminium makes this ordered alloy of L12 structure a
good candidate to examine precipitation in concentrated alloys. In addition, precipitates are coherent
with the aluminium matrix, thus using AKMC simulations on a rigid lattice (see [11] for details about
this technique) is fully justified. For this purpose we have developed a model of atomic interactions
limited to first and second nearest-neighbours (NN1 and NN2), based on the parametrisation proposed
by Garland and Sanchez [12] for the two effective pair interaction parameters. All details about building
this classical pair potential can be found in [9].

Clusters have been studied in the temperature range 50°C-300°C but as in previous works, we
focus on two cases at 85°C and two cases at 200°C; the solubility limits are respectively 2.7% and
6.3% (all mentioned concentrations are atomic concentrations). For each temperature we have selected
one case exhibiting the well-known stages of nucleation, growth and coarsening and another one of
higher supersaturation for which this distinction is no longer possible. These four cases are: (1) 85°C
and C0=4.75%, (2) 200°C and C0=8.25%, (3) 200°C and C0=10% and (4) 85°C and C0=9%. We have
checked a posteriori that only monomers are mobile, thus this alloy is also a good choice for comparison
between future CD calculations and present AKMC simulations. AKMC simulations performed in this
work are based on a vacancy diffusion model [11] and the exchange between the vacancy and one of
its 12 NN1 is solved by a residence time algorithm [13].

2.2. AKMC simulations

Contrary to a simple thermodynamic Monte Carlo model (i.e. based on elementary exchanges between
close atoms), this method cannot be easily parallelised. Therefore, the computing time is still controlled
by the power of single processors as it was usual for most problems a few decades ago. Figure 1 shows
typical examples of the required CPU time as a function of the excess of chemical potential of monomers
∆µ (cf. Section 2.2). As can be seen, it is possible to run these simulations until this quantity reduces
by one order of magnitude from its initial value, starting from a random distribution. Two simulation
box sizes have been used: 2003 atoms (the green curve in Figure 1) and 5003 atoms (other curves).
Comparisons of simulations performed in the same conditions with these two box sizes have shown
that from the beginning of quasi-equilibrium (indicated by a green disk in Figure 1) the CPU time is
proportional to the size of the simulation box. Thus, in Figure 1, the CPU time corresponding to the
green curve have been multiplied by (500/200)3=15.625 to compare with other curves, which explains
the large dispersion of data when ∆µ vanishes.

The advantage of a large box is the quality of output information which remains fairly good up
to very small values of ∆µ while the advantage of a small box is the possibility to get acceptable
information in a reasonable amount of CPU time. With a large box, the green curve in Figure 1 would
have required about two years of CPU instead of 1.5 month.

Whatever the precipitation framework, the alloy is implicitly assumed to be close to equilibrium.
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In dilute alloys, this condition is straightforward and CD can be launched from a random state. But
in concentrated alloys this is no longer possible because cluster properties are no longer constant
during precipitation. To manage the evolution of cluster properties (free energy and volume) during
precipitation, the calculations have to be launched from a realistic and well-documented initial state
of quasi equilibrium (QE), which includes the right properties of clusters [10].

If the considered alloy is a good candidate for atomistic simulations on a rigid lattice, then the
required initial conditions can be easily obtained from AKMC simulations, performed at least up to
the onset of QE (for an introduction about this notion, see [14]). But in practice it might be a good
idea to run simulations up to smaller values of ∆µ. In a previous work we have shown that this is
mandatory to provide better predictions of the evolution of cluster volumes [15]. For similar reasons,
it will be shown in the last section that it is also required to better manage M1. This is why it is
interesting to run in parallel two simulations, one using a large box to get accurate information on
early stages and the other one using a small box to get more approximate results but over a much
larger time range.
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Figure 1.: CPU time taken to reach ∆µ (the excess of chemical potential of monomers – cf. section
3.1) for the four main cases. Dashed lines show CPU time after 1 hour, 1 day, 1 week, 1 month and
1 year (performed on Intel® Xeon E-2186M CPU 2.90GHz processors). When visible, green and red
disks (colour online) indicate the beginning of quasi-equilibrium and that of nucleation, respectively.

