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1.  Introduction
Uncertainties in climate projections can be decomposed into three contributions due to (a) internal varia-
bility—defined as the unforced intrinsic variability of the climate system—, (b) uncertainties in the model 
physics—resulting largely from the unresolved processes, notably linked to the model resolution—, and 
(c) the range of possible future external forcings which in turn depend on emission scenarios and natural 
forcings (Hawkins & Sutton, 2009). Over the coming decades, uncertainties related to decadal to multidec-
adal internal climate variability may modulate trends regionally and potentially also on the global scale. For 
instance, internal climate variability was found to contribute by up to more than 50% in projected precipita-
tion change in 10 years over the British Islands (Lehner et al., 2020). In order to better understand the role 
and the uncertainties related to the internal climate variability, a simple method is to identify the recurring 
patterns in sea surface temperature at decadal to multidecadal timescale, also called “modes” of variability 
(Deser et al., 2010). However, this approach has limitations, as it is difficult to correctly separate the internal 
and forced components of climate variations given the too short observational (instrumental) record.

Abstract  The Institut Pierre-Simon Laplace Climate Modeling Center has produced an ensemble of 
extended historical simulations using the IPSL-CM6A-LR climate model. This ensemble (referred to as 
IPSL-EHS) is composed of 32 members over the 1850–2059 period that share the same external forcings 
but differ in their initial conditions. In this study, we assess the simulated decadal to multidecadal 
climate variability in the IPSL-EHS. In particular, we examine the global temperature evolution and 
recent warming trends, and their consistency with ocean heat content and sea ice cover. The model 
exhibits a large low-frequency internal climate variability. In particular, a quasi-bicentennial mode 
of internal climate variability is present in the model and is associated with the Atlantic Meridional 
Overturning Circulation. Such variability modulates the global mean surface air temperature changes 
over the historical period by about E  0.1K. This modulation is found to be linked to the phase present 
in the initial condition state of each member. This variability appears to decrease during the 1850–2018 
period in response to external forcings. The analysis of the ocean heat content reveals furthermore an 
overestimation of the ocean stratification, which likely leads to an overestimation of the recent warming 
rate on average.

Plain Language Summary  The Institut Pierre-Simon Laplace (IPSL) developed an 
ensemble of 32 simulations over the 1850–2059 period using the IPSL-CM6A-LR climate model. Such a 
large ensemble allows a better sampling of the internally generated variability. Moreover, the ensemble 
averaging provides an estimation of the forced variability induced by the greenhouse gases and the aerosol 
concentration used as boundary conditions. In this study, we assess the simulated decadal to multidecadal 
climate variability in the IPSL ensemble. Relative to the large variability of the model, the evolution of 
observed surface temperature and sea ice cover is within the range of possibilities of the ensemble. The 
oceanic circulation and sea surface temperature over the North Atlantic are key players in the low-
frequency internal variability of the model.
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A leading pattern of observed sea surface temperature (SST) on these timescales is the Interdecadal Pacific 
Variability (IPV; Power et al.,1999). This mode is closely related to the Pacific Decadal Variability (PDV, 
also called Pacific Decadal Oscillation; Mantua et al., 1997), which can be regarded as the North Pacific 
component of the Pacific-wide IPV. Modeling studies (Dai et al., 2015; Meehl et al., 2013, 2016), as well as 
observational studies (Folland et al., 2018), indicate a potential role of the IPV in modulating the global 
surface air temperature (GSAT). Internal variability and its relation to ocean heat uptake have been put 
forward as an explanation for the recent slowdown in the rate of GSAT increase between 1998 and 2012, the 
so-called “hiatus” (England et al., 2014; Kosaka & Xie, 2013; Meehl et al., 2011; Swingedouw et al., 2017). 
The relative cooling trend observed in the Pacific Ocean around the 2000s, whose spatial pattern resembles 
the IPV, is due to the increase in equatorial upwelling associated with stronger westerlies over this period 
(England et al., 2014), trapping more heat in the deep ocean. The distribution and importance of this extra 
heat pumped into the Pacific Ocean are still under debate. Some studies suggest that a large fraction of this 
ocean heat uptake has been stored into the Indian Ocean via the Indonesian throughflow (Lee et al., 2015; 
Liu et al., 2016b; Nieves et al., 2015). Other studies point out that temperature increase at lower layers in 
the Atlantic and Southern Oceans could also account for the sequestration (Chen & Tung, 2014; Cheng 
et al., 2017; Gastineau et al., 2019; Llovel & Terray, 2016). Furthermore, the relative importance of internally 
driven and anthropogenically driven changes is still debated (Chen & Tung, 2016; Liu et al., 2016a).

At the decadal to multidecadal timescales, the variability of the Atlantic meridional overturning circulation 
(AMOC) is also believed to be an important driver of the climate variability, as it contributes to redistribute 
heat within the ocean across latitudes and across the two hemispheres (e.g., Delworth & Zeng, 2016; Dong 
& Sutton, 2005; Polyakov et al., 2010). In many climate models, one prominent feature related to the AMOC 
low-frequency variability is basin-wide low-frequency variations of SST in the North Atlantic (e.g., Danaba-
soglu et al., 2012; Delworth et al., 1993). The Atlantic Multidecadal Variability (AMV), also called Atlantic 
Multidecadal Oscillation (AMO), is the leading mode of SST variability on multidecadal timescales (Enfield 
et al., 2001; Kerr, 2000; Schlesinger & Ramankutty, 1994; Yeager & Robson, 2017). It has recently been sug-
gested that at multidecadal timescales, the AMV is the main driver of the GSAT variability (Li et al., 2020). 
The AMV has been linked to many observed low-frequency global and regional climate variations, such as 
the Northern Hemisphere temperature (Zhang et al., 2007), Sahel rainfall (Zhang & Delworth, 2006), Arctic 
sea ice extent (Zhang, 2015), Atlantic hurricane activity (Zhang & Delworth, 2006), or European precipita-
tion and temperature (Sutton & Dong, 2012). Although the AMV seems to be primarily linked to AMOC var-
iations in climate models, some studies also suggest that AMV may result from a direct effect of atmospheric 
internal variability, without a role for ocean circulation (Clement et al., 2015). Additionally, there are many 
open questions and uncertainties about its nature and characterization. These uncertainties are mainly due 
to the short observational window (E 150 years) in comparison to the AMV typical timescale, the difficulties 
to observe the AMOC, and the fact that the observational period is influenced by both external forcings 
and other modes of internal climate variability. The degree of influence of these two factors over the his-
torical period is still under debate. Some studies suggest that anthropogenic aerosols have favored or even 
forced the negative phase of the AMV in the 1970s (Booth et al., 2012). Other studies suggest an influence 
of volcanic aerosols on the AMV over the second half of the th20E  century (Otterå et al., 2010; Swingedouw 
et al., 2015), as well as anthropogenic aerosols (e.g., Booth et al., 2012). Using the Community Earth System 
Model (CESM) Large Ensemble and Last Millennium Ensemble, Bellomo et al. (2018) suggest that external 
forcings are the main drivers of the AMV. This was also suggested more recently by Haustein et al. (2019), 
using a two-box impulse response model. However, the pre-industrial control simulations in climate models 
generally show important multidecadal variations in the North Atlantic SST, which favors the hypothesis 
that the AMV is, at least partially, an internal mode of variability.

Multi-model ensembles such as those made available in the successive phases of the Coupled Model Inter-
comparison Project (Taylor et al., 2012, CMIP3 and CMIP5) can be used to estimate the combined effect of 
the three types of uncertainties described above, but it remains difficult to separate the internal variability 
from the forced response because of the insufficient number of simulations performed by every single mod-
el together with the large spread among models (Deser et al., 2012).

