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Analytical calculations for quantifying capillary bridges
distortions from experimental data
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Abstract This rather theoretical study with practical applications for engineers and
physicists is essentially based on both the use of the topological notion of
the Euler characteristic and the Gauss-Bonnet theorem to establish various
analytical formulas concerning firstly the axisymmetric capillary bridges
distortions. In differential geometry, the Gauss-Binet-Bonnet formula con-
nects the integral of the Gauss curvature of a compact two-dimensional surface
with boundaries to its topology. It is a suitable and elegant mathematical tool
for calculating exactly the value of the bending stress and highlighting its
parameters and their respective influence.
We establish rigorously in particular the fact that the bending effects measured
via the bending stress are proportional to the sum of the cosine values of the
two contact angles (possibly distinct, with the same sign or opposite signs
depending on the nature of the supports and the affinity between the liquid and
the solids). We specify the exact expression of the proportionality constant: a
way to structure, on the basis of this quantified criterion, a classification, the
right cylinders being then the borderline cases, without bending stress.
This returns to the delicate question of the formation of the contact angles,
often spontaneous values and a priori unknowns of the problem. The impor-
tance of the contact angles is thereby mathematically evident in the writing of
the boundary conditions associated to the generalized Young-Laplace equation
and in the expression of the bending stress.
The method can be generalized beyond the axisymmetric capillary bridges
case. For that, one has to associate topological and analytical geometries to
calculate the total signed geodesic curvature of the boundaries, not necessarily
circular. The value of the contact angles again plays an essential role.

Keywords: Distortion of capillary bridges · Mean and Gaussian curvatures impact · Gen-
eralized Young-Laplace equation · Bending effects · Gauss-Bonnet Theorem.

MSC: 449N45 · 53A10 · 58E12 · 74F10 · 74G05 · 74G15 53Z05

1Corresponding author. Email address : gerard.maryse.gagneux@gmail.com
2Email address : olivier.millet@univ-lr.fr

1



1 Foreword and various definitions

1.1 About the generalized Young-Laplace equation
The generalized Young-Laplace equation concerns the strong distorsions for which the bend-
ing effects are modeled by an additional curvature-related term: the introduction of CK , a
multiplier coefficient of the Gaussian curvature K, at the dimension of a force and standing
for the bending stress [1][9][13][37]. Under appropriate boundary conditions, the shape of
the free interface is then described by the so-called generalized Young-Laplace equation, thus
involving both mean and Gaussian curvatures. The resulting strongly nonlinear differential
equation, at the downward vertical measurement x linked to the value ∆p0 at x = 0 (a
spontaneous unknown value) comes in the following form [15][21][31][35][36]:

γ

(
1

ρc
+

1

N

)
+ CK

1

ρc N
= ∆p0 −∆ρ gx . (1)

In (1), the force CK divided by the area ρcN stands via a pressure for the local bending
stress, ρc and N being the principal radii of curvature (evaluated algebraically, positively
when the curvature is turned into the interior of the capillary bridge) and the pressure
deficiency is ∆p0 at x = 0.

The bending stress over the free surface Σ is then represented in the following integral form,
at the dimension of a force

Ebending stress = CK

∫
Σ

K dΣ

where K is the Gaussian curvature of the free surface Σ, intrinsic value, in particular inde-
pendent of the choice of the unit normal vector.

We want to obtain an explicit expression of this integral, of simple and immediate use for
the experimenter, and highlight the determining parameters and their respective influence.

Let us limit ourselves here, temporarily, for didactic purposes, to the very particular case of
axisymmetric bridges.

In the particular case of surfaces of revolution, taking then if necessary into account
the effects of gravity, via an over-pressure, results conventionally in the modified nonlinear
differential equation for the distorted profile x→ Y (x), according to the densities difference
between the liquid and the surrounding fluid ∆ρ = ρint−ρext, a quantitated balance between
the surface tension, the bending stress, often ignored without justification, and gravity forces
(see [9] for example):

Y
′′

(x)

(1 + Y ′2 (x))
3/2
− CK

γ

1

Y (x)
√

1 + Y ′2 (x)
= −∆p0

γ
+
g ∆ρ

γ
x. (2)

=: H +Bx , x ∈ I.