3. From AKMC simulations to Cluster Dynamics

3.1. The chemical potential of monomers

Classically, precipitation kinetics is reported versus the physical time, a choice which seems fully
justified. Nevertheless, to understand the evolution of cluster properties, the most convenient parameter
is not the physical time but the chemical potential of monomers µ1. Contrary to the global or average
chemical potential, µ1 can be simply defined from a few fundamental quantities which are easy to
measure in AKMC simulations [14]. In practice, we use the normalised form:

µ̄1 = h̄1 + ln

(
C1

M1

)
(1)

where the notation x̄ denotes the quantity x normalised by kBT (the Boltzmann constant times the
temperature); h1 is the monomer enthalpy, C1 is the concentration of monomers and M1 that of pure
matrix sites. Here, a pure matrix site is an aluminium site whose all NN1 and NN2 are aluminium
atoms (i.e. matrix). If its nature is changed from Al to Li it becomes a monomer and vice versa. Setting
µ̄1 = µ̄SL1 at the solubility limit, to simplify we define4µ = µ̄1−µ̄SL1 as the excess of chemical potential
of monomers (a positive quantity, while µ̄1 and µ̄SL1 are negative). As can be seen in Figure 2, during a
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precipitation kinetics at constant temperature, 4µ converges toward zero in the long-time limit. The
initial value of 4µ is a function of the supersaturation and the temperature.
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Figure 2.: The excess of chemical potential of monomers 4µ vs. the physical time multiplied by the
diffusion coefficient D over l2 (l is the lattice parameter) for 2 concentrations and 2 temperatures. Three
well-defined stages are clearly distinguished for the low concentrations (blue curves online) while this
distinction vanishes for the high concentrations (red curves online) (from [15]).

Two types of behaviour are highlighted in Figure 2, reporting the evolution of 4µ vs. the normalised
physical time. Note that the initial values of 4µ for the two cases at 85°C are about twice larger than
for the cases at 200°C. Although these two Figures seem almost identical, there is no simple way to
superimpose two similar curves (i.e. the two red or the two blue curves).

3.2. The required quantities to set up CD

Predicting the evolution of a cluster distribution with CD consists in solving a set of differential
Equations:

Ċn = (αn+1Cn+1 + βn−1Cn−1)− (αn + βn)Cn (2)

for n>1, where n is the size (the number of solute atoms) of clusters in concentration Cn. The
absorption coefficient βn is a kinetic coefficient related to D, the diffusion coefficient, Rn, the cluster
radius and C1, the monomer concentration:

βn = 4πDRnC1/l
3 (3)

Here we assume that only monomers are mobile. This simple expression is based on the long distance
diffusion, which is very likely to be inappropriate in the case of high concentration. Several corrections
can be found in the literature to account for superimposition of diffusion fluxes; for a review, see [8].
Comparing CD with AKMC results will tell us if these corrections are valid or not. In the present work
we focus on the thermodynamic state of the alloy during precipitation. While the kinetic is controlled
by the βn coefficients, the thermodynamic is controlled by the ratios (βn/αn+1):

(
βn
αn+1

)
=

(
C1

M1

)(
P ∗n→n+1

P ∗n+1→n

)
(4)

Remark that (C1/M1) is the variable component of µ1 while the constant component is hidden inside
the ratio

(
P ∗n→n+1/P

∗
n+1→n

)
, related to F ∗n , the free energy of n-mers:

4



(
P ∗n→n+1

P ∗n+1→n

)
= exp

(
h1
kBT

)
exp

(
−
F ∗n+1 − F ∗n

kBT

)
(5)

The ratio
(
P ∗n→n+1/P

∗
n+1→n

)
can be easily measured from the analysis of clusters build in AKMC

simulations [9]. The symbol “*” indicates that the values taken by these quantities account for the
possibility of coagulation with other clusters around. In other words, one considers a given system
in a given state. This is why these coefficients are so difficult to predict with a sufficient accuracy
without the help of AKMC simulations [16]. However, provided that the system is in QE, the ratio(
P ∗n→n+1/P

∗
n+1→n

)
can be easily fitted as a function of n [10]. Then, knowing that the asymptotic

state of the solid solution is equivalent to its state at the solubility limit, and that F ∗n varies linearly
with 4µ between these two points, the last missing information to apply Equation 8 during the whole
precipitation kinetics is M1.