When only a single realization of the historical period is available, the forced climate response is classically 
approximated from a linear trend and any departure from the trend is interpreted as natural variability (e.g., 
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Knight et al., 2005; Wyatt et al., 2012). This method, however, is inaccurate and may lead to misinterpre-
tations (Frankcombe et al., 2018; Frankignoul et al., 2017; Mann et al., 2014). A better way to estimate the 
internal variability of a model is to use a multicentennial climate simulation with constant forcing such 
as the pre-industrial control simulations of the CMIP protocol (Taylor et al., 2012), as done for example, 
by Wittenberg et al. (2014). However, this method does not account for the influence of external forcings 
on the internal variability (Maher et al., 2015; Swingedouw et al., 2015). When enough realizations of the 
historical period are available for a given model, the effects of natural and anthropogenic external forcings 
can be isolated from the effects of internal variability by defining the forced signal as the ensemble average 
(Deser et al., 2012), assuming the effects of internal variability largely cancel out when the ensemble is large 
enough.

In this context, large ensembles of coupled climate models are necessary to isolate the internal variability 
from the forced climate response (Kay et al., 2015). The National Center for Atmospheric Research (NCAR) 
pioneered the field by performing a large ensemble of 62 members over the 1940–2080 period (Selten 
et al., 2004). This was followed by the Community Earth System Model Large Ensemble project (CESM-LE), 
composed of 42 members over the 1920–2100 period (Kay et al., 2015; Sanderson et al., 2018). Other mode-
ling groups have also performed large ensembles: (a) the Geophysical Fluid Dynamics Laboratory (GFDL) 
developed a 30-member ensemble from 1850 to 2100 (Delworth et al., 2020) and (b) the Canadian Earth 
System Model Large Ensemble is composed of 50 members over the 1950–2005 period (Kirchmeier-Young 
et al., 2017); (c) a 30-member ensemble was developed for the 1940–2020 period (Frankignoul et al., 2017) 
based on the IPSL-CM5A-LR model (Dufresne et al., 2013); and (d) more recently the Max Planck Institute 
performed a grand ensemble (MPI-GE; Maher et al., 2019), with 100 members for the historical simulations 
and the four RCPs scenarios. Recently, Deser et al. (2020) reviewed the opportunities and perspectives given 
by these large ensemble simulations.

Over the observational period, the internal climate variability can be assessed by comparing each member 
of an ensemble of simulations to the observations, as each member represents a potential realization of 
the real world. The development of such large ensemble simulations has, therefore, led to some important 
insights regarding the uncertainties related to internal climate variability, in particular for temperature and 
precipitation (e.g., Dai & Bloecker, 2019; Deser et al., 2012, 2014; Thompson et al., 2015) or sea ice (e.g., Wet-
tstein & Deser, 2014). Large ensembles have also been used to understand the respective roles of the forced 
and internal components, for example, in temperature changes at the global and regional scales (e.g., Deser 
et al., 2016), but also for extreme events, in terms of surface temperature (Suarez-Gutierrez et al., 2018; 
Trenberth et al., 2015), precipitation (Hagos et al., 2016; Wang et al., 2018), drought (Gu et al., 2019), or sea 
ice extent (Kirchmeier-Young et al., 2017). Multiple ensemble climate models can also be used to have a 
better estimation of the forced response (Kravtsov & Callicutt, 2017; Liguori et al., 2020).

While the number of modeling centers that have produced large ensembles is still very limited, it is impor-
tant to develop new large ensemble simulations with additional models, to further constrain forced versus 
natural variability and to assess the robustness of the simulated internal climate variability and the forced 
response from different models. In this context, the Institut Pierre-Simon Laplace Climate Modeling Center 
(IPSL CMC, see https://cmc.ipsl.fr) took advantage of Phase 6 of the Coupled Model Intercomparison Pro-
ject (CMIP6; Eyring et al., 2016) to develop an ensemble of extended historical simulations with the IPSL-
CM6A-LR model (Boucher et al., 2020). The IPSL ensemble of extending historical simulations (IPSL-EHS) 
is composed of 32 members using initial conditions sampled along a pre-industrial control experiment. As 
a result, each member has a unique trajectory that is influenced by both the external forcings and internal 
climate variability. The IPSL-EHS allows an informative comparison between the model and the observa-
tions. As the IPSL-EHS is available on a longer period than the previous one (Frankignoul et al., 2017), the 
internal climate variability of the IPSL-EHS can be better assessed, especially at decadal to multidecadal 
timescales. Finally, the IPSL-EHS is based on a model that has significantly improved in terms of physics 
content (Hourdin, Rio, Grandpeix, et al., 2020) and climatology (Boucher et al., 2020) and that uses the 
more realistic external forcing reconstructions from CMIP6 (Lurton et al., 2020).

The first objective of this study are to evaluate the capacity of the IPSL-CM6A-LR model to encompass the 
observed variability and changes in surface temperature and ocean heat content despite its rather large 
climate sensitivity, with an equilibrium climate sensitivity of 4.5 K (though it reduces to 3.8 K if computed 

https://cmc.ipsl.fr
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from a 2 ×  2COE  rather than 4 ×  2COE  abrupt forcing, as discussed in Boucher et al., 2020). The implications on 
sea ice, which is a good indicator of global temperature change, will also be evaluated. The second objective 
is to evaluate the impact of the low-frequency internal variability of the IPSL-EHS on historical trajectory 
and to investigate the dynamics of the most coherent members against the observations regarding some 
known modes of variability.

This study is organized as follows. In Section 2, the model used is briefly described and the characteristics 
of the simulation are presented. The simulation of the surface temperature evolution is assessed in Sec-
tion 3. The changes in the ocean heat content and sea ice are then assessed in Sections 4 and 5 respectively. 
The evolution of the Atlantic meridional overturning circulation and its influence on surface temperature 
trends are then studied in Section 6. In Section 7, the simulations of the Interdecadal Pacific Variability 
and the Atlantic Multidecadal Variability are evaluated. Finally, in Section 8, the main conclusions of these 
evaluations are drawn and possible use of the IPSL-EHS is discussed.

2.  The IPSL-CM6A-LR Large Ensemble
2.1.  The IPSL-CM6A-LR Model

IPSL-CM6A-LR is the standard configuration of the Institut Pierre-Simon Laplace (IPSL) coupled mod-
el developed for the th6E  phase of the Coupled Model Intercomparison Project (CMIP6). It combines the 
LMDZ6 Atmospheric model (Hourdin, Rio, Jam, et al., 2020), the ORCHIDEE land surface model (Krin-
ner et al., 2005), and the NEMO ocean model (Madec et al., 2017) using the LIM3 sea-ice model (Rousset 
et  al.,  2015). The atmospheric model resolution is now 144 × 143 points in latitude and longitude and 
79 vertical layers (with a maximum height of about 80 km). This corresponds to the medium horizontal 
resolution of the previous model version (IPSL-CM5A-MR) but the number of vertical layers was roughly 
doubled. The horizontal resolution of the ocean model is increased to 1E  with 75 layers in the vertical. The 
atmospheric physics of LMDZ6A is further described in Hourdin et al. (2019). The representation of clouds 
is described in Madeleine et al. (2020), while Hourdin, Rio, Jam, et al. (2020) linked the reduction in SST 
biases to improvements in atmospheric physics. Cheruy et al. (2019) discuss the atmosphere-surface cou-
pling. Lurton et al. (2020) document the implementation of the CMIP6 climate forcings in the model while 
Boucher et al. (2020) present the coupled model and a preliminary evaluation of the historical simulations 
performed for CMIP6.

2.2.  The Simulations and Data Availability

The IPSL ensemble of extended historical simulations' initial conditions is taken from different years in 
a long preindustrial picontrol simulation after it has reached a quasi-stationary state. The simulations are 
started from the atmospheric, oceanic and land surface initial conditions of the st1E  January from different 
years. A large multicentennial variability in the global mean surface air temperature (GSAT) is present in 
the piControl simulation (Figure 1a). The start dates of the historical simulations are therefore spaced every 
20–40 years (see Table S1) in order to sample this variability. Members #1 and #32 start on the same date in 
the piControl simulation, but member #32 was run on a different supercomputer than the other members. 
As in other climate models (Hobbs et al., 2016), although the piControl simulation inherits from a long spin-
up, the model is not completely equilibrated given the long timescale associated with the deep ocean. As a 
result, there is a negative drift of E 37 ZJ per century in the 0–2,000 m OHC, which can be decomposed into 
drifts of E 4.4 and E 33 ZJ per century in the 0–700 m and 700–2,000 m layers, respectively. A negative drift 
of E 0.011 K per century is also present in the GSAT of the piControl simulation. Unless otherwise stated, we 
neglect this surface temperature drift in the rest of the analysis as it is small compared to the forced signal 
in the historical simulations.

