
HAL Id: hal-03363031
https://hal.science/hal-03363031

Submitted on 2 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple Deterministic Algorithm for Systems of
Quadratic Polynomials over F 2

Charles Bouillaguet, Claire Delaplace, Monika Trimoska

To cite this version:
Charles Bouillaguet, Claire Delaplace, Monika Trimoska. A Simple Deterministic Algorithm for Sys-
tems of Quadratic Polynomials over F 2. Symposium on Simplicity in Algorithms (SOSA), SIAM,
Jan 2022, Alexandria, United States. pp.285-296, �10.1137/1.9781611977066.22�. �hal-03363031�

https://hal.science/hal-03363031
https://hal.archives-ouvertes.fr

A Simple Deterministic Algorithm for Systems of
Quadratic Polynomials over F2

Charles Bouillaguet
LIP6 laboratory, Sorbonne Université, Paris, France
charles.bouillaguet@lip6.fr

Claire Delaplace
MIS Laboratory, Université de Picardie Jules Verne, Amiens, France
claire.delaplace@u-picardie.fr

Monika Trimoska
MIS Laboratory, Université de Picardie Jules Verne, Amiens, France
monika.trimoska@u-picardie.fr

Abstract

This article discusses a simple deterministic algorithm for solving quadratic Boolean systems which
is essentially a special case of more sophisticated methods. The main idea fits in a single sentence:
guess enough variables so that the remaining quadratic equations can be solved by linearization
(i.e. by considering each remaining monomial as an independent variable and solving the resulting
linear system). Under strong heuristic assumptions, this finds all the solutions of m quadratic
polynomials in n variables with Õ

(
2n−

√
2m
)

operations. Although the best known algorithms
require exponentially less time, the present technique has the advantage of being simpler to describe
and easy to implement. In strong contrast with the state-of-the-art, it is also quite efficient in
practice.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy; Theory of computation → Design and analysis of algorithms

Keywords and phrases Boolean quadratic polynomials, exhaustive search, linear algebra

Supplement Material Source code available at : https://gitlab.lip6.fr/almasty/mq/

Funding We acknowledge financial support from the French Agence Nationale de la Recherche under
projects “PostCryptum” (ANR20-ASTR-0011) and “GORILLA” (ANR-20-CE39-0002).

https://orcid.org/0000-0001-9416-6244
mailto:charles.bouillaguet@lip6.fr
https://orcid.org/0000-0002-5314-1806
mailto:claire.delaplace@u-picardie.fr
https://orcid.org/0000-0002-1477-0001
mailto:monika.trimoska@u-picardie.fr
https://gitlab.lip6.fr/almasty/mq/

2 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

1 Introduction

We consider the problem of solving systems of multivariate Boolean quadratic equations.
Given a set of quadratic Boolean polynomials {f1, . . . , fm}, the problem consists in finding a
satisfying assignment x̂ ∈ {0, 1}n such that fi(x̂) = 0 for all 1 ≤ i ≤ m, or determining that
no such x̂ exists. Each polynomial is represented as the sum of quadratic terms xixj , linear
terms xi and a constant term. Because x2 = x modulo 2, we assume that the exponent of
each variable is either 0 or 1.

It is well-known that the problem is NP-complete, with a simple reduction from SAT.
It is relevant to the cryptology community because its hardness can be used to build
secure “post-quantum” encryption or signature schemes, as there are no known quantum
algorithms capable of solving an NP-complete problem in polynomial time. Many such
“multivariate” cryptographic schemes have been proposed with concrete sets of parameters,
such as HFE [23], UOV [19], MQDSS [8] and variants thereof. Several have been submitted to
the ongoing competition launched in 2017 by the (American) National Institute of Standards
and Technology in order to select a portfolio of “post-quantum” public-key cryptographic
algorithms. For instance, among these, the GeMSS signature scheme [7] exposes a public key
consisting of m = 162 Boolean quadratic polynomials in n = 192 variables. It follows that the
relevant range of parameters for cryptographic instances is essentially m ≈ n and n ≈ 200 at
this point: solving quadratic Boolean systems of this size is assumed to be intractable (much
smaller systems seem completely out of reach as well). Note that in the context of cryptology,
the average case complexity is more relevant than the worst case, because cryptographic
instances of the problem are (presumably indistinguishable from) random. In addition, there
is empirical evidence that random systems are hard to solve. The algorithmic problem is
thus both of theoretical and of practical interest, and many algorithms have been proposed
to solve it.