3.3. Notion of exclusion volume

In classical models the volume of a cluster is simply taken proportional to the number of solute atoms
it contains [8]. This amounts to consider that a cluster is equivalent to a sample of the bulk precipitate
phase of the same size. This solution is acceptable for very large precipitates but does not make sense
for very small clusters and generally speaking, it is questionable for cluster sizes involved in nucleation
and growth stages.

Another point of view consists in considering the ‘exclusion volume’ which is composed of the solute
skeleton and of all NN1 and NN2 of these solute atoms (for the most recent work about this notion see
[15]; section 4.2 comes back to this notion). By exclusion we mean that the available acceptor sites of a
cluster cannot capture a solute atom without increasing its size by one unit. For convenience, we prefer
to use the number of excluded sites Nex(n) instead of the associated exclusion volume Vex(n). The
monomer is the simplest case: it contains the solute atom, its 6 NN2 and its 12 NN1, thus Nex(1)=19.
To further simplify, we consider the normalised exclusion volume X(n) = Nex(n)/n.
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Figure 3.: Evolution of the normalised number of excluded sites vs. the cluster size, during a precipit-
ation kinetics in a case which exhibits the three classical stages of precipitation (cf. Figure 2). n∗0 is the
minimum of the critical size. The upper curve (blue online) is related to fluctuations at the solubility
limit. The lower curve (red online) is the asymptote for precipitates and the horizontal dashed line is
related to the bulk precipitate phase (i.e. 4.415 at T=200°C) (from [15]).

Figure 3 shows a typical example for a moderate supersaturation and a high concentration. Two do-
mains appear, diverging for a value n∗0 which corresponds approximately to the minimum value reached
by the critical size for nucleation at the very beginning of nucleation [15]. In the first approximation,
the branch related to the fluctuations (left side) of the solid solution can be considered as constant
during precipitation. On the contrary, for a given precipitate size (right side), X(n) decreases from
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an initial value and converges toward an asymptotic value. As for the free energy, if one knows X(n)
around the onset of QE, the modelling of the evolution of X(n) during precipitation is fairly easy [15].
Note that the exclusion volume is only the starting point to get the cluster radius which enters for
instance in Equation (3). The procedure to derive Rn from this exclusion volume is discussed in section
4.2 which describes one possible way to evaluate M1.

4. Modelling of M1

4.1. First attempts to account for the exclusion effect

Although the notion of exclusion or matrix frustration is fairly recent, Frenkel’s cluster gas model [17]
is to our knowledge the very first attempt to account for a possible effect of the solute concentration
on the expression of equilibrium concentrations C̃n:

(
C̃n

1−
∑

k C̃k

)
=

(
C̃1

1−
∑

k C̃k

)n

exp

(
−Fn − nF1

kBT

)
(6)

The corrective terms
(

1−
∑

k C̃k

)
were obtained assuming that each cluster occupies only one

atomic site, independently of its size. Of course, this correction was found negligible for dilute alloys
and to our knowledge it has never been really used.