The IPSL-EHS follows the CMIP6 protocol for historical simulations (Eyring et al., 2016) for the period 
1850–2014. Simulations were extended until 2060 using radiative forcings from the SSP245 scenario (Gid-
den et al., 2019), except for the ozone field which has been kept constant to its 2014 climatology (as this 
particular forcing was not available at the time of performing the extensions). This implies that these simu-
lations do not simulate the ozone hole recovery and changes in tropospheric ozone, in contrast to the official 
CMIP6 projections. Therefore the comparison with other CMIP6 large ensembles is less straightforward 
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after 2014. However, this also provides an opportunity to isolate and study the influence of the tropospheric 
ozone trend after 2014, by comparing the IPSL-EHS with other CMIP6 large ensembles.

The SSP245 scenario was chosen because it is a middle-of-the-road scenario. An additional motivation for 
that choice is that SSP245 is the scenario used of DCCP-A and DCPP-B protocols (Boer et al., 2016). This 
will allow relevant comparisons between the IPSL-EHS and initialized decadal predictions under the same 
external forcing.

2.3.  Influence of the Initial Conditions on the Historical Simulations

The IPSL-CM6A-LR model is characterized by a multicentennial temperature variability in the control sim-
ulation (Boucher et al., 2020; Figure 1a), which was related to the AMOC (Jiang et al., 2021). The analysis 
of the mechanisms behind this variability suggests that it is related to a progressive accumulation of surface 
freshwater in the Arctic Ocean when the AMOC is in an ascending phase. After several decades, this accu-
mulation eventually leaks into the Nordic Seas through the Fram Strait, which then slows down the AMOC 
and reverses the phase of this cycle. These mechanisms lead to an almost oscillatory behavior at multicen-
tennial timescales. A strong AMOC phase in IPSL-CM6-LR is therefore associated with a warm North At-
lantic Ocean and a large Arctic sea-ice loss, associated with warming over the whole Northern Hemisphere. 
This long-term variability is likely to affect the GSAT evolution of the historical simulations. In order to look 
at the impact of this variability on the historical simulations, we have fitted a sine function (in the least 
squares sense) to the detrended GSAT evolution of the piControl simulation over the 1850–2599 period:

Figure 1.  (a) Time evolution of the annual global mean near-surface air temperature anomaly (GSAT, in K) from the 
piControl simulation (gray circles), the low-pass filtered GSAT (with a 31 years window, brown curve), the sine function 
fit (red curve) and the start dates of the IPSL-EHS members (dark brown circles). (b) Locations of the member start 
dates (black dots) repositioned over one period of the piControl bicentennial mode of temperature variability (red 
curve, in K) of the IPSL-CM6A-LR model. The locations are estimated from Equation 1. (c) Scatter plot of the GSAT 
trend calculated over the 1850–2018 period (K per century) relative to the locations of the member start dates from the 
32 members of the IPSL-EHS (orange dots) and from GSAT reconstructions based on the 168-years of the sine function 
of each member relative to their starting dates in the piControl simulation, to which is added the ensemble mean (blue 
dots).
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( ) sin( )y t A t C   � (1)
where E A is the amplitude,   2 /T  is the angular frequency corresponding to the period E T , E  the phase 
where oscillation starts and E C a constant. An amplitude 0.16E A   K and a period  225E T   years are found 
using this method. This approximation allows to summarize the starting point of each historical simulation 
by a single number (the phase between 0 and 2E  ) in relation to this bicentennial variability. The locations 
of these starting points are summarized in Figure 1b when projected along one period of this bicentennial 
variability.

As the historical period (168 years) represents 0.75 period of the sine function, the members initialized 
with a phase between  /2 and E   modulo 2E   (i.e., years 56 and 112 of the period) are expected to result in 
the largest warming if the bicentennial variability remains unchanged (Figure 1b). Indeed these members 
start during a negative phase of the bicentennial variability and end after 3/4 of a period during a positive 
phase. This turns out to be the case, as these members have an average trend of 0.75 K per century (range 
0.70–0.83 K) over the 1850–2018 period in comparison to the average trend of 0.71 K per century for the 32 
members (Figure 1c). Conversely, the members initialized with a phase between 4 3 /  and 2E   modulo 2E   
(i.e., years 150 and 225 of the period) are expected to simulate the smallest warming, as these members start 
during the beginning of a positive phase, and end during a negative phase. This is also the case, with an av-
erage trend of 0.66 K per century (range 0.48–0.78 K) for these members (Figure 1c). The quasi-bicentennial 
variability of IPSL-CM6A-LR therefore seems to modulate the temperature changes over the historical peri-
od by about 0.1 K per century. Note that this estimate strongly depends on the period chosen for computing 
the trends. Over the 110 year period, for example, it can affect the trend by as much as 0.25 K per century.

In order to further test the influence of the quasi-bicentennial variability over the historical period, we 
reconstructed the GSAT evolution for each member by adding the sine function (from the start date and 
for the 168 years of the historical period) to the ensemble mean which estimates the temperature response 
to external forcings. This procedure assumes the quasi-bicentennial variability of these GSAT reconstruc-
tions remains unchanged over the historical period as compared to the piControl simulations, as well as 
that the effect of external forcing adds without interactions onto internal variability. The reconstructions 
with a phase between  /2 and E   modulo 2E   show a larger warming than the historical simulations, with 
an average trend of 0.92 K per century (range 0.87–0.95 K) (Figure 1c). Similarly, the reconstructions with 
a phase between 4 3 /  and 2E   modulo 2E   show a smaller warming than the corresponding historical sim-
ulations, with an average trend of 0.52 K per century (range 0.47–0.61 K). This figure also shows that a 
simple superposition of the piControl variability on the historical ensemble mean would have modulated 
the temperature changes over the historical period by about 0.4 K per century. The influence of the qua-
si-bicentennial variability on temperature changes is therefore diminished in the historical simulations, 
suggesting a decrease of the variability over the historical period, which could be due to external forcings. 
The standard deviation of the GSAT in the detrended historical simulations (i.e., after the ensemble mean 
has been removed) is 0.14 K on average (range 0.12–0.19 K), which is less than the standard deviation 
of GSAT in the detrended piControl simulation (0.2 K). This confirms the decrease of the bicentennial  
variability over the historical period.

As a result of this variability, there is a relation between the GSAT state at the beginning of the historical 
simulations and the GSAT change over the historical period, with a coefficient of determination r2 of 0.40, 
significant with p-value E  5% using a two-tailed probability Student's t-test (Figure 2). The members with the 
lowest GSAT at the beginning of the historical period tend to be the members with the largest GSAT chang-
es over the historical period and conversely. However, this relationship is limited, on the one hand, by the 
noise of this mode of variability and by the other modes of internal climate variability that occur on a range 
of different timescales, and, on the other hand, by the external forcings, which as discussed above seems 
to damp this mode variability. Indeed, this relationship is stronger when considering the historical GSAT 
evolution from the conceptual model based on the sine function (described in the previous paragraph) with 
a 2E r  of 0.83 and significant with p-value E  5%, consistently with Figure 1c.
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3.  Comparison of the Simulated Surface Temperature With Observations
3.1.  Global Mean Surface Air Temperature

The IPSL-EHS covers a large range of GSAT variations and trends over the historical period (Figure 3a). 
The standard deviation calculated among members over the historical period is of 0.14 K on average. As 
explained above, the GSAT ensemble mean can be interpreted as the climate response to external forcings 
(both natural and anthropogenic) while the variations around it are associated with internal variability.

