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1.  Introduction
To understand ongoing and future global climate change, it is necessary to improve our understanding of 
the terrestrial carbon cycle. Emissions from the combustion of fossil fuels and land use change, causing 
increasing atmospheric 2COE , are partially balanced by carbon uptake in the terrestrial biosphere (Myhre 
et al., 2013). While the global carbon budget is constrained to a reasonable degree (Ciais et al., 2013), re-
gional sources and sinks (Crowell et al., 2019; Peylin et al., 2013) as well as future trends (Friedlingstein 
et al., 2014) are much less well understood and cannot be easily diagnosed from terrestrial biosphere models, 
as they disagree substantially in temporal dynamics and the sign of carbon uptake (Huntzinger et al., 2012).

Atmospheric inversion systems provide a top-down approach to estimating terrestrial carbon fluxes and a 
complementary perspective to ecosystem models (Bousquet et al., 1999; Gurney et al., 2002). Most inver-
sion models rely on both a priori estimates of ecosystem carbon fluxes and atmospheric transport models 
to optimize fluxes with respect to observed atmospheric 2COE  mole fractions ( 2[CO ]E ). They are subject to 
uncertainties arising from limited observations of atmospheric 2[CO ]E , atmospheric model transport errors, 
and uncertain prior flux estimates. Model transport errors in particular are widely considered to be a major 
source of uncertainty for atmospheric inversion systems (Baker et al., 2006; Chevallier et al., 2010; Díaz-
Isaac et al., 2014; Gerbig et al., 2008; Lauvaux & Davis, 2014; Peylin et al., 2005; Schuh et al., 2019; Stephens 
et al., 2007). For example, Stephens et al. (2007) demonstrated the far reaching effects of the atmospheric 

Abstract  Atmospheric 2COE  inversion typically relies on the specification of prior flux and 
atmospheric model transport errors, which have large uncertainties. Here, we used ACT-America 
airborne observations to compare 2COE  model observation mismatch in the eastern U.S. and during four 
climatological seasons for the mesoscale WRF(-Chem) and global scale CarbonTracker/TM5 (CT) models. 
Models used identical surface carbon fluxes, and CT was used as 2COE  boundary condition for WRF. 
Both models showed reasonable agreement with observations, and 2COE  residuals follow near symmetric 
peaked (i.e., non-Gaussian) distribution with near-zero bias of both models (CT: 0.34 3.12E    ppm; WRF: 
0.82 4.37E   ppm). We also found large magnitude residuals at the tails of the distribution that contribute 
considerably to overall bias. Atmospheric boundary-layer biases (1–10 ppm) were much larger than free 
tropospheric biases (0.5–1 ppm) and were of same magnitude as model-model differences, whereas free 
tropospheric biases were mostly governed by 2COE  background conditions. Results revealed systematic 
differences in atmospheric transport, most pronounced in the warm and cold sectors of synoptic systems, 
highlighting the importance of transport for 2COE  residuals. While CT could reproduce the principal 

2COE  dynamics associated with synoptic systems, WRF showed a clearer distinction for 2COE  differences 
across fronts. Variograms were used to quantify spatial correlation of residuals and showed characteristic 
residual length scales of approximately 100–300 km. Our findings suggest that inclusion of synoptic 
weather-dependent and non-Gaussian error structure may benefit inversion systems.
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transport model choice by showing that substantial biases in atmospheric 2COE  gradients (i.e., vertical mix-
ing) resulted in considerable differences in estimated regional fluxes and Peylin et al. (2013) found a large 
uncertainty in the North American terrestrial carbon sink ( 10.75 0.45PgCyE  ) in a comparison of atmos-
pheric inversion systems, highlighting the role of transport uncertainty for atmospheric inversion. Uncer-
tainty attributed to transport models appears to be independent of regional sampling density, such that 
tropical and extratropical regions exhibit similar transport uncertainties (Basu et al., 2018). While addition-
al atmospheric 2COE  observations in the tropics are crucially needed to constrain regional carbon balances, 
quantification, and reduction of transport uncertainty is a priority for improving flux estimates in North 
America.

Feng, Lauvaux, Davis, et al. (2019) showed that both fossil fuel fluxes and continental boundary conditions 
play important roles in the uncertainty in ABL 2COE  in addition to atmospheric transport, but concluded that 
biogenic fluxes, the typical objective of atmospheric inverse analyses, are the largest source of uncertainty.

It was found for regional inversion systems that different atmospheric boundary-layer (ABL) parameter-
izations can cause substantial changes in regional inverse flux estimates (Lauvaux & Davis, 2014) due to 
differences in ABL depth and vertical mixing strength. Also, all physical parameterizations within one nu-
merical weather model lead to considerable variability in ABL 2COE  (Díaz-Isaac et al., 2018). The impact of 
atmospheric mixing strength on inversion results is exacerbated by the fact that the 2COE  mass balance in 
inversion models must be maintained, and the fact that horizontal transport speed is altitude dependent. 
Consequently, erroneous surface fluxes can result from errors in vertical mixing and associated latitudinal 
transport of 2COE  (e.g., Chan et al., 2008; Schuh et al., 2019; Stephens et al., 2007). Transport uncertainty 
clearly manifests itself in ABL 2COE  mole fractions, and large differences have been found within global 
and regional atmospheric models (e.g., Chen, Zhang, Lauvaux, et al., 2019; Díaz-Isaac et al., 2018; Schuh 
et al., 2019). However, Gaubert et al. (2019) recently challenged the notion that vertical 2COE  gradients were 
the dominant cause of uncertainty in the North American carbon sink for current global inversions, and 
suggested that uncertainties in the fossil fuel prior were responsible.

While atmospheric inversions have been crucial for estimating global to continental scale carbon sources 
and sinks, limited progress has been made in constraining regional carbon fluxes on seasonal scales. The 
coarse resolution of global inversion systems (typically 1 1E    or coarser) may limit their ability to resolve 
finer scale atmospheric transport in weather systems and complex terrain (Geels et al., 2007). Inversions 
with higher model resolutions, such as CarbonTracker-Lagrange (Hu et al., 2019), have been successfully 
applied to constrain ecosystem carbon fluxes at regional (Lauvaux, Schuh, Bocquet, et al., 2012; Lauvaux, 
Schuh, Uliasz, et al., 2012; Schuh et al., 2013) and continental (Hu et al., 2019) scales, but rely on high 
density 2COE  observations as well as the model's ability to reproduce boundary-layer processes and synop-
tic weather systems. Synoptic systems in the northern midlatitudes are responsible for up to 70% of 2COE  
variability through advection and are the dominant mechanism of day-to-day 2COE  variability in the ABL, 
and synoptic scale fronts create large contrasts in near surface 2COE  (Parazoo et al., 2008, 2011). Parazoo 
et al. (2012) highlighted that 2COE  flux estimates were highly sensitive to such synoptic scale gradients.

It is therefore desirable that transport models are capable of producing relevant frontal processes such as 
(a) advection of upstream 2COE  gradients (e.g., Keppel-Aleks et al., 2011, 2012), (b) moist convective lifting 
of ABL air and (Schuh et al., 2019), (c) modification of ecosystem 2COE  exchange due to changes in meteor-
ological drivers of carbon fluxes such as solar radiation or temperature (e.g., Chan et al., 2004). Comparing 
global inversion system's ABL dynamics, vertical mixing, and convection at frontal boundaries were also 
identified as priorities for improving 2COE  flux estimates in the northern midlatitudes (Schuh et al., 2019).

The NASA funded Atmospheric Carbon and Transport (ACT)-America Earth Venture Suborbital Mission 
(Davis et al., 2021) was designed to observe atmospheric 2COE  and 4CHE  mole fractions in the central and 
eastern United States, the dominant region for North American ecosystem 2COE  fluxes and atmospheric 

2[CO ]E  variability, and provide the observational basis for improving regional flux inversions in this region 
and across the midlatitudes. The ecosystem fluxes, atmospheric 2COE  mole fractions (Sweeney et al., 2015), 
and weather patterns all exhibit strong seasonal variability (e.g., Merrill & Moody,  1996). ACT-America 
sampled atmospheric 2COE  and 4CHE  and associated weather variables across (a) multiple altitudes, (b) fair 
weather and frontal conditions (including cross-frontal differences), (c) multiple regions, and (d) all four 
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meteorological seasons within the scope of 5, 6-week flight campaigns. ACT-America provides an ideal test-
bed for exploring the ability of atmospheric models to simulate atmospheric 2COE  across weather systems 
typical of the central and eastern United States, and thus shed light on both global and regional atmospheric 
inversion system behavior.