In 2006, a more elaborated cluster gas model was proposed to remove the main approximations of
the original model [18]. As 50 years earlier, the goal was to obtain a better expression of equilibrium
concentrations C̃n. Our current definition of the exclusion volume or equivalently the number of ex-
cluded sites (see section 3.3) arises from this work. Nk,n, the number of sites excluded by k -mers to a
n-mer, was obtained considering spherical clusters:

Nk,n = 4

(
4π

3

)(
Rk +Rn

l

)3

(7)

where the pre-factor 4 comes from the number of atoms per unit cell and l is the lattice parameter;
Rk and Rn are the respective radii of clusters k and n. These radii were derived from the number
of excluded sites by a monomer, denoted Nex(1) in the previous section but N1,1 in the notation
of Equation (7). Thus, as N1,1=19, we obtain (R1/l) = 0.5214. The same work introduced also the
exclusion factors Mn to replace the Frenkel’s corrective terms in Equation (6):

Mn =
∏
k

(1− Ck)Nk,n (8)

Finally, the proposed solution was:

(
C̃n

Mn

)
=

(
C̃1

M1

)n

exp

(
−Fn − nF1

kBT

)
(9)

Combined with free energy calculations (assuming no interaction between clusters), for the first
time it was possible to accurately reproduce cluster distributions produced by AKMC simulations of
moderately concentrated AlZr/AlSc alloys without extra corrections [18]. However, a few years later,
further works put into evidence the limits of this model at higher solute concentrations. Although
the global form of Equation (9), was correct, the route proposed to calculate the exclusion factors
Mn was reproducing a historical mistake. Indeed, clusters properties, e.g. free energy or volume, were
still considered as ‘intrinsic’ properties, and the effect of exclusion by other clusters was taken as a
simple additive effect. It has been extensively explained in previous works, e.g. [16, 14], why this simple
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picture, inherited from studies of dilute alloys, is no more than a good approximation for moderate
concentrations.

4.2. With help of the exact solution in 1D

In 2010, starting from the exact solution of this problem in 1D proposed by Yilmaz and Zimmermann
[19], Berthier et al. [20] have shown that the above model could not be applied to the 1D case, although
as in 3D, it gives acceptable results for moderately concentrated systems. The authors suggested a
generalised solution for 2-3D problems. However, the differences between the very special 1D case and
the 2-3D cases are so numerous and severe that the existence of an exact solution in 2-3D is still
an assumption. Furthermore, to our knowledge, the proposed solution has never been applied and
compared with AKMC simulations in 2D or 3D.

The direct calculation of M1 can be easily added to the outputs of AKMC simulations or performed
separately [14], thus comparing any model with AKMC simulations is now fairly easy. Moreover, the
present CD framework, i.e. Equation (9), has a big advantage over the previous 2006 model [18]: only
M1 is required. And asM1 is a very special case among all possibleMn, working around this generalized
solution has appeared as a starting point worthy to consider for our current needs. For the special case
n=1, the generalised solution (Equation (13) in [20]) writes:

M1 = (1− θ)
∏
n

(
1− Cn

(1− θ)

)Ñex(n)

(10)

The differences with Equation (8) concern the factor (1− θ) which appears twice and the definition
of Ñex (n), slightly different from that of Nk,1 given by Equation (7). But these two differences are
coupled. Concerning Ñex (n), Berthier et al. [20] assumed that a cluster (approximated by a sphere)
is composed of a ‘hard’ exclusion core Ncore(n) and a ‘soft’ exclusion shell. Here, ‘soft’ and ‘hard’
refer to whether it is possible to share atomic sites between several clusters (shell) or not (core), a key
distinction which was neglected in [18]. Thus, whatever the definition of Ncore(n), Ñex (n) writes:

Ñex (n) = Nex(n)−Ncore(n) (11)

Coming back to the original work of Yilmaz and Zimmermann [19] one can give two possible inter-
pretations of θ which cannot be distinguished in the 1D case:

θ =
∑
n

CnNcore(n) (12)

i.e. the total sum of all Ncore whether clusters are precipitates or fluctuations of the solid solution,
and

θ = Np

∑
n

nCn (13)

which is equivalent to a sample of bulk precipitate phase containing all solute atoms of the system.
Equation (13) can be seen as the long-time limit of Equation (12). This ambiguity suggests that the
generalisation of the 1D case should be considered with great care and also with some flexibility.