The infilled HadCRUT4-CW (Cowtan & Way,  2014; Jones et  al.,  2012) observational data set is used to 
evaluate the historical simulations, allowing us to avoid problems with missing values. It reports blended 
Sea Surface Temperature (SST) and temperature at the surface, a metric that reports significantly lower 
temperature than the GSAT metric (Cowtan et al., 2015). A factor of 1.06 is applied to annual temperature 
to take this discrepancy into account (Gillett et al., 2021). Because of the large uncertainties in the observa-
tions before the 1880s (Morice et al., 2012), the evaluation is limited here to the 1880–2018 period. Note that 
HadCRUT4-CW is very consistent with the Berkeley data set (Rohde, Muller, Jacobsen, Muller, et al., 2013; 
Rohde, Muller, Jacobsen, Perlmutter, et al., 2013), with a correlation coefficient of 0.99 when using global 
annual mean (Figure 3a). In this data set, the temperature at the surface is considered at the sea ice level 
rather than the SST, making it closer to the GSAT metric.

The observed evolution of the GSAT anomaly is within the spread of the historical simulations for both 
data set (Figure 3a). The modeled ensemble mean departs from the observations over the period 1935–1945, 
with smaller than observed warming, and after the year 2000, with larger than observed warming. In gen-
eral, such departures can be due to (a) decadal to multidecadal internal variability in the observations, (b) 
modeling issues (incorrect representation of external forcings such as aerosol concentrations changes or 
climate response to the forcings) or (c) observational uncertainties as hypothesized by Folland et al. (2018) 
for the World War II period. The response to the Krakatoa (1883) and the Pinatubo (1991) volcanic erup-
tions are represented by the ensemble mean, with a decrease of the GSAT consistent with the observations 
(Figure 3a).

Figure 2.  Scatter plot between the average GSAT (K) over the first 30 decades and the GSAT trend (K per century) 
calculated over the 1850–2018 period from the 32 members of the IPSL-EHS. The dot colors indicate the position (or 
phase) of the member in the bicentennial GSAT variability period (Figure 1b, upper E x axis). The black line represents 
the linear relationship between these two variables, with a determination coefficient 2rE  of 0.40.
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To evaluate the representation of the GSAT evolution by the 32 historical 
members, root-mean-square error (RMSE) is calculated for each member 
over the 1880–2018 period (Figure 3b). Member #14 has one of the best 
representations of the GSAT in comparison to both data sets, with the 
lowest RMSE of annual GSAT anomaly over the 1880–2018 period (Fig-
ures 3a and 3b). Large differences are present among the historical mem-
bers, with some members having a good consistency with the observed 
GSAT, with RMSE between 0.15 and 0.17 K (e.g., members #5, 14, 30). 
On the contrary, some members have a poor representation of the GSAT 
over the 1880–2018 period, with RMSE larger than 0.23 K (e.g., members 
#7, 13, 31). The reference period used to calculate the anomaly generally 
does not have a large impact on the score, members with a good score 
remain generally better than members with a lower score irrespectively 
of the reference periods.

3.2.  Recent Trends in Surface Temperature

We focus here on temperature trends over the 1978–2018 period, which 
is very well observed thanks to the advent of remote sensing and is char-
acterized by quite linear warming warming. The recent warming trend 
of the GSAT over the 1978–2018 period exhibits a large spread in the IP-
SL-CM6A-LR ensemble of historical simulations, ranging from 0.20 to 
0.47 K per decade for the surface temperature over land, with an average 
of 0.32 K per decade, and from 0.11 to 0.23 K per decade for the sea sur-
face temperature, with an average of 0.18  K per decade (Figure  4). In 
comparison, the observed trends of surface temperature are 0.28 K per 
decade over land and 0.15 K per decade over the ocean. Note that pri-
or to the analysis, the model data, sea surface temperature (SST) over 
the ocean, and temperature at the surface (TAS) over land, are regridded 
onto the observations and the missing grid points in the observations are 
masked temporarily. Consistent with the relative larger than observed 
warming in the model ensemble mean many of the historical members 
show a warming trend that is, larger than observations, particularly over 
the ocean. The trend of the ensemble mean is 0.027 K per decade larger 
than the trend in the observations over the ocean, and 0.043 K per decade 
larger over land. Some members have global trends close to those ob-
served both over the ocean and land. Members #5 and 14, which have a 

good fit with the GSAT evolution, also have warming trends that are consistent with the observations, with 
respective biases of − 43.2 10E   and 37.310E   K per decade for ocean, and of − 22.310E   and − 34.110E   K per dec-
ade for land. Members #16 and 31, which have a high RMSE with the observed GSAT (Figure 3b), show the 
strongest warming trends over ocean and land. These members have respective biases of 0.080 and 0.076 K 
per decade for the ocean and of 0.19 and 0.16 K per decade for land. In contrast, member #22, which also 
has a relatively poor representation of the GSAT, has a much lower warming trend, both over the ocean and 
land. The consistency of some members with the observed warming, however, is not proof that the model 
forcings and feedbacks are correct. It could also be due to bias compensations, for example, between green-
house gases, aerosol forcing, and associated climate feedbacks. It can also be explained by a large internal 
variability aliasing the high climate sensitivity of the model. Thus the fact that the ensemble encompasses 
the observations indicates that the model behavior and notably its high climate sensitivity cannot be refuted 
based only on these observations.

Figure 5 shows the patterns of the recent observed and simulated warming trends for the IPSL-EHS mean 
and for the four members with the lowest and the highest spatial RMSE respectively. Overall, the model 
reproduces the land/sea warming contrast, with a warming ratio of 1.61 for the ensemble mean, ranging 
in the IPSL-EHS from 1.52 to 1.79 between land and ocean over the 1978–2018 period compared to the ob-
served ratio of 1.67 from the HadCRUT4-CW data set (Cowtan & Way, 2014; Jones et al., 2012). The Arctic 

Figure 3.  (a) Time evolution of the annual global mean near-surface air 
temperature (GSAT, in K) anomaly from the IPSL-EHS, with the ensemble 
average (in black) and each individual member (in gray), the HadCRUT4-
CW (Cowtan & Way, 2014; Jones et al., 2012, in blue) and the Berkeley 
(Rohde, Muller, Jacobsen, Muller, et al., 2013; Rohde, Muller, Jacobsen, 
Perlmutter, et al., 2013, in brown) data sets, and the closest simulation to 
the observations based on the root mean square error (RMSE) (member 
#14, in green). The GSAT anomalies are computed relative to the 
1880–2018 average. (b) The RMSE was calculated for each member against 
the HadCRUT4-CW data set over the 1880–2018 period based on different 
reference periods: 1880–2018 (red), 1850–1899 (blue), 1951–1980 (green), 
1981–2010 (orange).
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Figure 4.  (Left) Trends of average sea surface temperature over the oceans for the 1978–2018 period from the HadSST3 data set of observations (blue dashed 
line; Kennedy et al., 2011a, 2011b), the ensemble mean of the historical simulations (black dotted line) and the 32 members (stars) ranked from the weakest 
to strongest trend (from top to bottom). The stars colors are relative to the RMSE of the GSAT (1880–2018). (Right) same as left panel, but for the average land 
surface temperature using the CruTEM4 observational data set (brown dashed line; Osborn & Jones, 2014).

Figure 5.  Trends in near surface air temperature (K 1decadeE  ) over the 1978–2018 period from the HadCRUT4-CW data set (Cowtan & Way, 2014; Jones 
et al., 2012) (top left panel) and from the historical members of the IPSL-CM6A-LR model, with the ensemble average (top right), the four members with the 
lowest RMSE relative to the observations (middle panel) and the four members with the highest RMSE (bottom panel). The member number and the RMSE 
values are indicated on the top-left and bottom-right corners of each panel, respectively. To calculate the RMSE, the model data is regridded onto the grid of the 
observations with a bilinear interpolation.
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amplification is also simulated by the IPSL-EHS, but tends to be overestimated by the ensemble mean. Over 
the 70 90 NE    region, IPSL-EHS is 0.88 K per decade, (from 0.22 to 1.58 K per decade) relative to the trend of 
0.26 K per decade over the whole Earth (from 0.16 to 0.36 K per decade), whereas the trend is about 0.79 K 
per decade over the 70 90 NE    region for the HadCRUT4-CW data set and about 0.19 K per decade over the 
whole Earth. The members with the greatest Arctic amplifications are those with the greatest overestima-
tion of the temperature trends over land and ocean, highlighting the important contribution of this process 
in the members that warm most (not shown). Members #31 and 16 exhibits much larger global warming 
trends than observed (Figure 4), mainly because of the contribution of the Northern Hemisphere. Some 
members are closer to the observations, with, for example, a representation of the so-called “warming hole” 
in the Atlantic Ocean. Members with a global warming trend close to the observations are also those with a 
low spatial RMSE (Figure 4). No member, however, reproduces the cooling trend observed in the Southeast-
ern Pacific or in the Southern Ocean. The ensemble mean shows warming over every region of the Earth.