In this work, we compare atmospheric 2COE  model observation differences between ACT-America data us-
ing both the global CarbonTracker (Peters et al., 2007) inversion system and the mesoscale Weather Re-
search and Forecasting model (Skamarock et al., 2008) coupled with chemistry, commonly known as WRF-
Chem. CarbonTracker ingests a variety of global 2COE  data sources including daily flask observations, hourly 
surface time series data, and aircraft observations (Andrews et al., 2014; Sweeney et al., 2015) and data 
is publicly available. It can therefore serve as a starting point for the investigation of model observation 
mismatches. WRF-Chem was run for the ACT-America study domain using CabonTracker surface carbon 
fluxes and lateral boundary conditions. For simplicity, we use WRF throughout this paper, when referring 
to WRF-Chem and CT when referring to the specific CarbonTracker-data used in this work (see Section 2). 
CarbonTracker is used when we refer to the overall inversion system. This experiment thus focuses on how 
these two different transport systems represent atmospheric 2COE  with respect to the ACT observations given 
the same fluxes.

We analyze the properties of 2COE  model observation differences along flight tracks and establish a baseline 
and general approach for comparing mesoscale (WRF) and continental scale (CarbonTracker) model errors, 
which can be further extended to other atmospheric inversion (e.g., CarbonTracker-Lagrange) or regional 
modeling systems. Model-data residuals are investigated as a function of region, altitude, climatological 
season, and air mass associated with frontal structure. These analyses—and the frontal analysis in particu-
lar—enable a comparison of the mesoscale and continental scale models for atmospheric conditions that 
are important to 2COE  transport. At the same time, these synoptically active conditions are often avoided 
in airborne networks such as the NOAA CCGG (Carbon Cycle and Greenhouse Gases) Aircraft Program 
(Sweeney et al., 2015) and partially hidden from satellite remote sensing due to cloud interference (e.g., 
Parazoo et al., 2008).

This paper investigates 2COE  model-data mismatch; our results are intended to guide future diagnostic stud-
ies that will separate flux and transport errors.

2.  Materials and Methods
2.1.  ACT-America Aircraft Observations

This work uses 5 s averaged aircraft 2COE  dry mole fractions measured using a Picarro G2401-m cavity ring 
down spectrometer and 2[CO ]E  calibration is traceable to X2007-scale. Data are published in the ACT-Amer-
ica: L3 Merged In Situ Atmospheric Trace Gases and Flask Data, Eastern USA data set (Update: March 04, 
2019; Davis et al., 2018), which is freely available from the Oak Ridge National Lab Distributed Archive 
Center (ORNL DAAC; Wei et al., 2021). The NASA Langley Beechcraft B-200 King Air and the NASA God-
dard Space Flight Center's C-130H aircraft were used to collect high quality in situ and remote sensing 
measurements across the Eastern United States. Given the average speed of the aircraft (100 and 120  1msE  , 
respectively), the 5 s averaged aircraft observations have a spatial resolution of 500–600 m (Chen, Zhang, 
Lauvaux, et al., 2019). Data used in this work were collected during four intensive observation period flight 
campaigns aligning approximately with climatological seasons. We use these campaigns as proxies for sea-
sonal greenhouse gas behavior.

During each of the flight campaigns aircraft were operated from three different bases (Wallops/Norfolk, 
Virginia; Lincoln, Nebraska; Shreveport, Louisiana), which approximately correspond to study domains 
(Table 1) referred to as NorthEast Mid-Atlantic (NEMA), Mid-West (MW), and South Central (SC) U.S. We 
are using geographic coordinates of individual measurement locations to delineate flight regions. The South 
Central U.S. are defined as the area south of latitude N37.00E  (Latitude of the Oklahoma-Kansas border) 
as well as west of longitude E84.39E  (Longitude of the city of Atlanta). The Mid-West U.S. region is defined 
as the area north of N37.00E  and west of E87.5E  (Longitude of the Illinois-Indiana border). The Northeast 
Mid-Atlantic region is defined as east of E87.5E  and extending south to N33.75E  (Latitude of Atlanta), but 
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excluding the area previously defined as South Central. The geographic distribution of flight observations 
used in this work is displayed in Figure 1.

We divide aircraft data into three altitude classes which roughly correspond to the atmospheric bounda-
ry-layer (E 1.5 km; all altitudes in above ground level), the lower free troposphere that is frequently affected 
by convective clouds and mixing (E 1.5 to E 4.0 km; LFT), and higher free troposphere which is less often 
affected by convection and thus might be akin to background conditions (E 4 km; Baier et al., 2020; Sweeney 
et al., 2015). Flight planning during the ACT-America campaign was cognizant of these altitude classes. 
For example, despite large diurnal and seasonal variability of ABL heights, ACT-America flight legs below 
1.5 km altitude attempted to stay within the ABL by maintaining a flight altitude of 330 m AGL, whenever 
possible. The next level was specifically selected to be above the ABL, depending on forecasts and ABL 
depths observed in flight. To reduce misclassification of vertical levels, we confined our analysis to flight 
segments that were classified as level-legs, meaning without considerable (E 500 m) flight altitude changes 
indicative of either vertical profiling or maneuvers to evade clouds during visual flight rules, as defined 

Campaign Region Start & end dates # Flight daysa

Summer 2016 Northeast Mid-Atlantic June 18–27 7

Mid-West August 1–14 10

South Central August 16–28 9

Winter 2017 South Central January 30 to February 12 8

Mid-West February 13–26 9

Northeast Mid-Atlantic February 27 to March 10 9

Fall 2017 Northeast Mid-Atlantic October 3–14 7

Mid-West October 16–27 8

South Central October 30 to November 10 7

Spring 2018 South Central April 12–22 9

Mid-West April 23 to May 2 8

Northeast Mid-Atlantic May 4 to May 20 9
aTransit flights between regions are attributed to their destination region.

Table 1 
ACT-America Aircraft Campaigns

Figure 1.  Overview of atmospheric carbon and transport (ACT)-America observation data considered in this work. 
Colored lines indicate level-leg flight tracks by campaign. Study subregions as outlined in text are also indicated.
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in the ACT-America maneuver flag product produced by the ACT_ManeuverFlags algorithm Version 1.0 
(Gerken, 2019).

Additionally, ACT observations are classified by air mass conditions. Flights were planned to sample syn-
optic systems by flying cross-frontal transects through cold and warm sectors of the system. Similarly, fair 
weather flights were planned to sample fair weather conditions as well as prefrontal warm air masses and 
postfrontal cold air masses. During days when no frontal crossings were flown, all data were either attrib-
uted to cold/warm air masses or fair conditions depending on flight location with respect to the synoptic 
systems shown by the National Weather Service surface analysis. During flights when fronts (typically cold 
fronts) were crossed, data flags were manually assigned to separate flights into warm and cold air masses 
based on equivalent potential temperature, wind, and trace gas changes across fronts. Air mass flags and 
flight type flags are published on the ONRL DAAC as part of the ACT L3 merged data set (Davis et al., 2018). 
ACT research flights were typically conducted from local time midmorning—that is, after the development 
of a sufficiently deep convective ABL for aircraft operation within the ABL—to late afternoon, correspond-
ing to range of the C-130 aircraft and to avoid nighttime conditions and collapsed ABLs.

2.1.1.  CarbonTracker

We use total posterior atmospheric 2[CO ]E  from NOAA's CarbonTracker (Peters et al., 2007, with updates 
documented at http://carbontracker.noaa.gov) available from the NOAA Global Monitoring Laboratory 
in this study. The CarbonTracker global inversion modeling system uses the Transport Model Version 5 
(TM5) atmospheric model (Krol et al., 2005) with ECMWF (European Center for Medium Range Weather 
Forecasting) ERA-Interim reanalysis meteorological drivers to estimate surface fluxes of 2COE . TM5's spatial 
resolution above North America is 1 1E   . Given that the ACT-America research period spans the years 
from 2016 to 2018, the CT2017 release is used for the summer 2016 campaign, while other seasons use the 
CT-NRT.v2019-2 (CarbonTracker-Near-Real Time). CT-NRT, designed to extend CarbonTracker between 
official releases, employs the same TM5 atmospheric model, while assimilating a smaller subset of 2[CO ]E  
observations. Similarly, real-time meteorology and a simplified terrestrial ecosystem carbon flux prior are 
used for CT-NRT. A recent two-season comparison between CT-NRT and ACT aircraft observations found 
overall reasonable agreement between modeled and observed 2[CO ]E , but substantial differences in bias be-
tween region and season (Chen, Zhang, Zhang, et al., 2019). ABL heights for CarbonTracker are obtained 
using NOAA's Observation Package (OBSPACK, Masarie et al., 2014) for CT2017 and CT-NRT-2019.2. We 
find that CT-NRT-2019.2, CT2019, and CT2017 have very similar ABL heights along ACT flight tracks.

CT2017 assimilates 2COE  observations from 254 sites to estimate a weekly set of biome-specific scaling fac-
tors for North America that are applied to a priori biospheric 2[CO ]E  flux model estimates. The scaling factors 
adjust the fluxes in order to minimize the difference between modeled and observed atmospheric 2[CO ]E . 
These biome-specific scaling factors are estimated independently for each of the 19 potential biomes within 
each TransCom region (Gurney et al., 2002). CT2017 does not optimize fossil fuel and wildfire 2COE  flux 
estimates. To estimate the impact of biases in prior fluxes, CT2017 uses two sets of priors (two each for 
terrestrial, ocean, fossil fuel, and wildfire carbon fluxes) and the final inversion result is the mean flux of 
the two inversions.