Recall [10][34], that this strongly nonlinear differential equation is mathematically isomor-
phic (the same structure) but with different variables and physical units, to the Gullstrand
equation of geometrical optics, which relates the optic power P ′op of a thick lens (in diopters,
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the reciprocal of the equivalent focal length) to its geometry and the properties of the media.
For example, the superficial tension γ is equivalent to the refractivity

n1

n2
− 1, where ni is a

refractive index, CK is analogous to the expression −
(
n1

n2
− 1

)2
n2

n1
d, where d is the lens

thickness and ∆p corresponds to P ′op.

Shear or free energy problems and the longitudinal bending stress of ship hulls have also an
analogy with the subject [4][30][33][40].

1.2 Reminder on a behavioral classification of the common free
capillary surfaces

Synclastic surfaces (dome shape) are those in which the centers or curvature are on the
same side of the surface (dome shape or elliptic surface). The Gaussian curvature is ev-
erywhere strictly positive. For examples among the Delaunay constant mean curvature
surfaces of revolution (see in a synoptic table for identifying the capillary bridges of revo-
lution [8][23]): a portion of unduloid, catenoid or nodoid with concave upper meridian, the
axis of the bridge being horizontal.

This is opposed to anticlastic surfaces (saddle shape), which are those in which the centers
of curvature are located on opposing sides of the surface (saddle shape or hyperbolic surface
for the confined liquid). In that case, the Gaussian curvature is everywhere strictly negative.
As an example, we may consider a portion of unduloid, catenoid, nodoid, or sphere with
convex upper meridian, the axis of the bridge being horizontal. It is then not mathematically
correct to say without further information that a nodoid is an anticlastic surface [10].

Under the condition
1

ρc
+

1

N
6= 0 , excluding the minimal surfaces, the quotients that occur

in the generalized Young-Laplace equation is∣∣∣∣∣
1

ρc N
1
ρc

+ 1
N

∣∣∣∣∣ i.e.
1

|ρc +N |
and the scalar

|CK |
γ

1

|ρc +N |
,

allow also in a certain way to assess the relative importance of bending effects in relation to
the consequences of the surface tension [10]. It is then a question of studying the variations
of the function (ρc, N)→ |ρc +N | .

The Gaussian curvature of a right circular cylinder is everywhere equal to zero and therefore
accordingly this case is outside the scope of this study.

By placing oneself out of gravity for a simple illustration, it appears that, as expected by
experience, the bending is to be considered in the case of the anticlastic surfaces and are of
little importance for synclastic surfaces.

Hence, the common horizontal axis nodoid with convex upper meridian is certainly sensitive
to bending effects compared to the tension effects related to the small free surface (it is the
opposite for a convex nodoid, i.e. with concave upper meridian). The Gaussian curvature of
a right circular cylinder is everywhere equal to zero and therefore, this case is a borderline
case for this study.
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1.3 Homotopic surfaces and Euler characteristic
Recall that the Euler characteristic is a topological invariant, an integer that describes,
according to precise axiomatic principles, the shape or a structure of a topological space
regardless of how it is bent (invariance by homeomorphy). It is commonly denoted by χ,
χ (M)... As examples for surfaces: χ = 2 for a sphere, χ = 4 for two spheres (not connected),
χ = 0 for a torus, and χ = −2 for a two-holed torus...)

The Euler characteristic of the right cylinder is χ = 0, so that also for a cylinder with one
or two boundaries.

This invariance property makes it a providential tool in the context of this study on the
bending effects, associated to the Gauss–Bonnet theorem, a deep relationship between sur-
faces in differential geometry, connecting the Gaussian curvature of a surface to its Euler
characteristic.

These following free surfaces with two circular boundaries and whose meridian is an arc of
Delaunay roulette are considered topologically equivalent (same common topological genus),
because it is possible to continuously move one to obtain the other: portion of convex nodoid,
portion of convex catenoid or unduloid, right circular cylinder (transition convex-concave),
portion of concave nodoid or unduloid, portion of a sphere.