4.  Simulation of the Ocean Heat Content
Ocean heat content is the main energy reservoir of the climate system. Since the 1970s, it has been estimat-
ed that approximately 93% of the excess heat energy of the Earth, with respect to climate change, is stored 
in the ocean (Levitus et al., 2012). A good representation of its evolution is therefore essential to have a 
plausible estimate of the GSAT. In this section, we assess the OHC of the IPSL-EHS as compared to two data 
sets of observations (Cheng & Zhu, 2016; Levitus et al., 2012), available over the 0–2,000 m depth. Large 
uncertainties are present in the OHC observations, mainly related to the lack of data and the data coverage 
evolution, as well as the different measurement techniques used over the historical period. The OHC drift 
calculated in the piControl simulation is removed from the IPSL-EHS prior to the analysis.

Figure 6 shows the pattern of the recent warming trend (1978–2018) of the upper OHC (0–700 m) in the ob-
servations and in the one simulated by the IPSL-EHS ensemble mean, as well as for the four members with 
the lowest and the highest spatial RMSE of surface temperature trends (Figure 5). Overall, the model tends 
to have larger trends than the observations over the 1978–2018 period, mainly at high and mid latitudes. The 

Figure 6.  Spatial trends in ocean heat content between 0 and 700 m ( 910E  J 2mE   per decade) over the 1978–2018 period from the observational data set of Cheng 
and Zhu (2016) (top left) and from the historical members of the IPSL-CM6A-LR model, with the ensemble average (top right), the four members with the 
lowest spatial RMSE (middle panel) and the four members with the highest spatial RMSE (bottom panel) for the surface temperature trends (Figure 5). To 
calculate the spatial RMSE of the upper ocean heat content trends (indicated at the bottom right), the model data is regridded onto the grid of the observations 
with a bilinear interpolation.
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IPSL-EHS mean warms up more than the observations, with a larger warming trend in the North Atlantic 
and North Pacific Oceans. The ensemble mean also differs from observations in the Eastern Pacific Ocean, 
probably linked to the large Interdecadal Pacific Variability (England et al., 2014). Despite these larger than 
observed variations in the model, some members exhibit patterns relatively close to the observations, with, 
for example, a pattern resembling the warming hole in the North Atlantic Ocean (e.g., members #5 or #14).

Figure 7a shows the time evolution of the global OHC of the first 700 m of the ocean relative to the 1970–
2018 period. Despite some discrepancies between the two observationally based estimates used, such as the 
weaker trend around 2006 or the larger OHC in 1980 in Levitus et al. (2012), the two data sets are broadly 
consistent with a correlation coefficient of 0.99 for annual values. These differences are mainly due to the 
different methods used to overcome the insufficient and irregular data coverage.

The observations of the global 0–700 m OHC are broadly in the range of the IPSL-EHS. Some discrepancies, 
however, are present between the IPSL-EHS and the Levitus et al. (2012) data set, with an underestimation 
of the OHC in 1980 and an overestimation of the OHC from 2010 on. Consistently with the GSAT analysis, 
the ensemble mean departs from the observations at the end of the period, with a larger than observed up-
per ocean warming. This deviation starts around 2008 for the Levitus et al. (2012) data set or around 2014 
for the Cheng and Zhu (2016) data set.

Unlike the upper OHC, the IPSL model ensemble mean has a lower than observed warming of the mid-
depth (700–2,000 m) OHC at the end of the period, which occurs around 2002 for the Cheng and Zhu (2016) 

Figure 7.  (a) Time evolution of the annual global mean upper (0–700 m) Ocean Heat Content (OHC) anomaly in ZJ (1 ZJ =  2110E  J) for two observationally 
based estimates (Levitus et al., 2012, in blue) and (Cheng & Zhu, 2016; Cheng et al., 2017, in brown), with their two standard deviation uncertainties (shading 
in blue and brown), and for the 32 historical members of the IPSL-CM6A-LR model (shading in gray) with the model ensemble mean (black line). The reference 
period is 1970–2017. (b) Same as panel (a) for the mid-depth (700–2,000 m) OHC, except for the Levitus et al. (2012) data set which reports a 5-years running 
mean and for the reference period (1970–2015). (c) Same as panel (b) for the 0–2,000 m OHC. Panel (d) represents the time evolution of the 0–700 m minus the 
700–2,000 m OHC (panel a minus panel b).
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data set and around 2012 for the Levitus et al. (2012) data set (Figure 7b). The IPSL-CM6A-LR model has 
an overestimated stratification of the ocean (Boucher et al., 2020), which could explain a part of the overes-
timation of the upper OHC warming trend and the underestimation of the mid-depth OHC warming trend 
by limiting the propagation of heat from the surface to the deeper ocean. The origin of this excessive strati-
fication has not yet been determined. Further investigation is required to determine if it is the consequence 
of the tuning procedure of the IPSL-CM6A-LR model or a more robust feature of the IPSL model. In order 
to further quantify this potential model bias, we calculated the difference between the upper OHC and the 
mid-depth OHC (Figure 7d). The observations are clearly outside the range from the IPSL-EHS from 2008 
onwards, which confirms that the model transfers too little heat downwards.

Considering the entire 0–2,000 m depth column of water, these discrepancies in surface and mid-depth 
OHC partly compensate for each other. Both sets of observations are within the range of the IPSL-EHS 
when taking into account the range of uncertainties (Figure 7c). Therefore, the right amount of energy 
seems to be captured by the ocean in the model.

5.  Simulation of the Sea Ice
We now turn to the assessment of the simulated sea ice, looking at the months of March and September, 
which correspond to the maximum and the minimum of sea ice in the Arctic region, respectively. The 
evaluation is focused on sea ice extent in the Northern Hemisphere, as the sensitivity of the Arctic sea ice 
to global warming is greater than in the Antarctic (Cavalieri et al., 1997). The sea ice extent is defined as the 
total area enclosed within the 15% sea ice fraction. We choose the sea ice extent variable rather than the sea 
ice area because of the smaller observational uncertainty, especially during the melting season (Andersen 
et al., 2007).

In the Northern Hemisphere, the variability of the observed sea ice extent is in the range of the model vari-
ability (Figure 8). Large differences in the intensity of interannual variability are present between the differ-
ent historical members, especially in March. Some members have a good representation of the sea ice vari-
ability over the 1979–2019 period, like member #2, which has the lowest RMSE in sea ice extent in March.

The historical simulations show nevertheless a large diversity in trends of sea ice extent averaged over the 
Northern Hemisphere for the 1979–2019 period both in March and in September (Figure 9). The observed 
trends are within the range of the model, but in the tail of the distribution for the sea ice extent in summer 
(September), the majority of members having stronger negative trends than observed. In winter (March), 
the observed trend is similar to that of the ensemble mean. Except for members #22 and 26, all the historical 
simulations show negative trends of sea ice extent in March. The slight positive trend in sea ice for these 
members in March is consistent with the lower than an observed trend in surface temperature in this region 

Figure 8.  Time evolution of the sea ice extent ( 6 210 kmE , top panels) in the Northern Hemisphere in March (left) and September (right) from the 32 historical 
members (gray lines) and the ensemble mean (black line) and from the (Fetterer et al., 2017) data set (blue line), with the closest simulation to the observations 
based on the RMSE (green line).
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(Figure 5). In September, all the members show a reduction in sea ice extent since 1978. This consistency 
between the members highlights the influence of external forces on sea ice melting. Members #16, 11, 21 
and 27 have the strongest decline in sea ice area, up to 0.95 610E  2kmE   1yrE   in March and 0.15 610E  2kmE   1yrE   in 
September for member #16.