Two versions of the CASA model (Carnegie-Ames Stanford Approach Potter et al., 1993, 2003) are used for 
the terrestrial biospheric prior and originate from the GFED (Global Fire Emission Database) project (Giglio 
et al., 2009, 2013; van der Werf et al., 2006). Monthly net ecosystem carbon exchange from CASA as used 
in GFED 4.1s and GFED_CMS are scaled to 3-hourly fluxes similar to Olsen and Randerson (2004), while 
ensuring smooth month to month transitions following Rasmussen (1991). GFED 4.1 and GFED_CMS are 
also used as priors for wild-fire fluxes and rely on MODIS (MODerate Resolution Imaging Spectrometer) 
fire counts and CASA to estimate wildfire carbon loss.

As prior distributions for fossil fuel emissions the ODIAC2016 (Oda & Maksyutov, 2011) and Miller data 
sets (CarbonTracker Team, 2018) are used in CT2017. The Miller data set uses estimated total global fossil 
fuel 2COE  emissions from the Carbon Dioxide Information and Analysis Center (CDIAC, Boden et al., 2016), 
which are spatially mapped to a 1 1E    grid using the spatial patterns of the EDGAR4.2 inventory (Jans-
sens-Maenhout, 2011) and temporal distribution of Blasing et al. (2005). ODIAC (Oda & Maksyutov, 2011) 
emissions are also based on CDIAC, but differs in the spatial mapping of fluxes, which is based on proxy 

http://carbontracker.noaa.gov


Journal of Geophysical Research: Atmospheres

GERKEN ET AL.

10.1029/2020JD034481

6 of 24

data such as power-plant locations, night-light images, and aviation tracks. Because of ODIAC's yearly tem-
poral resolution, seasonal changes were derived using CDIAC monthly fossil fuel emission inventories (An-
dres et al., 2011). Diurnal and day of the week fossil fuel cycles are imposed on monthly emissions using 
scaling factors (Nassar et al., 2013).

For ocean basins, oceanic, instead of biospheric, 2COE  fluxes are optimized. Both ocean priors—the Ocean 
Inversion Flux prior (OIF, Jacobson et al.,  2007) and pCO2-Clim (Takahashi et al., 2009)—are based on 
estimates of air-water differences in 2COE  partial pressure from either ocean inversions (OIF) or direct ob-
servations (pCO2-Clim).

Consequently, CT2017 provides a complete set of carbon surface fluxes from the terrestrial biosphere, 
oceans, fossil fuels, and wildfires as well as atmospheric 2COE  mole fractions, which are available at 3-hourly 
temporal resolution and 1 1E    spatial resolutions over North America. 2COE  mole fractions are reported on 
TM5’s 25 model layers (Krol et al., 2005), which include 6 layers below 1.5 km and 15 layers below 10 km. 
CarbonTracker has unrealistically large differences between the first (25 m) and second (103 m) atmos-
pheric layer in well-mixed conditions (Díaz-Isaac et al., 2014). However, these model levels are considerably 
below the typical ABL level-leg flight altitude of 330E   m AGL. CT2017 includes parameterized convective 

2COE  mass flux.

2.1.2.  WRF-Chem

The mesoscale model is WRF-Chem v3.6.1 (Fast et al., 2006; Grell et al., 2005; Powers et al., 2017; Skamaro-
ck et al., 2008) with the modification to transport greenhouse gases as passive tracers described in Lauvaux, 
Schuh, Uliasz, et al. (2012). Trace gas boundary conditions are provided from CarbonTracker at 3-hourly 
interval posterior 2COE  mole fractions. WRF employs identical surface fluxes to CT. An extra step is taken to 
ensure the conservation of mass when ingesting CarbonTracker 2COE  mole fractions into the WRF-Chem 
domain. More details of the mass conservation of 2COE  can be found in Butler et al. (2020).

The domain of interest contains most of North America at 27 km horizontal resolution. The model has 50 
levels up to 50 hPa with 20 levels in the lowest 1 km. The model meteorology is initialized every 5 days and 
driven with ERA5 reanalysis every 6 h at 25 km horizontal resolution. The WRF-Chem dynamic is relaxed 
to ERA5 meteorology every 6 h using grid nudging. Each meteorological re-initialization is started at a 12-h 
setback from the end of the previous 5-days run. The first 12 h of every 5-days simulation are considered 
spin-up and discarded from the final analysis. We also update sea surface temperature every 6 h at 12-km 
resolution. Choices of the model physics parameterizations used in this experiment are documented as 
the baseline setup in Feng, Lauvaux, Davis, et al. (2019) and Feng, Lauvaux, Keller, et al. (2019) and model 
output for all ACT campaigns is archived and publicly available at the Pennsylvania State University Data-
Commons (Feng et al., 2020).

2COE  fluxes in WRF are taken from CarbonTracker as described above and remain separate tracers in the 
model simulations. For analyses requiring total atmospheric 2COE  mole fractions, the surface flux tracers are 
summed and added to the boundary-condition 2COE  tracer.

2.2.  Analysis of CO2 Residuals

Differences between modeled and observed 2COE  are calculated by subtracting 2[CO ]E  observed along the 
aircraft flight from modeled 2[CO ]E  using the nearest neighbor in space and time. Chen, Zhang, Zhang, 
et al. (2019) found while comparing CT-NRT v2017 to ACT observations that temporal and spatial interpo-
lation impacted calculated RMDSs of typically less than 0.4 ppm in the ABL, which is considerably smaller 
(order 10% or less) than RMSDs calculated in this work. The resulting residuals thus include both errors 
from model transport and surface fluxes. Given that CT and WRF use the same flux data set, differences 
in residual should be a representation of differences in atmospheric transport including model resolution.

We calculate statistical measures—including bias, median deviation, root mean square deviation, and mean 
absolute deviation—for the entire data set as well as separated by region, season, and meteorological air 
mass. Confidence intervals for the above statistical measures are calculated using a block bootstrap, which 
accounts for temporal auto-correlation using an optimal block-length approach (Patton et al., 2009; Politis 
& White, 2004). For each subset of the data, we also separate the data set by vertical flight level. These 
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divisions enable us to gain more understanding of the causes for model-data differences such as the impact 
of biological fluxes from different regions, and the impact of vertical mixing on continental background 

2[CO ]E .

We adopt the following notation for all quantities: the observed arithmetic mean and standard deviation of 
a quantity E x are presented as E x  .

2.3.  Variograms

To assess spatial statistics of 2COE  residuals, we compute empirical (semi-)variograms (Matheron, 1963) for 
each flight day:

 ( )
( )

( ) ,
( )

D
N D

R R
N D

i j 
1

2

2

| |� (1)

where ( )E N D  is the set of all pairwise Euclidean distances (E i j ), | |N D( )  the number of distinct pairs, and iE R  
and jE R  are the residuals at spatial locations  and E j. Distance (on WGS84 ellipsoid) pair calculation and is 
performed separately for individual level-legs at each altitude level, to minimize the impact of atmospher-
ic change. Altitude variations within the same flight leg are not included in the variogram calculations 
as horizontal distances are much larger than altitude differences within the same level-leg. Subsequently, 
the empirical variograms for ABL, LFT, and HFT as well as WRF and CT are calculated using all distance 
pairs. Euclidian distance calculations are performed using Experimental (Semi-)Variogram version 1.4.0 
(Schwanghart, 2013). Distances are binned into 36 classes using a geometric scaling between 1 and 750 km. 
To remove the disproportionate impact of outliers, including local 2COE  plumes (e.g., directly downwind of 
conventional power plants) that caused spikes of more than 100 ppm in 2[CO ]E , on variance calculations, we 
only considered 2[CO ]E  residuals between the 1stE  and 99thE  percentiles for the variogram.

To characterize spatial residual statistics, we fit an exponential variogram of form

0 1( ) 1 exp ,DD c c
L


  

       
� (2)

to the observational data, where 0E c  is the nugget (y-intercept of variogram), 1E c  the sill (the limit of E   at infinite 
E D) and E L the characteristic length scale of the variogram. As proposed by Schwanghart (2013), the range 

(distance at which the E   approximates the sill) is assumed to be 3E L. The exponential fit is conducted with 
Matlab2018b's lsqnonlin-solver using weighted least squares using the inverse of the standard deviation of 

2COE  residuals in each distance bin and a lower parameter bound of 0 is enforced for nugget, range, and sill.