It is the same for their continuous axisymmetric smooth deformations by distorting effect
of bending or gravity [21][24].

Accordingly, these axisymmetric surfaces have in common the same Euler characteristic, in
this case, the value zero (indeed, the cylindrical surface of a circular cylinder with two open
boundaries has Euler characteristic 0).

In the case of the consideration of bending effects, one must also introduce the expression of
the variation of the bending stress via the Gaussian curvature K in the integral form, over
the free surface, at the dimension of a force:

Ebending stress = Ck

∫
Σ

K dΣ .

2 Practical exact expression of bending stress

2.1 The Gauss-Bonnet theorem
The Gauss-Bonnet theorem is reputed to be one of the most profound and elegant results of
the study of surfaces [2][3][5]. It is used in sectors of activity where the problems of bending
beams surely arises (civil engineering, naval architecture, shell theory to predict the stress
and the displacement arising in an elastic shell [5][16][17][18], etc...).

In fact, it unexpectedly links two completely different ways of studying a surface: one
geometric, the other topological. It is formulated as follows:

For any compact, boundaryless two-dimensional Riemannian manifold Σ, the integral of the
Gaussian curvature K over the entire manifold with respect to area measure is 2π times the
Euler characteristic of Σ, also called the Euler number of the manifold, i.e.

4



∫
Σ

K dΣ = 2πχ (Σ) .

For example, for a sphere Σ of radius R in R3, it comes:∫
Σ

K dΣ =
1

R2
4πR2 = 4π and here χ (Σ) = 2.

Suppose now that M is a compact two-dimensional Riemannian manifold with a boundary
δM and let kg be the signed geodesic curvature of δM. Then, in nondimensional writing,∫

M

K dM +

∫
δM

kgds = 2πχ (M) . (3)

The geodesic curvature kg of an arbitrary curve at a point P on a smooth surface is defined
as the curvature at P of the orthogonal projection of the curve onto the plane tangent to
the surface at P . A curve whose geodesic curvature is zero is a geodesic.

2.2 Expression of the Gauss-Bonnet formula for capillary bridges
2.2.1 The concave capillary bridges.

Such a liquid bridge is concave if it does not contain all the line segments connecting any pair
of its points. The Gaussian curvature is then strictly negative (for example, some portions
of nodoids, catenoids, unduloids with convex meridian).

We introduce at any point P of the circular edge of radius R, the contact angles values after
distortion effects, eventually distinct θ1 and θ2. In the case of a concave bridge, θ1 and
θ2 ∈

[
0, π2

]
.

The use of the Gauss-Bonnet theorem is thus greatly simplified, reduced to considering
orthogonal projections of circles (representing the contact lines) on an inclined tangent
plane, to the knowledge of the curvature at the vertices of an ellipse in order to take into
account the total geodesic signed curvatures of the boundaries.

Recall that in an ellipse with major axis 2a and minor axis 2b, the vertices on the major

axis have the smallest radius of curvature of any points, Rmin =
b2

a
, and the vertices on the

minor axis have the largest radius of curvature of any points, Rmax =
a2

b
.

Consequently, the geodesic curvature at a point P on the boundary of the capillary bridge

is equal to
1

R
cos θi, and, by integration along each circle, the total geodesic curvature

of the boundaries δM is then ∫
δM

kgds = 2π (cos θ1 + cos θ2)
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According to (3) with χ(M) = 0, the bending stress can be expressed very easily as:

Ebending stress = Ck

∫
M

K dM = −2πCk (cos θ1 + cos θ2) . (4)

For symmetric profiles with θ1 = θ2 = θ, we obtain then a relationship between the contact
angle θ and the bending stress:

θ = − arccos

∫
M

K dM

4π
.

Coming back to (4) with the same contact angle θ, the relative finite variation of the bending
stress, as function of the contact angle θ, is then given by the formula:

δ (Ebending stress)
Ebending stress

= − tan θ δθ , θ 6= π
2 .

2.2.2 The convex capillary bridges.

Such a liquid bridge is convex if it contains all the line segments connecting any pair of its
points. The Gaussian curvature is then strictly positive (portion of sphere, some portions
of nodoid or unduloid with concave meridian, etc...). At any point P , the free surface is
bending away from the tangent plane in all tangent directions at P (local dome shape).