Trends in sea ice extent in most CMIP5 models were lower than observed in September and this was the 
case of the majority of members of the IPSL-CM5A-LR ensemble (Stroeve et al., 2012). On the opposite, 
the sea ice trends in the IPSL-EHS tend to be larger than observed. This is consistent with the results of 
Notz et al. (2020), where the IPSL-CM6A-LR model shows a larger sensitivity of sea ice area to GSAT and 

2COE  concentration changes in comparison to IPSL-CM5A-LR, in better agreement with observations. It is 
nevertheless still unclear to what degree the better performance of CMIP6 models in comparison to CMIP5 
in capturing the observed sensitivity of sea ice area to change in GSAT and 2COE  concentration is related 
to a change in the forcing, a stronger climate sensitivity or an improvement of the model physics (Notz 
et al., 2020).

6.  Simulation of the Atlantic Meridional Overturning Circulation
The AMOC plays an important role in regulating the Earth's climate system, as it participates in redistribut-
ing heat within the ocean across latitudes and across the two hemispheres.

In the IPSL-CM6A-LR model, the AMOC maximum intensity at 26E N is underestimated by about 25% 
(Boucher et al., 2020), which is a common bias in low-resolution climate models (Hirschi et al., 2020), espe-
cially for those without overflow parametrization (Danabasoglu et al., 2014). The meridional heat transport 
of the Atlantic Ocean is also underestimated in IPSL-CM6A-LR at all latitudes, and particularly at tropical 
latitudes (Boucher et al., 2020). This bias is nevertheless weaker than in previous model versions.

Figure 9.  Trends ( 6 2 110 km yrE  ) in annual sea ice extent over the Northern Hemisphere in March (left) and September (right) calculated over the 1979–2018 
period from the (Fetterer et al., 2017) observational data set (blue dashed line), the IPSL-EHS mean (black dashed line) and the 32 historical members of the 
IPSL-CM6A-LR model (stars) ranked from weakest to highest trend (top to bottom). The stars colors are relative to the RMSE of the GSAT (1880–2018).
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Unlike the previous CMIP3 and CMIP5 simulations, the IPSL-EHS exhibits strong multidecadal var-
iations of the AMOC over the 1880–2018 period (Figure 10a). The IPSL-EHS mean shows a slight in-
crease of the AMOC between 1940 and 1990, which was related in CMIP6 models to the large aerosol 
emissions during that period, although the associated mechanism remains largely unknown (Menary 
et al., 2020). The ensemble mean then shows a weakening of the AMOC since the 1990s that continues in 
future scenario simulations (not shown), which is consistent with CMIP3 (Gregory et al., 2005), CMIP5 
(Cheng et al., 2013), and CMIP6 (Weijer et al., 2020) results. Member #22, characterized by the smallest 
warming trend in the IPSL-EHS over the 1978–2018 period for land and ocean (Figure 4) as well as with 
little reduction in sea ice (Figure 9), has one of the largest negative trends of the AMOC since the 1980s 
(Figure  10b). Conversely, member #16, which is characterized by a strong warming since the end of 
the th20E  century (Figure 4), shows a positive trend in the AMOC since the 1980s. This link between the 
AMOC and the GSAT variability results in a strong positive relationship between the 1978–2018 GSAT 
and AMOC trends, with a 2rE  = 0.59 (not shown). The ensemble members with the strongest decrease of 
the AMOC are those with the weakest GSAT warming and vice versa. The modulation of the GSAT and 
AMOC by the dominant bicentennial variability mode previously illustrated in the preindustrial control 
run is consistent with these relationships.

As suggested by the previous analyses, a decrease in this variability is present over the historical period 
(Section  2.3). To better describe it, the first component empirical orthogonal function (EOF) of the 
AMOC is calculated among the members of the IPSL ensemble (Figures  11b and  11c). This is done 
using low-pass filtered yearly Atlantic meridional streamfunction field, using a fifth order Butterworth 
filter with 20-years as cutoff period. The standardized principal components (PCs) are then calculated 
from the covariance matrix using the ensemble dimension instead of the time dimension. The EOFs are 
defined as the regressions onto the Principal Components (PCs). Fairly consistently over the historical 

Figure 10.  (a) Low-pass filtered annual anomaly of the AMOC at 26 NE   (in Sv) relative to the 1880–2018 period from the 32 historical members (in gray), the 
model ensemble average (in black), member #16 (in red), member #22 (in blue). A Lanczos low-pass filter is used with a cutoff period of 11 years (b) Variance 
of first intra-member AMOC at 26 NE   empirical orthogonal function (EOF-PC1) (%) calculated from the IPSL-EHS. (c) Intensity of intra-member AMOC EOF 
corresponding to one standard deviation of the PC1 (in Sv) at (green) 26 NE  , (red) 30 NE  , (black) 35 NE   and (blue) 40 NE  , calculated from the IPSL-EHS.
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period, about 50% of the intra-members AMOC variance is explained by the EOF-PC1 (Figure 11b). 
However, a decrease of the EOF intensity is visible from a mean value of 0.55 Sv before the 1980s to 
0.35 Sv after the 2000s, regardless of the latitude (Figure 11c). Therefore, the decrease of the AMOC 
variability seems mainly due to a decrease of the internally driven AMOC variability, probably due 
related to the interaction with the external forcing, rather than an externally forced phasing between 
members.

This decrease of the intra-member AMOC variability for the 2010–2030 period calculated from the EOF 
in 2020, in comparison to the 1850–1870 period, calculated from the EOF in 1860 is very visible between 
500 and 2,000  m depth and at all latitudes, although the main pattern remains similar (Figures  11a 
and 11b). In order to investigate the influence on SST of the decrease in the AMOC variability, we cal-
culated the regression of the low-pass filtered temperature (same filter as the AMOC) onto the AMOC-
PC1 through the ensemble dimension. A large decrease of the SST variability related to the AMOC 
variability is detected, especially in the North Atlantic (Figures 11c and 11d). While the AMOC impacts 
in 1850–1870 are similar to that found in the pre-industrial control simulation (see Jiang et al., 2021, 
their Figure 3), with a large increase of the Arctic SST associated with sea ice loss. The AMOC impacts 
are largely reduced in 2010–2030. Such reduction remains to be understood and could be linked to the 
Arctic sea-ice reduction after the 2000s, or to the increase of oceanic stratification as the North Atlantic 
subpolar gyre warms.

Figure 11.  (a) First empirical orthogonal function (EOF) of the AMOC (Sv per standard deviation) calculated over the 1850–1870 period among the members 
of the IPSL ensemble. (b) Same as panel (a) for the 2010–2030 period. (c) Regression of the SST on the AMOC EOF (K per standard deviation) calculated over 
the 1850–1870 period among the members of the IPSL ensemble. (d) Same as panel (c) for the 2010–2030 period. In panels (c) and (d), the colors are shown if 
the significance level is below 10%.
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7.  Modes of Variability
This section has two main objectives, the first is to assess whether the IPSL-EHS has a good representa-
tion of internal decadal climate variability over the historical period and the second is to look at whether 
the members are consistent with the observed evolution of the global temperature are those that are most 
consistent with two of the main modes of decadal climate variability, located over the Atlantic and Pacific 
Oceans.