The first pre-product factor in Equation (10) is supposed to represent the probability for a monomer
to be located outside the total volume of hard exclusion. Thus, a priori, here θ should be given by
Equation (12). The second occurrence of θ as a normalizing term is more ambiguous but for the sake
of consistency the solution should be the same as in the first occurrence. Again it accounts for the fact
that the core of clusters is a volume of strict exclusion by contrast with its shell which can be partly
shared with other clusters. As there is no strong argument to eliminate the other interpretation of θ,
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we have tested the four possible combinations to see which one provides the best approximation of the
measured values of M1.

Figure 4.: Notions of exclusion and core volumes of clusters. A 2D example of 5-mer. Large disks (blue
online): solute atoms, defining a first circle. Small disks inside the larger circle (red online): matrix
atoms surrounding the cluster and linked to at least one solute atom by at least one NN1 or one NN2
bond, defining the largest circle, i.e. the exclusion volume. Other disks (green online): sites surrounding
the exclusion volume of the cluster, not linked to any solute site of the cluster. Note that all NN1 bonds
and all NN2 bonds of atoms located inside the first zone (blue disks) are linked with atoms which all
belongs to the exclusion volume (blue or red disks). In the shell zone between the two circles, the sites
can be shared between several clusters. Consequently, they contribute to the core volume of the cluster
with a weight 0<w<1 while all blue sites contribute with a weight w=1.

For this purpose, we need to define the quantity Ncore(n) introduced in Equation (11). After various
trials, we have selected a solution based on the exclusion volume of a monomer. The principle consists in
calculating a weight coefficient for each atom of a monomer, the solute atom itself and its 18 neighbours
(NN1 or NN2), defined as the proportion of bonds between the considered atom and other atoms of
the cluster (cf. Figure 4). Of course the solute atom itself counts for 1: by construction, all its 12 NN1
and its 6 NN2 are atoms of the cluster. Any of these 12 NN1 has 9 bonds with the cluster and any of
these 6 NN2 has 5 bonds with the cluster. Therefore, after averaging, the sum of all coefficients gives:
1+(6X5+12X9)/18 = 8.666 (sites).

Then, we can calculate the radii associated with Ncore(1)=8.666 and Nex(1)=19. This gives
Rex(1)=1.043 l, Rcore(1)=0.803 l and ∆shell = Rex(1) − Rcore(1) = εl with ε =0.24. To calculate
Rcore(n) we assume that ∆shell is a characteristic of the exclusion of monomers (the smallest possible
probe to explore the surface of a cluster), independently of the size of the targeted clusters. Therefore,
we postulate that Rcore(n) can be defined as:

Rcore = Rex(n)− εl (14)

Accounting for this expression into Equation (11) leads to:

Ncore(n) =

[
16π

3

]((
Nex(n)/

[
16π

3

])1/3

− ε

)3

(15)

or more simply:
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Ncore(n) =
(
N1/3

ex (n)− ϕ
)3

(16)

with ϕ =19(1/3)-(26/3)(1/3)= 0.614 and ε =ϕ / (16π/3)(1/3) .
With this definition of Ncore(n), the best combination for the first and the second occurrences of θ

in Equation (10) is Equation (12) and Equation (13), respectively. Other combinations give excellent
results in some cases and large deviations in other cases, thus they have been eliminated.

Finally, the complete expression proposed for M1 writes:

M1 =

(
1−

∑
n

CnNcore(n)

) ∏
n

(
1− Cn

[1−Np
∑

k kCk]

)Nex(n)−Ncore(n)

(17)

Note that the quantity between bracket is constant during the whole precipitation kinetics. Of course
Ncore(n) can be defined following the method used to define Ncore(1) and similarly, it can be extracted
from AKMC simulations instead of using Equations (16-17). The measured values slowly diverge from
that predicted by Equation (16) but their ratio can be easily fitted. Nevertheless, the comparison of
these two ways to define Ncore(n) has showed that Equations (16-17) lead to better results than the
measured values of Ncore(n), which tends to validate a posteriori the assumption invoked to derive
Equation (14).