3.  Results and Discussion
This study considers a total of 402,838 2[CO ]E  observations collected during four ACT campaigns which are 
compared to modeled 2[CO ]E  from CT and WRF (Figure 2 and Table S1). The models appear to be capable of 
reproducing the multimodal shape of observed 2[CO ]E , which is both caused by the seasonality of 2COE  fluxes 
and mixing, and the general increase of mean atmospheric 2COE  between 2016 and 2018 associated with 
anthropogenic carbon emissions. The resulting 2[CO ]E  residuals for CT and WRF follow near symmetric, 
peaked distributions with high kurtosis (E 59 and E 42 for CT and WRF, respectively) and near-zero mean 
(CT: −0.34 E  3.12 ppm; WRF: 0.82 E  4.37 ppm for mean E  standard deviation). These residual distributions 
are clearly and significantly different (Figure 2c) from normal distributions with identical means and stand-
ard deviations. Skewness is small compared to kurtosis (−2.1 and 2.7 for CT and WRF) but of opposite sign 
indicating skew toward negative bias for CT and positive bias for WRF. Note that the mode of the residual 
histogram is slightly positive (E 0.5 ppm) for both models.

The skewness of residuals can be attributed to CT's apparent lack of modeled 2[CO ]E  in excess of approx-
imately 416 ppm, while WRF predicts too few occurrences of 2[CO ]E  values below approximately 400 ppm 
(Figures 2a and 2b). CT's more pronounced 2[CO ]E  peak at approximately 412 ppm is attributed to the fact 
that CT exhibits a narrower range of modeled ABL 2[CO ]E  during winter and spring compared to both ACT 
observations and WRF (Figure S1). Consequently, CT's winter and spring 2[CO ]E  in the ABL show much less 
overlap with fall and summer 2[CO ]E  and the resulting PDF appears less smooth (Figure S1b) compared to 
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the corresponding PDFs of ACT observations and WRF. Furthermore, the too narrow peak in CT is particu-
larly pronounced in the Northeast Mid-Atlantic region (Figure S2).

3.1.  Characterization of CO2 Residuals

For the remainder of the analysis, we focus on 2[CO ]E  residuals and their spatiotemporal statistics. This lim-
its the impact of increasing ambient 2[CO ]E  due to fossil fuel emissions and seasonal 2COE  climatologies on 
our analysis. Division of residuals by altitude level (Figure 3) reveals that the total difference (Figure 2d) in 

2[CO ]E  residual distribution between WRF and CT is primarily reflective of differences in the ABL. Here, CT 
exhibits a more peaked distribution with negative bias, while WRF's distribution is wider and with positive 
bias. The overall shape of CT and WRF residual distribution is non-Gaussian at all levels for CT and WRF 
and becomes markedly narrower and more peaked with increasing height, while the ABL 2[CO ]E  exhibits 
pronounced heavy tails. Comparing the residual distributions between CT and WRF (Figure 3, right col-
umn) shows that the difference in residual PDFs in the ABL is not only due to the difference in mean resid-
uals between CT and WRF, but also due to the opposite skewness of the underlying residual distributions. 
For free tropospheric levels (LFT, HFT), we find that that the difference in residual PDFs is primarily caused 
by a shift in the mean of the distribution (i.e., bias) rather than the shape of the distribution.

While the majority of ABL 2[CO ]E  residuals fall into a narrow range (Interquartile range of −2.76 to 1.07 ppm 
and −1.07 to 3.87  ppm, respectively; Table  S1), we also calculated the 2.5thE  and 97.5thE  percentiles. The 
choice of the 2.5thE  and 97.5thE  percentiles presents a compromise between representing the tail ends of the 
residual of the distribution, while not including outliers, which for example, can result from 2COE  plumes in 
the vicinity of power plants.

Results found for the residual PDFs (Figure 3, left column) hold generally true when residuals are separated 
by season, region, and air mass (Figure 4 and Table S1). While mean residuals and IQRs vary across cases 
(see discussion in the following section), ABL IQRs are within the range of E 5 ppm (see also Table S1). At 
the same time, the tails of the residual distribution are much larger in magnitude for both CT and WRF and 

Figure 2.  Overview of modeled and observed 2COE  mole fractions during four Atmospheric Carbon and Transport (ACT) campaigns 2016–2018. (a) 
CarbonTracker (CT); (b) WRF-Chem; (c) Aircraft observations; and (d) resulting 2COE  (Modeled-Observed 2COE ) for CT and WRF. The gray line in (d) shows the 
normal distribution with similar mean and standard deviation to WRF residuals for reference.
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can exceed −10 and 15 ppm for the 2.5thE  and 97.5thE  percentiles, respectively. At the higher LFT and HFT 
levels, the range of the residual PDF is much smaller and typically with E 5 ppm (LFT) and E 2.5 ppm (HFT).

A quantile by quantile (Q-Q) comparison of CT and WRF residuals to normal distributions with corre-
sponding means and standard deviations (Figure S3) further reinforces the notion of non-Gaussian 2[CO ]E  
residuals encountered for the entire data set holding true across seasons, regions, and air masses. The Q-Q 
plots also reveal large deviations from Gaussian behavior for CT and WRF to be at the tail ends of the resid-
ual PDFs, further highlighting the potential of large magnitude residuals to influence summary statistics 
commonly used in inversion systems to describe Gaussian distributions.

3.1.1.  Regional, Seasonal, and Air Mass Dependent Bias and RMSD

Past studies of model observation mismatch have often reported on bias and root mean square deviation 
(RMSD) between model and observations (Figure 5). The median residual and Mean Absolute Deviation 
(MAD) are reported in Figure S4. As expected, biases for LFT and HFT are much closer to zero compared to 
biases in the ABL. There are substantial disagreements between CT and WRF both in magnitude and sign of 
the bias. For higher atmospheric levels for which effects of local fluxes and mixing are less important—and 
thus are more likely to reflect background conditions—CT and WRF show closer agreement.

For climatological seasons (Figure 5a), WRF and CT show similar behavior in the total magnitude of biases 
in the ABL, but signs are opposite between CT and WRF, while LFT and HFT biases are comparatively small 
(typically  | . |0 5  ppm). Fall and Spring show the worst model performance for both CT (−1.89 E  4.70 ppm; 
−1.22 E  3.50 ppm, respectively) and WRF (2.53 E  6.46 ppm; 1.75 E  5.99 ppm, respectively), followed by Win-
ter and Summer. For Summer, CT has a near-zero bias (0.10 E  6.01 ppm), while the bias from WRF remains 
considerable (0.89 E  8.13 ppm). Interestingly, the comparatively large bias for Fall is confined to the ABL, 
while LFT and HFT biases are virtually absent. This is in contrast to Winter, when model observation mis-
match in the ABL also extend to positive biases at LFT and HFT levels.

Figure 3.  Probability density of model observation 2COE  residuals for CarbonTracker and WRF-Chem separated by vertical level: (a) atmospheric boundary-
layer—ABL; (c) lower free troposphere—LFT; (e) higher free troposphere—HFT; and differences in their respective probability density functions (b, d, and f).
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Seasonal root mean square deviation (RMSD, Figure 5b) for CT and WRF increase from Winter to Sum-
mer and then decrease slightly during Fall, which is consistent with the frequency of occurrence for cloud 
convection.

Overall, the median difference (Figure S4) is much smaller than the bias for ABL, indicating that the heavy 
tails of the residual distribution contribute considerably to the overall bias. For LFT and HFT, median resid-
ual and bias are similar to each other.

Comparing CT and WRF residuals by study region (Figure 5c), we find that both CT and WRF struggle in 
particular to accurately represent ABL 2[CO ]E  (biases in excess of 1E   ppm) in the North East Mid-Atlantic re-
gion, which has the most complex terrain of the three study regions and also exhibits complex atmospheric 
flow patterns. In contrast, Mid-West and South Central regions exhibit comparable biases for CT of −0.74  

E   4.26 ppm and −0.60  E   3.99 ppm, while WRF has a high bias of 2.14  E  5.37 ppm in the South central and 

Figure 4.  Box and whisker of 2[CO ]E  residual distributions from CT (blue & left box plots) and WRF (red & right box 
plots) for seasons, regions, and air masses in (a) atmospheric boundary-layer—ABL; (b) lower free troposphere—LFT; 
(c) higher free troposphere—HFT. The median and mean are indicated by horizontal lines and circles, respectively. The 
box indicates 25thE  and 75thE  percentiles, whiskers 10thE  and 90thE  percentiles, and gray crosses indicate the 2.5thE  and 97.5thE  
percentiles.
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a near-zero bias (0.23  E  4.82 ppm) in the Mid-West ABL. Different from seasonal RMSD patterns, regional 
RMSD is comparable in magnitude between CT and WRF, except for NEMA where RMSDs in ABL and LFT 
are E 60% larger for WRF compared to CT. Generally speaking median residuals exhibit a similar behavior, 
but with a smaller magnitude ( 1.5E   ppm for all cases).