7.1.  Interdecadal Pacific Variability

The Interdecadal Pacific Variability (IPV) is characterized by a horseshoe shape over the North Pacific, 
with for a positive phase, an eastern warming and a cooling in the Kuroshio-Oyashio Extension, similar to 
the Pacific Decadal Variability pattern, a warming over the tropical Pacific region, and a cooling over the 
southwestern Pacific Ocean (Newman et al., 2016). To evaluate the IPV in the IPSL-EHS, we used the tripole 
index (TPI) developed by Henley et al. (2015). The TPI is defined as the weighted difference between aver-
aged monthly SST anomalies (with the seasonal cycle removed) (SSTA) over the central equatorial Pacific 
( 2E SSTA , 10 SE  –10 NE  , 170 EE  −90 WE  ), and the Northwest ( 1E SSTA , 25 NE  –45 NE  , 140 EE  –145 W ) and the Southwest 
Pacific ( 3E SSTA , 50 SE  –15 SE  , 150 EE  –160 WE  ):

TPI SSTA SSTA SSTA  
2 1 3

2( )/� (2)
A Lanczos low-pass filter with a cutoff period of 13 years is then used. The interest of this index is to be 
expressed in Kelvin unit, which makes it easier to interpret than EOF-based definitions.

To evaluate the simulated IPV pattern, the TPI index is regressed on SST in each grid point for the observa-
tions (Huang et al., 2017) and for each member of the IPSL-EHS. The observations are regridded onto the 
IPSL-CM6A-LR grid prior to the evaluation. The results are summarized in Figure 12 using a Taylor dia-
gram (Taylor, 2001) and a panel of the IPV pattern maps is in (Figure S1). Overall, the IPSL-EHS has a good 
spatial representation of the IPV, with pattern correlations ranging from 0.54 to 0.78 (Figure 12). Although 
some members have pattern variability close to the observations, the model tends to underestimate it. The 
IPV pattern from the piControl simulation is in line with the IPSL-EHS, suggesting that the externally forced 
component is rather small in shaping the pattern. The representation of the IPV pattern seems to be better 
represented in IPSL-CM6A-LR than in IPSL-CM5A-LR, the CMIP5 version of the IPSL model, with a higher 
spatial correlation in the piControl simulation and in most of the historical simulations, although the spatial 
pattern variability of the piControl run seems slightly better in CMIP5 version than in CMIP6 one.

In terms of temporal variations, the observed TPI is overall within the range simulated by the IPSL-EHS 
over the historical period, except around the 1900–1910 period (Figure 13). The observed temporal variabil-
ity of the TPI has a standard deviation of 0.26 K, which is within the range of the IPSL-EHS whose standard 
deviations range from 0.15 to 0.29 K. When considering the previous version of the model (IPSL-CM5A-
LR), the standard deviations range from 0.20 to 0.29 K over the 1880–2005 period. Therefore, both models 
seem consistent with the observed variability in terms of temporal standard deviations of the TPI index. No 
clear relationship seems to exist between the TPI and the GSAT in the model. Member #16, with the lowest 
RMSE (0.25 K) over the 1880–2018 period and the best correlation (0.4), has a poor representation of the 
GSAT over the 1880–2018 period (Figure 3b).

7.2.  Atlantic Multidecadal Variability

The spatial pattern of the AMV is characterized by SST anomalies of the same sign over the North Atlantic, 
with a maximum on the subpolar gyre and a second maximum off the Iberian Peninsula and in the tropical 
Atlantic. The AMV index is generally defined as the average SST over the North Atlantic after the removal 
of the forced signal. A low-pass filter is then used to retain only the low-frequency variations.

We use the Trenberth and Shea (2006) method, which estimates the effect of external forcings as the aver-
aged SST between 60E S and 60E N. We also use the ensemble mean to estimate the forced variability in the 
model. A comparison between these two methods is then made to see the impact of the method used.
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To evaluate the simulated AMV pattern, the index is regressed on the unforced annual SST over the 1880–
2018 period for the ERSSTv5 (Huang et  al.,  2017) data set and for each member of the IPSL-EHS. The 
observations are regridded onto the IPSL-CM6A-LR grid prior to the evaluation. The spatial correlations 
between the AMV pattern simulated in the IPSL-EHS and the observations range from 0.5 to 0.7 (Figure 14). 
The IPSL-CM6A-LR model underestimates the spatial pattern variability of the AMV, by around 25% for 
a large number of members of the IPSL-EHS. Overall, the positive phase of the AMV is characterized by 
a positive response over the Northern Hemisphere, and negative response over the Southern Hemisphere 
(Figure S2). The IPSL-EHS exhibits a strong subpolar response to the AMV, larger than observed, as well 
as in the tropical Atlantic. The model also simulates a link between the AMV and the North Pacific, with 
a pattern resembling a negative phase of the Pacific Decadal Oscillation associated with a positive AMV 
phase as noted by Jiang et al. (2021) in the piControl run. As for the IPV, the AMV pattern seems to be better 
represented in IPSL-CM6A-LR than in IPSL-CM5A-LR (higher correlations in Figure 14 as well as standard 
deviations closer to observations). The AMV pattern of the piControl simulation of the CMIP5 IPSL model 
has, in particular, a much lower spatial correlation than IPSL-CM6A-LR. Although there are fewer biases in 
the spatial variability of the historical simulations from the IPSL CMIP5 model, the spatial correlations are 
overall lower than in IPSL-CM6A-LR.

A large uncertainty is associated with the way to remove the effect of external forces. Using the IPSL-EHS 
mean to remove response from the external forcing in the observations, a pattern correlation of 0.79 is 
found with the observed AMV pattern based on the Trenberth and Shea (2006) method (Figure 14). For 
the IPSL-EHS, an underestimation of the spatial magnitude is present with the Trenberth and Shea (2006) 
method, which is no longer visible when using the ensemble mean. The AMV pattern from the piControl 
simulation is relatively close to the observations, with a pattern correlation of 0.68. The pattern magnitude 

Figure 12.  Taylor diagram of the TPI index regressed on SST over the 1880–2018 period, with the observed IPV pattern 
from the ERSSTv5 data set of SST (Huang et al., 2017) as reference (REF on the X axis). The ratio of standard deviation 
(radial distance), spatial correlation (radial angle) is indicated. The brown dots are the results from the IPSL-EHS, the 
brown star from the piControl simulation of IPSL-CM6A-LR, the purple dots from the CMIP5 historical simulations 
performed with IPSL-CM5A-LR (limited to the 1880–2005 period), and the purple star from the CMIP5 piControl 
simulation of IPSL-CM5A-LR.
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is slightly larger than in the observations. The pattern magnitude of the piControl simulation is much larger 
than that from the IPSL-EHS using the Trenberth and Shea (2006) method.

The time variations of the observed AMV index are broadly in the range of the IPSL-EHS when using the 
Trenberth and Shea (2006) method to remove external forcing signal, albeit with an underestimation by 
the model ensemble around 1935 and an overestimation around 1998 (Figure 15). The temporal standard 
deviation of the observed AMV index is 0.13 K, inside the range of the IPSL-EHS, which goes from 0.07 to 
0.2 K. As for the IPV, the observed temporal standard deviation of the AMV index is also within the range of 
the historical simulations of the CMIP5 version of the IPSL model. The negative anomalies of the ensemble 
mean during the first part of the th20E  century, as well as the ensemble mean increase since 1990, suggests 
nevertheless that the Trenberth and Shea (2006) method does not fully estimate the external forcings in the 
IPSL-EHS, consistent with the previous study (Qasmi et al., 2017). Using the ensemble mean to estimate the 
external forcing, the observations remain included in the range of the IPSL-EHS (Figure 15).

As for the TPI index, the RMSE scores are calculated between simulated and observed AMV index (Fig-
ure 15, right panel). In contrast to the TPI index, the members with the lowest RMSE scores for the AMV 
index tend to have a low RMSE score for the GSAT evolution. Therefore, the low-frequency internal variabil-
ity of the North Atlantic SST seems to have a larger influence on GSAT than those of the Pacific in the IPSL 
model. This result is consistent with the large bicentennial variability of the AMOC present in this model 
and the associated oceanic variables in the North Atlantic.