In Figure 5, for the four cases considered in this paper, we have reported the ratio of the predicted
values and the measured values of M1 as a function of the measured values of ∆µ. The curves start on
the right side of the figure; the first point is taken around the minimum of M1.
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Figure 5.: The ratio M1(predicted)/M1(measured) vs. 4µ (measured) for cases 1-3. Two sizes of the
simulation box have been compared: [200]3 and [500]3. The curves start at the minimum of M1.

In case 1, the relative error starts around 2% and ends under 1%, thus Equation (17) gives a good
approximation. The case 2 exhibits a different behaviour, but the relative error is even lower than in
case 1, although it also ends around 1%. Note that a change of size of the simulation box from [200]3
to [500]3 sites does not change the result.

As expected, the cases 3 and 4 exhibit distortions related to the existence of large cluster colonies
(see [15]), mostly during the growth stage. However, the consequences of these distortions remain at an
acceptable level for case 3 as can be seen in Figure 5. On the contrary, for case 4 (not reported here) a
large deviation appears at the very beginning of nucleation and the relative error reaches almost 20%
before quickly decreasing during the coarsening stage, with a relative error of the same magnitude as
in case 2.
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By construction, this model considers well-defined clusters, thus if coagulation is too strong, one
cannot expect relevant results, which does not lower its interest for other cases.

Note that in the four cases studied here, these curves seem to end with a residual relative error
of about 1%. Thus, we have performed the same analysis at the solubility limits for 85°C and 200°C:
again we have obtained a relative error of 1%. Thus, for some reason, it seems that Equation (17) gives
values which are systematically 1% too high. Therefore, we propose to account for this correction, so
that all curves end with a negligible error in the long-term limit, which is more satisfying.

Note also that the present definition of Ncore(n) is slightly different from that used in the exact
solution in 1D. Indeed, in 1D, Ncore(n) = n [19, 20], while the present model would give Ncore(n) =
n+ 1.

Despite these limitations, Equation (17) provides a valuable approximation, but only comparisons
with other structures of precipitates and matrix could tell us if this model can be generalised.

4.3. A direct method

This method follows the principle already used to predict the evolution of cluster free energy or cluster
volume during precipitation (cf. Section 2). It is also a generalisation of the work initiated in [14] with
an oversimplified interaction potential. This method is based on two requirements:

(i) the end of the curve is known from the AKMC study of the system at the solubility limit (SL)
(ii) the beginning of the curve (at least up to the onset of QE) is known from AKMC simulations.
First we have to predict the asymptotic value of M1 in a supersaturated system knowing its value

at the solubility limit. To simplify we assume that in the asymptotic state the system is composed of
two phases separated by a planar interface as previously done in [14]. The parameters are:

- C0, the total solute concentration
- CSL, the solubility limit (2.7% at 85°C and 6.3% at 200°C)
- CP , the solute concentration in the bulk precipitate (1/4.135 at 85°C and 1/4.415 at 200°C)
With these notations, the asymptotic value of M1 writes:

M∞1 = MSL
1

(
Cp − C0

Cp − CSL

)
(18)

As can be seen in Figure 6 these calculated asymptotic values are in excellent agreement with the
evolution of M1 vs. ∆µ despite the small size of our simulation boxes.

Starting from a pure random distribution, M1 first decreases, reaches a minimum and increases up
to the asymptotic value. Whether the system is at equilibrium or not does not play any role on the
measurements of M1 or that of C1. However, to manage M1 as a function of ∆µ one should be keep in
mind that Equation (1) implicitly assumes equilibrium or in practice quasi-equilibrium. Thus, between
the minimum of M1 and the onset of QE (indicated on each curve by a blue disk), the evolution of
M1 vs. ∆µ should be considered with great care. Note that for the four cases considered here, the
minimum of M1 is close to the onset of QE, except in Figure 6c. In this case, the part of the curve
before the onset of QE is remarkably consistent with the rest of the curve. Consequently, in this case,
it can be efficiently used to adjust the fit as a function of ∆µ, but a priori, one should be very careful
with such situations.