Figure 5.  Comparison of CarbonTracker and WRF-Chem bias (a, c, and e) and root mean square deviation (RMSD) (b, d, and f) for levels atmospheric 
boundary (ABL), lower free troposphere (LFT), and higher free troposphere (HFT) and separated by climatological season (a, b), region (c, d), and air mass (e, 
f). Bootstrapped 95% confidence intervals, using a block bootstrap (see methods) are shown in black.
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3.1.2.  Comparison to Previous Studies

2[CO ]E  uncertainties over North America have been addressed in previous studies either through compari-
son of models with concentration tower observations or through model-model comparison.

A previous effort to characterize uncertainties stemming from biospheric carbon fluxes and atmospheric 
transport using perturbed WRF-Chem ensembles over North America during summer 2016 (Chen, Zhang, 
Lauvaux, et al., 2019) found that near surface 2[CO ]E  uncertainties arising from fluxes ( 6E   ppm) exceed trans-
port uncertainty ( 4E   ppm) during the daytime, while background uncertainty was less important ( 1E   ppm). 
In the free troposphere, the importance of flux and transport uncertainty were both reduced to 1E   ppm, re-
spectively (with transport uncertainty exceeding flux uncertainty), while background uncertainty remained 
unchanged. These uncertainties are comparable in magnitude to standard deviations of summertime model 
observation residuals for WRF found in this study (ABL: 8.13 ppm, LFT: 1.67 ppm; Table S1).

Chen, Zhang, Lauvaux, et al. (2019) identified the Mid-West and Mid-Atlantic as regions of largest model 
uncertainty due to terrestrial carbon fluxes, and noted that strong horizontal and vertical 2COE  gradients in 
this region also give rise to larger uncertainties due to transport. Results from our study also show large 

2[CO ]E  residuals in the NEMA region, but smaller errors in the Midwest, albeit for all seasons taken together.

Our result that model observation mismatches were largest in NEMA is supported by Chen, Zhang, Zhang, 
et  al.  (2019), who compared ACT to CT-NRT v2017 and CAMS for Summer 2016 and Winter 2017 and 
found negative biases for CT-NRT in the Mid-Atlantic for Summer 2016. CT-NRT's Summer 2016 ABL bias 
averaged across all regions was approximately −1.5 ppm while CT data used in this study had near-zero 
bias and WRF had a positive bias of 1E   ppm. A comparison to CAMS (Copernicus Atmosphere Monitoring 
Service) showed that CAMS biases were much larger in magnitude compared to the biases found in this 
work. Chen, Zhang, Zhang, et al. (2019) also identified the NEMA as a region of high bias and particularly 
during summer. Given the fact that NEMA is downwind of MW, which is the region of largest uncertainty in 
terrestrial carbon fluxes (Chen, Zhang, Lauvaux, et al., 2019; Feng, Lauvaux, Davis, et al., 2019), model-data 
mismatches in this region are likely to result from both flux and transport uncertainty. RMSDs in this work 
are also comparable in magnitude to RMSDs calculated using a WRF-model ensemble of approximately 
4.5 ppm for daily values and 4 ppm for 7–10 days averaging (Feng, Lauvaux, Keller, et al., 2019), who also 
identified the biosphere as the major source of ABL model uncertainty ( 3E   ppm). This uncertainty was 
invariant to averaging at less than seasonal timescales, while transport uncertainty diminished when av-
eraged over time ( 2E   and 1 ppm for averaging windows of 1 and 10 days), becoming less important than 
uncertainties from boundary inflow and fossil fuels. Given that ACT's in situ 2[CO ]E  observations reflect air 
mass history, flux error is likely a large portion of RMSDs encountered in this work.

A tower-based comparison of WRF-Chem and Carbontracker/TM5 using CT2009 fluxes during the growing 
season of 2006 (Díaz-Isaac et al., 2014) highlighted the impacts of modeled near surface dynamics on ABL 

2[CO ]E . While CarbonTracker overestimated 2[CO ]E  during summer, WRF had a tendency to underestimate 
ABL 2[CO ]E , while using the same set of surface fluxes. Additionally, the authors found that WRF exhib-
ited shallower ABLs with small within-ABL vertical gradients, indicating more well-mixed conditions in 
the ABL compared to TM5/Carbontracker, whereas TM5/Carbontracker showed stronger vertical mixing 
between ABL and free troposphere. Our results (Figure 5) show a tendency in CT to have opposite biases 
between ABL and LFT, which could indicate excess vertical mixing in CT. WRF, in contrast, has a more 
consistent positive bias at all levels.

Model resolution is also an important factor for model performance. A comparison of 2[CO ]E  surface ob-
servations to the CAMS 2COE  forecasting system showed a 1.8–2.5 ppm reduction of RMSD (corresponding 
to 33%), when reducing horizontal model resolution from 80 to 9 km (Agustí-Panareda et al., 2019). This 
was attributed to both better representation of modeled wind fields (i.e., transport) and spatial variability 
in surface carbon fluxes. While the WRF-Chem resolutions used in this studies had a 27 km resolution and 
surface fluxes were at 1 1E    resolution, RMSDs of order 5 ppm encountered for ACT were comparable to 
CAMS RMSDs at 9 km. At the same time, WRF RMSDs were larger than those of CT at the coarser 1-degree 
resolution, conflicting with results found by Agustí-Panareda et al. (2019). One potential explanation for 
this discrepancy is the fact that while neither WRF nor CT are capable of directly resolving convective cells, 
WRF has a sufficiently high resolution to resolve features of warm and cold fronts. Consequently, small 
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errors in frontal location and other synoptic features can lead to large errors in modeled 2[CO ]E  in WRF, 
while CT does not have the same small-scale variability and thus shows lower total bias but a less realistic 
distribution of 2[CO ]E  (Figures 1a–1c, S1 and S2). This hypothesis is consistent with the fact that Summer, 
which has the most active cloud convection, shows small bias in WRF but the largest RMSD (Figure 5). 
Additionally, posterior carbon fluxes have been optimized for CT and not for WRF. The differing behavior 
between CT and WRF and the effect of flux optimization are further discussed in Section 3.2. It remains 
to be seen whether a further reduction of WRF resolution below 27 km, which would allow for convection 
resolving simulations, would increase model accuracy or would further exacerbate errors due to location 
errors of synoptic structures, which do not appear in the coarser CT.

The CarbonTracker inversion system (Peters et al., 2007) uses RMSD between observations and atmospher-
ic model to estimate its assumptions for model-data mismatch (MDM) that constrain the inversion system 
(specifically: MDM  =  0.85–0.95 E  RMSD). CT's choice of using seasonally, regionally, and vertical level 
specific MDM values appears to be justified, based on our results, that residuals strong vary between region, 
season, and level (Figures 3–5). At the same time, other inversion systems such as CarbonTracker-Lagrange 
(CT-L, Hu et al., 2019) do not specify seasonally differing MDMs. Given CT-L's regional focus and finer 
resolution, seasonally varying MDMs appear to be advantageous given our findings of seasonally varying 
model residuals.

Note that the previous studies discussed here did not perform a weather-aware analysis in the sense that 
they did not separate model observation comparisons by air mass or weather conditions. In fact, when com-
paring aircraft observations to models, there are likely issues of representativeness, as for example, NOAA/
GML Global Greenhouse Gas Reference Network profiles (Sweeney et al., 2015) are collected using small 
aircraft, which are limited to operating in fair weather conditions.

3.1.3.  Interpretation of Large Residuals

Given the fact that model residual statistics are heavily influenced by the long tails of the 2[CO ]E  residual 
PDF, we proceed to investigate what conditions are most conducive to large magnitude residuals. To do so, 
we chose to focus on the ABL 2[CO ]E  residuals in the tails ( 5thE   and 95thE   percentiles) of the distribution 
using WRF, which due to its higher resolution is more capable of resolving frontal structures than CT. We 
find that large magnitude residuals were not randomly distributed across all flight days, but rather concen-
trated on specific days for which model observation residuals tended to be large. For example, the 10 days 
with the largest fraction of large positive 2[CO ]E  residuals contributed to 72% of all positive large magnitude 
residuals. Additionally, nine out of 10 days were associated with research flights that included a frontal 
crossing and 6 out of 10 days were for the NEMA region. At the negative residual tail end, we found that 
10 days contributed to 68% of all large magnitude residuals. These days with large negative residuals were 
highly concentrated during Summer (8 out of 10) and specifically the MW region (5 days during Summer). 
Unlike the positive residual days, weather did not appear to play a major role during negative residual days, 
which may be due to the fact carbon fluxes in MW are underestimated for the MW agricultural belt, such 
that transport errors associated with synoptic systems do not play a considerable role.