In the case of a convex bridge, we introduce at any point P of the circular edge of radius R
the contact angles, eventually distinct θ1 and θ2 ; then θ1 and θ2 ∈

[
π
2 , π

]
.

The use of the Gauss-Bonnet theorem is so again greatly simplified, reduced to introduce
orthogonal projections of circles on a plane, to the knowledge of the curvature at the vertices
of an ellipse in order to take into account the total geodesic curvatures of the boundaries.
Consequently, the curvature at a point P on the boundary of the capillary bridge is still

equal to
1

R
cos θi and the total geodesic curvature is then 2π (cos θ1 + cos θ2), as for concave

capillary bridges.

The bending stress along the free surface Σ is then presented in the following form, very
easy to use for the experimenter:

Ck

∫
Σ

K dΣ = −2πCk (cos θ1 + cos θ2) .

2.2.3 Axisymmetric bridges with changes of concavity

Such a situation requires that the profile has one or more inflection points. The methods of
Euler’s characteristic associated to the Gauss-Bonnet theorem apply immediately to these
cases. These axisymmetric surfaces have in common the same Euler characteristic, in this
case, the value zero. It then comes again with adjusted data:

Ebending stress = Ck

∫
Σ

K dΣ = −2πCk (cos θ1 + cos θ2)
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2.2.4 The prevailing role of the contact angles

It is very important to quote that, for any profile of capillary bridges, all the factors de-
termining the contact angle have an influence on the bending stress (in particular surface
roughness and heterogeneity, influence of gravity, contact angle hysteresis) [14][38][39].

It is well known that the contact angle value is determined by the balance between adhesive
and cohesive forces on the rigid supports. As the tendency of a drop to spread out over a
flat solid surface increases, the contact angle decreases. Thus, the contact angle provides an
inverse measure of wettability.

A low contact angle less than
π

2
(low contact angle) usually indicates that wetting of the

surface is very favorable, and the fluid will spread over a large area of the surface. Contact
angles greater than

π

2
(high contact angle) generally mean that wetting of the surface is

unfavorable. In this context, the case of the right cylinders is still a borderline case. It
should be observed that a certain number of terms of the generalized Young-Laplace equation
are spontaneous values, resulting from instantaneous equilibrium, and are therefore implicit
unknowns. This is a difficulty for the mathematical resolution of this nonlinear differential
boundary problem.

3 Explicit parameterization of the distorted profile
The qualitative results elaborated in the framework of the constant mean curvature theory
[8] are essentially based on the existence of an exact invariant (in fact, a first integral for
the second order nonlinear differential equation which reveals the conservation law for the
total energy of the free surface). With minor adaptations, they are immediately applicable
to the situation where the Gaussian curvature and bending effects are taken into account.
Indeed, as we will see, we still highlight in this case a first integral for the generalized Young-
Laplace equation by limiting ourselves to a presentation concerning essentially any bridge
with strictly negative Gaussian curvature.

For the spontaneous but a prior unknown value of H, H = HB , the generalized Young-
Laplace equation can be rewritten, with intuitive notations, in the differential form:

− 1

Y

d

dY

(
Y√

1 + Y ′2
− CK

2γ

1

1 + Y ′2

)
= H +Bx± (Y ) .

Hence, along each concerned branch of the distorted profile, the two expressions are constant
and equal, at the dimension of a force. For an example, for any x ≥ X∗, (X∗, Y ∗) being the
coordinates of the moved neck,

F+
CK

= 2πγ

(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy

)
.

is constant at over the profile x ≥ X∗. Such a first integral allows to obtain parameterizations
of the distorted profiles and information on constant functional expressions [9].
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For the convenience of the reader and for a fairly comprehensive presentation, it is interesting
to note that when considering, via a first integral, the only bending effects (i.e. CK 6= 0,
B = 0), then for any axisymmetric capillary bridge, the interparticle capillary force

FcapCK
= 2πγ

(
Y√

1 + Y ′2
− CK

2γ

1

1 + Y ′2
+
H

2
Y 2

)
(5)

is constant at all points of the profile. Then, as proved in [10],

FcapCK
= 2πγY (x) cos Θ (x)− πCK cos2 Θ (x) + πγHY 2 (x)

where Θ (x) is the easily calculable angle made by the tangent vector to the meniscus with
the x−axis at the generic point (x, Y (x)).