As soon as the information extracted from AKMC simulations is rich enough to build accurate
predictions of the free energy [10] and the volume of clusters [15], one has to perform tests to evaluate
the predictability of M1 and decide if one needs more information or if AKMC simulations can be
stopped. Note that as with the previous method, using a [200]3 simulation box is sufficient to get
reliable information. To fit M1, we have used a polynomial function which by construction ends at the
asymptotic values calculated above for ∆µ=0; the number of required terms (order 3 or 4) is adjusted
on the curvature of the curves. As an exercise, in Figure 6, we have tried to find the minimum learning
range required to predict the whole curve from the onset of QE: it shows that it is necessary to run
AKMC beyond the onset of QE indicated in Figure 6 by green disks (superimposed with the blue disk
in Figure 6c).

The two less supersaturated cases exhibit a slight change of curvature during the growth stage which
cannot be predicted with this method. Nevertheless, the maximum relative error is lower than 0.5% in
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Figure 6a and less than 1% in Figure 6b. The maximum relative error in the two higher supersaturated
cases is negligible.

Note that this initial prediction of the whole curve is not mandatory. A better prediction can be
obtained if one applies this method step by step but this requires more calculations as well as an
elaborated adaptative algorithm to optimise the fit, depending on results and various constraints (to
be tested within the CD framework).

It is recalled that in classical models, M1 is implicitly taken equal to 1. As can be seen in Figure 6
the error can be rather large, especially in the first stages of precipitation.
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Figure 6.: Fitting and extrapolatingM1 values extracted from AKMC simulations (black curve online).
The curves start at the minimum of M1, on the right side of the figures. To predict a complete curve,
the learning domain has to extend up to the second symbol (green online). Note that in case (d),
this symbol is superimposed with that indicating the onset of QE (blue online). The last symbol (red
online) corresponds to the asymptote described by Equation (18).

5. Conclusion

Accurate calculations of M1 and then ∆µ require to have access to the coordinates of all solute atoms.
This is possible only in atomistic simulations, but such simulations are limited by the size of systems
one can consider and by the computing time. Consequently, the use of a mesoscopic model like CD or
a phenomenological model like the KWN formalism remains essential.

These two approaches have in common the fact that they cannot access to the real space. The needs
of these 2 techniques are different in nature but at this point we focus on that of CD. M1 must be
modelled as finely as possible because it is explicitly included into the emission coefficients and also
allows accounting for the evolution of free energy and volume of clusters during precipitation.

As already suggested in [14], the method using information obtained from AKMC simulations run
at least up to the onset of quasi equilibrium, already used to predict the evolution of free energy and
exclusion volume as functions of ∆µ, is very efficient to predict M1. It can be used either step by step,
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but in this case M1 must be regularly evaluated, or to predict M1 up to its asymptotic value, but this
requires to run AKMC simulations beyond the onset of QE. These two ways have different computing
costs and the most convenient one depends on the imposed conditions.

The semi-analytical method derived from the exact solution in 1D provides results whose quality
depends on conditions. By construction, it is not appropriate if the coagulation of clusters plays an
important role. The comparison with values extracted from AKMC simulations run up to the onset
of QE is sufficient to estimate if the method is trustable or not for those conditions. When it is, it
can be used only step by step but the required calculations are simple and the increase in computing
time is negligible. As this method uses the exclusion volumes and concentrations of all cluster classes,
it might be also interesting to check a posteriori the consistency of results obtained with the method
based on AKMC simulations. This method is also likely to be very useful to study precipitation in case
of complex thermal paths, but this will require extensive tests.

Even precipitation in dilute alloys could take advantage of these results after some simplification (the
case 1 is a good starting point). The next step is to gather all these ingredients to build an enhanced CD
framework. The main point to investigate will be the role of coagulation in the highest supersaturated
cases, to find the best way to deal with these cluster colonies while preserving the reliability and the
simplicity of this method. Concerning phenomenological models, an alternative to generalised laws to
describe the three stages might be to explicitly manageM1 as in CD. For this purpose, a coupling with
CD to manage the solid solution, in particular C1, could be a way to consider.
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