The fact that large magnitude positive residuals are concentrated during frontal conditions, highlights the 
fact that 2COE  transport and associated model errors are highly dependent on synoptic scale conditions. It is 
likely that comparatively small errors in modeled frontal location, which arise despite WRF being nudged 
to ERA-5 analysis, combined with observed large cross-frontal 2[CO ]E  differences (Pal et al., 2020) can result 
in large 2[CO ]E  residuals. Also, ACT observations revealed characteristic bands of elevated 2[CO ]E  ahead of 
the cold front, which the WRF model may not be able to adequately reproduce. Given the importance of 
synoptic weather systems to mid-latitude carbon transport (e.g., Parazoo et al., 2008, 2011) as well as the 
large associated model residuals, weather-aware specification of prior model observation mismatch could 
be beneficial for inversion systems and particularly regional inversions. Weather-aware data-assimilation 
through joint assimilation of weather and 2COE  data has been previously explored by Kang et al. (2011), Liu 
et al. (2011), and Chen, Zhang, Zhang, et al. (2019). The interplay between season and air mass on model 
residuals is further discussed in Section 3.2.

The large contribution of MW summer to negative residuals (i.e., overestimation of modeled 2[CO ]E  with-
in the ABL) coincides with the fact that the U.S. Midwest is dominated by high intensity agriculture and 
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particularly corn, which makes this region a large continental carbon sink during the agricultural growing 
season, leading to 2COE  depletion within the ABL. Consequently, underestimation of terrestrial carbon flux-
es is a likely source of this model-data mismatch for this region. At the same time, tall ABLs during summer 
and associated entrainment of free-tropospheric air counteract 2COE  in the ABL, but models such as WRF 
can have considerable random errors in ABL heights that are variable between regions (e.g., Díaz-Isaac 
et al., 2018). The covariance between terrestrial carbon fluxes and ABL heights (also referred to as rectifier 
effect, Denning et al., 1995) makes it difficult to attribute model observation differences into flux and model 
errors. The impact of ABL heights and specifically differences in simulated ABL mixing between models 
(e.g., Díaz-Isaac et al., 2014) on 2[CO ]E  residuals is further discussed in Section 3.2.3

3.1.4.  Implications for Inversion Systems

The 2[CO ]E  model observation residuals encountered in this study do not follow Gaussian distributions (Fig-
ures 2 and 3). Given that this study cannot separate between transport and flux errors, it is possible that 
the total residuals, which are non-Gaussian, are the result of normally distributed flux and transport errors 
which are superimposed onto each other. At the same time, we encounter non-Gaussian residuals at all 
vertical levels, including LFT and HFT, where the influence of surface fluxes is smaller compared to the 
surface, implying that transport model errors, taken in isolation, are also non-Gaussian. Atmospheric inver-
sion systems require the specification of model-data mismatch errors in order to constrain the flux optimi-
zation. The CarbonTracker (Peters et al., 2007) and most other operational inversions require mismatches 
to be normally distributed and transport errors to be unbiased to provide the best unbiased linear estimator. 
While we find that the overall bias of the model-data mismatch is comparatively small, its non-Gaussian 
nature found in this study has the potential to impact inversion results. The heavy tails of the 2[CO ]E  residual 
contribution, strongly affect on RMSD and standard deviation. The resulting larger RMSDs and standard 
deviations, which are used to prescribe Gaussian errors, in consequence, would reduce the sensitivity of 
inversion systems to observations if ACT-data were to be assimilated. Given that we find that a large frac-
tion of large magnitude model observation mismatches stem from a small number of days, and (in the case 
of positive residuals) from days with frontal activity, it appears that specifying weather-aware model-data 
mismatches in regional inversion systems could increase the sensitivity of the inversion to observations and 
thus improve flux estimates.

3.2.  Comparison of Joint Residual Statistics for CT and WRF

A comparison of the joint residual statistics (Figures 6 and S5) reveals their differing behavior in the two 
modeling systems when disaggregated according to seasons, regions, and air masses in spite of WRF's use of 
CT for carbon fluxes and lateral boundary conditions, highlighting tracer transport differences.

3.2.1.  Residuals in the Free Troposphere

Free tropospheric 2[CO ]E  residuals are small compared to ABL residuals for all seasons (Figures 6 and S6 
showing only LFT and HFT), regions, and air mass conditions and mean differences between CT and WRF 
are smaller than their respective standard deviations. The magnitude of HFT bias is of order 0.5 ppm for 
both CT and WRF, while the standard deviation of residuals is of order 1 ppm. In the vast majority of cases 
CT and WRF bias differences are less than 0.5 ppm and show the same sign. A similar picture emerges for 
LFT, but with slightly larger magnitude biases and standard deviations ( | |0 8.  and 1.5–2 ppm, for mean and 
standard deviation, respectively). Similarly, the difference between CT and WRF also tends to be less than 
0.5 ppm and to be of similar sign (Figures S7–S13). The fact that model-model mismatches are of similar 
magnitude to model observation mismatch, highlights the difficulties in separating the two. It is notable 
that WRF tends to have lower free tropospheric 2[CO ]E  than CT, except during Summer where the reverse 
appears to be true for NEMA and MW, but not necessarily SC, where onshore flow of homogeneous high 

2COE  air from the Gulf of Mexico occurs. It appears reasonable to infer, given identical fluxes and continental 
inflow between CT and WRF, that transport uncertainty between CT and WRF in the free troposphere is 
of order 0.5 ppm. However, given the comparatively large volume of the free troposphere compared to the 
atmospheric boundary-layer, even small model errors represent large quantities of carbon and will affect 
column averaged 2[CO ]E  (often referred to as 2XCOE ), which is thought to be less sensitive to ABL dynamics 
and surface flux heterogeneity (e.g., Keppel-Aleks et al., 2011). Also, it has been estimated that a difference 
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Figure 6.  Comparison of CarbonTracker (as described in methods) and WRF-Chem 2COE  residual as function of climatological season (rows), region 
(columns), and air mass (symbols) for the three observation levels. The horizontal error bars indicate the standard deviation around the mean.
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of 0.5 ppm between two boundary-condition products over North America produces an offset of 0.8 PgC  1yE   
in the North American terrestrial carbon flux, which is similar to the magnitude to the actual North Amer-
ican sink of around 0.5–1.0 PgC  1yE   (Gourdji et al., 2012). This further highlights the need to further reduce 
uncertainties in global products. Additionally, given that the free troposphere is not in direct exchange with 
the surface, free tropospheric 2[CO ]E  biases can be integrated over continental scales, making attribution of 
flux errors to specific regions and processes difficult.

3.2.2.  Interpretation of Free Tropospheric Differences

CarbonTracker 2XCOE  (CT2015) was also shown to have good agreement with aircraft observations us-
ing the NOAA aircore network with spatial 2XCOE  gradients mostly reflecting large-scale circulation (Lan 
et  al.,  2017). Therefore, comparatively small free tropospheric biases are in line with our expectations. 
Sweeney et al. (2015) showed that vertically homogeneous oceanic background air becomes increasingly 
less homogeneous with residence time over land, in response to terrestrial carbon fluxes and upward mixing 
of the flux signal. Since, WRF and CT employ identical fluxes, differences between CT and WRF are either 
due to differences in vertical mixing or air mass history. Due to the fact that ABL volume and mass are 
small compared to the free troposphere, vertical mixing differences are difficult to diagnose using ACT-data. 
However, since HFT and LFT 2[CO ]E  are lower in WRF during winter, when the terrestrial biosphere acts as a 
carbon source and higher during summer, when there is carbon uptake, as well as the fact the CT has been 
documented to have strong vertical mixing (Díaz-Isaac et al., 2014; Schuh et al., 2019), the differences be-
tween WRF and CT with respect to ABL to FT 2[CO ]E  are consistent with different vertical mixing strengths 
between models. These findings are also consistent with Butler et al. (2020), who found model-data mis-
matches to result from model transport differences below 850 hPa. Cloud convection associated with frontal 
lifting causes convective mass flux and presents a potentially important avenue for vertical transport of 2COE . 
While CarbonTracker and the underlying TM5 chemical transport model operate on an approximately 
4-times coarser horizontal resolution than WRF, CarbonTracker includes parameterized convective mass 
fluxes taken from the parent ECMWF (European Center for Medium Range Weather Forecasts) model. 
WRF in contrast, with its finer horizontal and vertical resolution, resolves a larger portion of vertical mo-
tion, but does not presently have explicitly coupled convective tracer mass flux associated with clouds. This 
omission may cause underestimation of vertical transport, which is consistent with the observed opposite 
sign of ABL to FT 2COE  residuals between CarbonTracker and WRF found predominantly during Winter 
and Spring.

3.2.3.  Residuals in the Atmospheric Boundary-Layer

A different picture emerges for ABL 2[CO ]E  residuals (Figure 6). We encounter larger differences between 
CT and WRF. In the ABL, CT exhibits a low bias and WRF a high bias (Figure 3a) for most seasons and 
regions. Exceptions include Summer in MW, for which CT has high bias in cold and fair conditions, while 
WRF shows the opposite behavior. The differences in mean residual between models are generally smaller 
than one standard deviation, highlighting the large temporal and spatial variability of model observation 
residuals. In general, we find the largest variance of 2[CO ]E  residuals during Summer conditions, which have 
the most active cloud convection and biosphere fluxes. Winter, Spring, and Fall exhibit much less variation, 
except for the NEMA region. In NEMA, the standard deviations of residuals remain large during Spring and 
Fall, which may be due to topographic effects, long continental upwind trajectories, and regional fossil fuel 
emissions. Fair weather conditions on average are not only associated with the lowest magnitude in bias, 
but also show the smallest differences between CT and WRF across seasons and regions.