8.  Discussion and Conclusion
A large ensemble of historical simulations has been performed with the IPSL-CM6A-LR model (Boucher 
et al., 2020), sampling start dates every 20 years from a preindustrial control simulation. This method al-
lowed to sample adequately the dominant mode of the model internal climate variability of the GSAT and to 
evaluate the uncertainty related to the IPSL-EHS. This bicentennial variability present in the IPSL-CM6A-LR 

Figure 13.  (Left) Time evolution of the TPI index calculated from the ERSSTv5 sea surface temperature (SST) observational data set (Huang et al., 2017, in 
blue) and from the 32 historical members (spread in gray). (Right) RMSE calculated for each member ranked from the highest to the lowest (top to bottom), the 
color of markers indicating the RMSE of the GSAT calculated over the 1880–2018 period.
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model indeed modulates the temperature changes over the historical period. We show that this variability is 
damped in the model along the historical periods, probably due to the effect of external forcing on this mode 
(e.g., Ma et al., 2021). If it had remained unchanged, this variability would have modulated the temperature 
changes over the historical period by about 0.4 K per century. This very long memory of initial conditions in 
the IPSL model, conditioning the evolution of temperature over the historical period, could have important 
implications in terms of predictability and evolution of the AMOC.

As a result of this large low-frequency internal variability, a strong link is found between the AMOC inter-
nal variability and the climate variability of the Northern Hemisphere. Members whose AMOC internal 
variability has a strong strengthening over the period 1978–2018 tend to have greater warming and stronger 
ice melt in the Northern Hemisphere than members whose AMOC internal variability has a slowing down, 
which will have much more limited warming. This slowdown tends to be amplified by the forced response 
of the AMOC to temperature increase. As a consequence of this strong AMOC variability, the variability of 
the North Atlantic seems to modulate GSAT multidecadal trends in the model, whereas the Interdecadal 
Pacific Variability does not seem to have a strong influence. Further investigation is needed to better under-
stand the processes involved in this low-frequency internal variability, which is also present in other CMIP6 
models (Parsons et al., 2020), whether it is an artifact of the model, and how it is modulated by external 
forcings.

Members #1 and #32 start from the same initial condition but were performed using different supercom-
puters. Due to slight differences in the precision of the supercomputers and due to the chaotic nature of 
the climate system (e.g., Lorenz, 1963), their exact trajectories have important differences on multidecadal 
and shorter timescales, consistent with the study of Guarino et al. (2020). However, the GSAT and AMOC 
multicentennial variability of these two members are close, thanks to the memory of the multicentennial 

Figure 14.  Taylor diagram of the AMV index regressed on SST over the 1880–2018 period, with the observed AMV 
pattern from the ERSSTv5 data set of SST (Huang et al., 2017) as reference (REF on the X axis). The ratio of standard 
deviation (radial distance), spatial correlation (radial angle) is indicated. The dots are the results from the IPSL-EHS 
using the Trenberth and Shea (2006) method to estimate the external forcings, the green dots using the ensemble mean 
and the purple dots are from the CMIP5 historical simulations using the IPSL-CM5A-LR model (limited to the 1880–
2005 period). The stars indicate the results from the (brown) CMIP6 and (purple) CMIP5 piControl simulations. The 
black rhombus is the result of the observed AMV pattern regressed on the unforced SST using the IPSL-EHS ensemble 
mean. The external forcings are removed from the observed SST prior to the analysis using the −60 to 60E N average or 
the IPSL-EHS ensemble mean relative to the method used for the calculation of the AMV index.
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variability in IPSL-CM6A-LR. As a result, the trends of these variables over the historical period are very 
close in these two members (Figure 1c for the GSAT).

The IPSL-CM6A-LR model is characterized by a rather large effective ECS of 4.5 K (though it reduces to 
3.8 K if computed from a 2 ×  2COE  rather than a 4 ×  2COE  abrupt forcing, as discussed in Boucher et al., 2020), 
a TCR of 2.4 K, and a relatively low aerosol forcing of −0.6 W 2mE , in comparison to the others CMIP6 models 
(Tokarska et al., 2020), as well as to the estimation based on observations (Sherwood et al., 2020). In relation 
to this rather large climate sensitivity, the ensemble mean of the historical simulations warms more than the 
observations. Despite the relative greater than observed warming in the IPSL-EHS means, some members 
are consistent with the global surface temperature variability and the recent warming trends, probably due 
to the large influence of decadal to multicentennial internal climate variability in IPSL-CM6A-LR. Consist-
ent with this average warming bias, the IPSL-EHS mean shows a stronger than observed decrease for sea ice 
extent in September. As the quasi-bicentennial variability is linked to interactions between the Arctic and 
the Atlantic Ocean, the Arctic sea ice also shows a large internal variability so that the observed decrease 
remains within the range of possibilities of the IPSL-EHS. The ensemble mean of the trend in sea ice ex-
tent in March in the IPSL-EHS is close to observations. We show that the upper OHC (above 700 m) shows 
a larger than observed increase, while the OHC at depth (below 700 m) shows a weaker than observed 
increase. We relate this bias to the fact that the model is generally too stratified in the ocean, which limits 
heat transfer from the surface ocean to the mid and deep ocean, which might then play a role and possibly 
explain the larger than observed warming found in the ensemble mean. This comparison of the modeled 
OHC to observations points to a potential positive bias for the transient climate response (TCR) but not for 
the equilibrium climate sensitivity (ECS).

A possible interesting perspective from this ensemble would be to identify the member or a subset of mem-
bers with a better fit to the observations is, for example, to apply a regional downscaling. These regional 

Figure 15.  Time evolution of the Atlantic multidecadal variability (AMV) index, calculated from the ERSSTv5 sea surface temperature (SST) observational 
data set (Huang et al., 2017, in blue) and from the 32 historical members using the Trenberth and Shea (2006) method to remove the response from the external 
forcings (spread in green) with the ensemble mean (in black). The spread in purple represents the same as the spread in green but using the ensemble mean as 
an estimation of the external forcing. A 10-years window low-pass filter is applied to the AMV index. (Right) RMSE calculated for each member ranked from 
the highest to the lowest (top to bottom), the color of markers indicating the RMSE of the GSAT calculated over the 1880–2018 period.
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experiments are often bias corrected against a short observational record (e.g., Cannon et al., 2015). It could 
be interesting to evaluate if performing such a bias correction over a simulated period that is, inconsistent 
with the observed period in terms of multidecadal variability results in under or over correction of the bias-
es when applied to future projected climate conditions. A perfect model experiment, using opposite phase 
members of the AMV for example, could be an opportunity to test this. The development of large ensemble 
simulations such as the IPSL-EHS offers great opportunities in the context of quantifying climate impacts.

This article provides a description of this large ensemble with a range of evaluation metrics as well as the 
first overview of its capabilities. It is important, however, to keep in mind that the best member(s) to be 
used may depend on the region and/or climate property of interest, and, therefore, have to be evaluated ac-
cording to the study of interest. Additionally, the consistency of some members with some climate features 
(in this study, the GSAT evolution for example), does not mean that the forcings and feedbacks are correct.

Some other precautions must be taken when using IPSL-EHS, as the memory of the initial conditions is 
indeed relatively persistent along the whole historical period because of the strong internal variability at 
multicentennial timescales. This could have implications, when considering a limited number of members 
for specific studies and in particular over regions largely influenced by this low-frequency internal variabil-
ity, such as Europe for example, Indeed, the analysis of two members in an opposite phase in terms of this 
low-frequency climate variability as compared to the observations could lead to biased results. Nevertheless, 
this marked variability can also be seen as an opportunity to study conditional occurrences of extremes, for 
example, depending on the specific phase of internal large-scale modes of variability, through an ad hoc 
sampling of the members. To conclude, the use of this large ensemble requires some care so as to properly 
account for the long and strongly marked internal variability in particular for bias correction methods for 
example, Yet, it offers also a unique opportunity to address important questions linking specific interannual 
events to decadal to multicentennial internal variability.

Overall, the IPSL-EHS is an interesting tool that can be used to address uncertainties relative to the internal 
climate variability over the historical period and until the mid-21E st century. Additionally, the IPSL-EHS can 
be used in conjunction with other large ensembles in order to assess the robustness of internal modes of 
climate variability or of the climate response to external forcings.

Data Availability Statement
The IPSL ensemble of historical simulations are publicly available on the Earth System Grid Federation 
website (https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/). Extensions for the period 2015–2059 are not 
official CMIP6 simulations and therefore are only available upon request.
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