This latter relationship is interesting because it allows to easily obtain a parameterization of
the profile via Θ by generalizing formulas established in an other way (by pure geometry) by
C.H. Delaunay in 1841 [6], p. 313. By a direct calculation and solving a quadratic equation
if H 6= 0, we get at H > 0 (see for example [9][10]):

Y (Θ) = Y

(
Θ,

CK
γ

)
, the positive root such that Y

(
0,
CK
γ

)
= Y ∗,

i.e.

Y (Θ) =
1

H

(
− cos Θ +

√
(HY ∗ + 1)

2 −
(

1 +H
CK
γ

)
sin2 Θ

)
,

x (Θ) = X∗ +

∫ Θ

0

dY (θ) cot (θ) dθ, i.e.,

x (Θ) = X∗ +
1

H

sin Θ +
(

1 +H CK

γ

)∫ Θ

0

cos2 θ dθ√
(HY ∗ + 1)

2 −
(

1 +H CK

γ

)
sin2 θ

 .

4 The general case and its implementation
In the general cases of non-axisymmetric capillary bridges between two supports, possibly of
distinct natures, the method remains applicable in principle. The difficulty is not conceptual
in dealing with the general case but rather calculative. We must then, in any given case,
engage in a delicate exercise in differential and analytical geometries to explicitly calculate
the total signed geodesic curvature of the boundaries by the classical methods of analytical
geometry.

The calculation procedure is as follows.

• At any point P of the border liquid-solid, one considers the tangent plane in P to
the free surface (that supposes an adequate local regularity). One then considers the
orthogonal projection of each edge into this tangent plane. The curvature in P of the
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projected curve is then calculated, what introduces the important role of the cosine
of the local contact angle3. The geodesics correspond to zero values. The academic
literature provides various classical formulas for calculating geodesic curvature (cf. also
[19] on the theme of interpolation and blending on surfaces, [22] for discrete curvature
estimation methods).

• Multiplied by the coeffient (−CK) at the dimension of a force, the dimensionless in-
tegral of these curvature values along the reunion of the two contact edges gives the
value of the resulting bending stress.

• When the dimensioned constant term CK is considered as a missing value to be re-
stored, it is possible to obtain the result by missing data recovery using the first integral
[10], or by identification of constants by inverse problem or experimental measurement
[23][25]-[29].

5 Conclusion
For didactic purposes, we limited ourselves to the detailed case of axisymmetric capillary
bridges to show the interest of the simultaneous use of the Gauss-Binet-Bonnet formula and
of the topological notion of Euler characteristic to evaluate the importance of the bending
stress. The obtained result clearly shows in an explicit way, the major role of the contact
angles values (eventually distinct) after distortion effects. The value of the bending stress
depends, besides physical constants, only on the observed values of the contact angles,
whereas these angles result in part implicitly from the final equilibrium of the device.

On the other hand, let us insist on the factual interdependence between gravity and bending
distortions, for a bridge between two horizontal plates, to fix ideas. When the gravity
distortions have significant effects, the low contact line progresses over dry areas while the
upper contact line recedes over wet areas, which generally according to the dynamics of
contact lines on surfaces, creates an accentuated asymmetry between the contact angles
with the adjacent solid surfaces (canthotaxis). It follows then a significant quantitative
modification of the bending stress by gravity effect. The evolution of the new equilibrium
is not very predictable but easy to observe and measure.

It would be interesting to reconsider, in taking into account the bending effects, the re-
sulting contact angles and the elegant Gauss-Bonnet theorem, a new analytical framework
for evaluating the cohesion effects of coalescence between saddle shaped capillary bridges
[12]. There are no major issues for generalization of the bending stress calculation to the
non-axisymmetric cases.
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