The calculated ABL 2[CO ]E  biases consist of flux errors and transport uncertainty. Despite prescribed carbon 
fluxes being optimized to continental 2[CO ]E  observations, ABL 2[CO ]E  bias magnitudes for specific regions 
and seasons are approximately 1–3 ppm in Winter, 1–10 ppm during Summer and 1–5 ppm during Spring 
and Fall, highlighting the remaining uncertainties associated with biospheric carbon fluxes and atmospher-
ic transport.

Because we use posterior carbon fluxes from CT, one can expect CT to show smaller magnitude biases com-
pared to WRF—which has a different atmospheric transport of 2COE —care should be taken to not interpret 
bias differences between WRF and CT as differences in model quality. Instead, model-model differences 
between CT and WRF should be seen to reflect transport uncertainty. The magnitude of mean model-model 
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2[CO ]E  differences (CT-WRF, Figure S5) is largest in Fall (−4.41 ppm) and smallest in Summer (−0.79 ppm) 
with Winter (−2.35 ppm) and Spring (−2.97 ppm) in between. However, these summary statistics do not 
show the large spread in model-model differences varying by region and air mass, which follow a similar 
seasonal pattern compared to bias with smaller magnitude biases in winter compared to the other seasons 
(Winter: −3.4 to −0.7 ppm; Spring: −7.2 to −0.5 ppm; Summer: −8.8 to 3.4 ppm; Fall: −0.6 to −7.2 ppm, 
Table S2). We find larger model-model differences for warm and cold air masses associated with synoptic 
systems compared to fair weather conditions (Figure S5 and Table S2). Also, biases are generally smaller 
in magnitude for fair weather, highlighting the role of dynamics processes on model performance. Mod-
el-model differences encountered in our work are larger in magnitude compared to values found by Chen, 
Zhang, Lauvaux, et al. (2019). A recent study using 45 different combinations of physical parameterizations 
in WRF (Díaz-Isaac et al., 2018) revealed ABL 2COE  transport uncertainties of 3–4 ppm. Since model obser-
vation differences are in the same range as model-model differences, we can infer that transport uncertainty 
is a large contributor total ABL 2[CO ]E  biases and must be resolved before reaching conclusions about flux 
errors alone. In addition to substantial 2[CO ]E  differences between ABL and free troposphere due to surface 
fluxes Pal et al. (2020) encountered large horizontal cross-frontal 2[CO ]E  differences during Summer 2016, 
which arise from differences in air mass history as well as modification of surface fluxes in response to 
cloud shading and reduced ABL mixing (e.g., Chan et al., 2004; Pal et al., 2020). Given the importance of 
cross-frontal 2COE  differences for atmospheric 2COE  transport and potentially inversion system performance, 
it is important for atmospheric models to accurately represent these cross-frontal 2[CO ]E  differences. Espe-
cially during Summer, when differences are largest with 5–30 ppm (Pal et al., 2020), we find differences in 
warm and cold sector bias in both models to exceed 5 ppm, such that modeled cross-frontal 2[CO ]E  differenc-
es can differ considerably from observations. Smaller bias differences are found for the other seasons and 
regions, except for Winter in MW. However, given that Summer is a season with high convective activity and 
large terrestrial biogenic carbon fluxes, misrepresentation of cross-frontal gradients may have substantial 
impact on modeled atmospheric carbon fluxes and thus atmospheric inversions. This finding further high-
lights the potential need for weather-aware inversion approaches.

3.3.  Potential Sources of Mismatch

The ABL is in direct contact with both the surface and the free troposphere, thus making accurate pre-
diction of ABL 2[CO ]E  a particularly challenging problem. Despite using posterior biospheric 2COE  fluxes 
from CT, considerable uncertainty in surface carbon fluxes remains an issue. Additionally, CT is optimized 
to continental scale 2COE  observations and large variation of bias exists between regions, seasons, and air 
mass conditions. Besides surface fluxes, ABL growth and resulting entrainment of free tropospheric air 
into the ABL as well as convection lead to 2COE  exchange between ABL and LFT. Given the importance 
of vertical mixing for inversion accuracy (Peylin et al., 2013; Schuh et al., 2019; Stephens et al., 2007) we 
proceed to investigate potential impacts of ABL depth (in conjunction with ABL to LFT 2[CO ]E  differences) 
on model-model bias differences. We find that CT tends to exhibit deeper ABLs for all seasons except Fall 
(Figure 7), which would be consistent with CT's demonstrated low bias for Winter and Spring (when ABLs 
are enriched in 2COE  compared to LFT) as well as the high bias during Summer (when ABLs are depleted 
in 2COE ). However, a more complicated picture emerges, when taking into account observed vertical 2[CO ]E  
differences (Figure S14). One caveat is the fact that this comparison uses ABL depths directly provided 
from CT and WRF-model output. For CT this means that ABL depths are calculated based on the Richard-
son number, while WRF ABL depths are diagnosed in the turbulence parameterization. However, despite 
these differences in ABL definition, we believe that using the ABL definition native to the modeling system 
should accurately reflect the model's vertical ABL mixing. Based on ABL depth differences between CT and 
WRF ranging from −20% to 35% and typical ABL to LFT 2[CO ]E  differences of less than 10 ppm magnitude, 
we estimate the maximum impact of ABL depth differences between CT and WRF to be less than 3 ppm. 
Consequently, while small magnitude ABL [CO2] bias differences between CT and WRF, which preferen-
tially occur during Winter and fair weather air masses, may be explainable by differences in entrainment of 
free tropospheric air at the ABL-top, the mean model-model differences in excess of 3.0 ppm and reaching 
magnitudes of 7.2, 8.8, and 7.2 ppm during Spring, Summer and Fall, respectively, can thus not be explained 
by entrainment alone (Table  S2). This result leaves cloud convection associated with frontal lifting and 
horizontal advection differences as the likely main source for the differing behavior between CT and WRF.
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Differing 2[CO ]E  residuals between CT and WRF highlight the importance of 2COE  transport differences in 
frontal systems. At the same time, considerable biases remain for CT and WRF shows larger magnitude 
biases than CT. We hypothesize that WRF, due to its higher resolution, is capable of reproducing frontal 
location and structure, while TM5 which underlies CT is less capable of doing so. CT's fluxes are optimized 
without taking into account transport uncertainty differences associated with frontal systems and using a 
model resolution that does not fully resolve synoptic scale weather. Consequently, terrestrial carbon fluxes 
optimized with the CarbonTracker system and applied to WRF, then lead to considerably higher 2[CO ]E  bias-
es in warm air masses compared to cold air masses in WRF (Table S1), while biases in warm and cold sectors 
for CT, which has a coarser resolution, are more consistent.

Given the importance of midlatitude synoptic scale systems to North American meridional carbon trans-
port, our findings support the notion that inversion systems could potentially be improved by considering 
the effects of frontal passage through, for example, warm and cold sector specific prescribed model-data 
mismatches. At the same time, increasing prescribed model-data mismatches near fronts without address-
ing model biases would deemphasize observations near frontal structures in inversion systems. This would 
potentially reduce changes to prior fluxes in vicinity of synoptic systems, which may be especially problem-
atic, because frontal systems present a complex environment, where surface flux priors from land-surface 
models such as CASA may be highly uncertain.

3.4.  Spatial Structure of Model Observation Mismatch

Spatial analysis of model observation mismatch through experimental variograms (Figure  8), confirms 
the previously reported findings. CT and WRF show similar structural behavior for LFT and HFT, while 

Figure 7.  Comparison of CarbonTracker (as described in methods, blue) and WRF-Chem (red) diagnosed atmospheric boundary-layer (ABL) heights separated 
by season, region, and air mass. The boxplot indicates 10th,25th,75thE , and 90thE  percentiles of the distribution. The median and mean are indicated by horizontal 
lines and circles, respectively.
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substantial differences emerge within the atmospheric boundary-layer. We determine the spatial extent 
of mismatch correlations (variogram range) to be between 300 and 600 km (LFT: 267 and 309 km for CT 
and WRF, respectively; HFT: 405 and 576 km). The corresponding variances (variogram sill) are for LFT 
1.11 and 1.43  2ppmE  for CT and WRF, respectively, as well as 0.48 and 0.62  2ppmE  for HFT. In the ABL, the 
range is estimated 356 km for CT and 693 km for WRF, while corresponding sills are 13.10 and 36.60  2ppmE .  
Note, however, that these values are highly uncertain as we find generally large variability of model-data 
mismatches, as indicated by the shading in Figure 8, compared to the average variogram. Also, we have 
comparatively little data that extended beyond 300 km as indicated by the drop in variance, due to the in-
herent limitations of airborne data collection. Therefore, larger magnitude values for range as encountered 
in the ABL and WRF particularly are associated with larger uncertainties in the fitting of the experimental 
variogram.

Overall, the mean spatial variance (E  ) is small compared to the variability of model-data residuals (shading 
in Figure 8). Unfortunately, despite ACT's more than 400,000 observations, we were not able to differentiate 
variogram statistics for season, region, and air mass. We hypothesize that this is due to lack of observations 
at large distances that preclude robust calculations of range and sill.

Recently, Lauvaux et al. (2019) investigated spatial error structures of in situ 2[CO ]E  from tower observations 
and found characteristic length scales (E L) of order 100–150 km during using a simple exponential ( /x LE e ). 
Since the range of experimental variograms is assumed to be 3E L , we find our airborne observations com-
parable to the values given by Lauvaux et al. (2019). Characteristic length scales of order 100 km imply that 

2[CO ]E  observations at the NOAA GML tall tower network (Andrews et al., 2014) are independent of each 
other, while sufficient averaging lengths should be applied to satellite 2XCOE  measurements.

3.5.  Additional Considerations

Our results show distinct 2[CO ]E  biases when observations are segregated by air mass. Consequently, model 
evaluations, as commonly done, that average across different synoptic conditions are likely to hide cance-
ling biases. Also, many observational systems, such as satellites (e.g., OCO-2, Crowell et al., 2019) and the 
NOAA aircraft profiling efforts (Sweeney et al., 2015) selectively sample fair weather conditions, which are 
were found to be less biased. Resulting evaluations of model-data mismatch may thus underestimate the 
magnitude of transport model bias.

Biases related to air mass are likely linked to systematic differences in atmospheric transport and the sys-
tematic differences in representation of weather system 2[CO ]E , found in this work, may propagate to global 
meridional transport of 2[CO ]E . They therefore may significantly affect global 2[CO ]E  inversion estimates as 
illustrated by Schuh et al.  (2019) and Barnes et al.  (2016). Additional numerical studies and model-data 
comparisons should be undertaken to quantify this link.

Figure 8.  Experimental variogram for 2[CO ]E  residuals for CT and WRF at levels (a) atmospheric boundary (ABL); (b) lower free troposphere (LFT); and 
(c) higher free troposphere (HFT). The dashed lines indicate an exponential variogram fit. Shaded areas show the standard-deviation within each bin of the 
experimental variogram.
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The importance of simulated transport on model-data mismatch is further highlighted by the fact that CT 
and WRF biases are of opposite sign, despite common carbon surface fluxes. Similarly, we find differences 
between CT and WRF with respect to modeled cross-frontal 2[CO ]E  differences, especially during Summer 
when WRF over-predicts differences while CT tends to underpredict. The exact cause of this difference be-
tween models, which will affect 2COE  transport in synoptic systems (Pal et al., 2020) is currently unclear. Our 
results show that ABL depth alone cannot account for reported differences. Potential causes may include 
resolved vertical transport and parameterized cloud mass flux (Parazoo et al., 2008).

Magnitudes of model-data residuals strongly depend on air mass history and specifically travel time over 
land (Lan et al., 2017; Sweeney et al., 2015) during which air parcels are subject to 2COE  exchange with the 
biosphere. For example, warm sector air masses originating from the south have less fetch over land com-
pared to cold sector air masses from the north. Therefore, southern air originating from the Gulf of Mexico 
provides a homogeneous 2COE  background and thus less deviation from oceanic backgrounds, while north-
ern air masses that traveled through areas of large biospheric carbon fluxes such as the Mid-West agricultur-
al belt or boreal forests have much more varied 2[CO ]E . While our work points to transport error differences 
as one source of the model-data mismatch difference between warm and cold air masses, a true segregation 
of transport from flux errors will likely require calibrated transport ensembles (Díaz-Isaac et al., 2019; Feng, 
Lauvaux, Davis, et al., 2019; Feng, Lauvaux, Keller, et al., 2019).

Air mass history is associated with the non-Gaussian structure of 2[CO ]E  residuals (see Figures S15–S21). For 
example, during Summer warm air mass residuals within the ABL are strongly peaked around 0 ppm for 
CT and WRF, while large residuals are more common in the cold air masses and residual distributions skew 
right (Figures S9 and S17). LFT and HFT residual distributions from CT and WRF for fair and warm air 
mass conditions are similar with respect to chi-square residuals having a peaked structure with near-zero 
mean, while cold sector air masses above the ABL are much less peaked and exhibit heavy tails. It is also ap-
parent that CT and WRF exhibit similar behavior within the interquartile range of the residual distribution, 
while they agree much less outside. A further investigation of air mass specific residual structures, as well 
as the causes for the disagreements at the edges of the distribution could be achieved using for example, 
back-trajectories for specific days and is beyond the scope of this work.

While this study examines only two transport models, we find seasonally varying model-model differences 
of magnitudes between 0.5 and 8.8 ppm. Within this range larger differences pertain to warm and cold air 
masses, while smaller differences pertain to fair weather conditions. Unfortunately, model-model differenc-
es are in the same range as comparisons with ACT observations, such that attribution of transport errors 
from our work appears to be not possible, thus necessitating more targeted modeling studies.

In comparison to ABL 2[CO ]E  residuals, residuals in the free troposphere were much lower ( 0.5E   ppm in 
HFT) and differences between CT and WRF were small, implying that transport model errors were less im-
portant. Therefore, 2COE  observations in the higher free troposphere may in many cases serve as continental 
background for greenhouse gas measurements (e.g., Baier et al., 2020).

4.  Conclusions
We used more than 400,000  2COE  dry mole fraction observations collected during four flight campaigns span-
ning all four seasons and three regions (Northeast Mid-Atlantic, Mid-West, South Central) in the Eastern 
U.S. to investigate model observation mismatches for the WRF-Chem regional model and the global Car-
bonTracker system. A particular focus of this investigation and the ACT-America project in general, were 
synoptically active conditions, which present a major component of mid-latitude 2COE  transport and thus 
have the potential to greatly impact 2COE  inversion results.

Using identical carbon surface fluxes, we found that both models were capable of reproducing the 2[CO ]E  
dynamics over the Eastern U.S. At the same time, model-model mismatches and model observation mis-
matches were found to be strongly related to season and air mass, with synoptically active conditions and 
seasons to exhibit higher bias than fair weather conditions.

While errors in CT posterior fluxes likely play a considerable role in model observation mismatch, we also 
qualitatively identified 2COE  transport as a major component, because the CT exhibited negative bias, while 
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WRF had positive bias, despite common fluxes. However, it was not possible to quantify the magnitude of 
transport error, but ABL depth differences between CT and WRF alone were not sufficient to account for 
the observed mole fraction differences. This indicates that other transport processes, including potentially 
cloud convection and horizontal advection, must contribute to the model-model differences. While the two 
models used in this study could be considered a naive two-member ensemble, further studies using care-
fully assembled model ensembles are needed to characterize transport uncertainty. Better quantification of 
transport uncertainty and improvements to transport models has the potential to improve inversion efforts 
as currently observations may be overly discounted in inversion products.

Comparing the lower resolution and global CT system with the WRF regional model, we find that while 
CT was capable of reproducing the principal 2[CO ]E  dynamics associated with synoptic scale systems, WRF's 
higher resolution showed a clearer distinction between 2[CO ]E  residuals in warm and cold air masses. Giv-
en the stark cross-frontal 2[CO ]E  differences and the overall importance of weather systems for 2COE  trans-
port, there is a likely benefit to making transport errors in inversion systems weather aware. This idea also 
highlights the potential of higher resolution regional inversion systems to improve posterior carbon flux 
estimates. At the same time, caution should be taken because residual distributions from ACT-data were 
highly non-Gaussian with spatial correlation length scales of 100–300 km and long-tailed and the higher 
resolution WRF-model had heavier tails than CT, such that the assumption of Gaussian errors in regional 
inversion systems may lead to a further discounting of observational evidence due to overestimation of 
transport errors.

In contrast to considerable model biases in the atmospheric boundary-layer we only found small biases in 
the free troposphere and only small differences between models, highlighting the fact that upper tropo-
spheric measurements of 2COE  may be suitable for characterizing continental 2COE  background conditions, 
which would improve our ability to investigate near surface.

In summary, our work demonstrated the utility of using ACT airborne 2[CO ]E  measurements to investigate 
2COE  model observation mismatch across seasons, regions, and air mass conditions. It presents a thorough 

examination of modeled 2[CO ]E  errors revealing the complexity and non-Gaussian nature of errors over 
continental areas. The evaluation aims to inform the development of the next generation of atmospheric 
inversion systems, which necessitate knowledge about the nature of model-data differences and provides a 
pathway for similar investigations using targeted model ensembles and to identify the processes responsible 
for model observation mismatch.
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