In this paper, we present a decremental improvement over the state-of-the-art: a simple
deterministic algorithm that 1) is a special case of known techniques, and 2) has exponentially
worse complexity. It only achieves a sub-exponential advantage over exhaustive search in
the average case, but it is extremely simple and quite easy to implement efficiently. The
algorithm works as follows:

Guess sufficiently many variables so that the remaining polynomial system can be
solved by linearization (i.e. by considering each remaining monomial as an independent
variable, solving the resulting linear system and checking each solution against the
original polynomial system).

More precisely, guess the values of all variables except the
⌊√

2m− 2
⌋
last ones. There

remain strictly less than m (non-constant) monomials of degree less than two in the remaining
variables, which enables the use of the linearization technique. This results in a complexity
of Õ

(
2n−

√
2m
)
.

This algorithm is a particularly simple special case of several other more complex algorithms
from the cryptology community, including but not limited to [10, 3, 2, 18]. However, to the
best of our knowledge, this simple form was not discussed per se.

C. Bouillaguet, C. Delaplace and M. Trimoska 3

Related Work
Exhaustive search is the baseline method to solve systems of Boolean quadratic polynomial
equations, with a running time Õ (2n) and negligible space complexity. Using several
algorithmic tricks and low-level optimizations, it can be implemented extremely efficiently [6].
In particular, the implementation in the libfes-lite library1, which is state-of-the-art to the
best of our knowledge, checks several candidate solutions per CPU cycle, which means that
the factors hidden in the big Oh notation are extremely small. It follows that “beating brute
force” in practice, namely assembling an implementation that runs faster on existing hardware
than exhaustive search, for problem sizes that are feasible, is a significant achievement.

Systems that are very underdetermined (n ≥ m2) or very overdetermined (m ≥ 0.5n2) can
be solved in polynomial time by simple techniques [9]. This suggest that m ≈ n is the
hardest case, and it is common in cryptology (we usually have m = 2n for encryption and
n = 2m or n = 3m for signatures). Very overdetermined systems can (heuristically) be
solved by linearization: there are n(n+ 1)/2 non-constant Boolean monomials in n variables;
consider each one as an independent fresh variable; provided there are as many (linearly
independent) quadratic equations, this yields a linear system with a (presumably) small
number of solutions. This system can be solved in polynomial time, and each solution reveals
a possible value of the variables. On random quadratic systems, we expect to have a single
solution.

The next family of algorithms are algebraic manipulation techniques that derive, in a way
or another, from the Buchberger algorithm for computing Gröbner bases. Given a Gröbner
basis of the original polynomial equations, it is easy to read a potential solution. These
algorithms are neither limited to quadratic polynomials nor to the Boolean field. Their
average case complexity is notoriously difficult to study, and it requires algebraic assumptions
(regularity or semi-regularity) on the input polynomials. The state of the art, at this point,
seems to be the F4 and F5 algorithms by Faugère [15, 16]. F4 is essentially a reformulation
of the Buchberger algorithm that does batch processing using efficient sparse linear algebra
instead of polynomial manipulations. F5 strives to eliminate some useless computations.
Bardet, Faugère and Salvy [1] show that a simplified version of F5 computes a Gröbner
basis of a regular sequence of quadratic polynomials in Õ

(
24.295n

)
field operations, over any

finite field (therefore it “beats brute force” on fields with more than 20 elements). Efficient
implementations of F4 are available in off-the-shelf computer algebra systems, notably
MAGMA [5]. Faugère’s algorithms have been successful in breaking some cryptosystems, most
notably an instance of HFE with n = 80 variables, which turned to be spectacularly weak
against Gröbner basis computations [17]. Variants of these algorithms have been discovered
or rediscovered by the crypto community, notably under the form of the XL algorithm by
Courtois, Klimov, Patarin and Shamir [10].

All these algorithms have exponential space complexity and existing implementation run into
memory limitations even for a moderate number of variables. Implementing them is non-
trivial, because they require either sophisticated data-structure for large-degree multivariate
polynomials and/or sparse linear algebra over large matrices. Existing implementations are
usually available inside full-blown computer algebra systems, which are large and complex
software projects.

1 https://gitlab.lip6.fr/almasty/libfes-lite

https://gitlab.lip6.fr/almasty/libfes-lite

4 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

It is well-known that solving systems by Gröbner basis computation is easier on over-
determined systems. In the extreme, on sufficiently overdetermined polynomial systems,
Gröbner basis computations degenerate into Gaussian elimination and work in polynomial
time. This is the basis for the “hybrid method” which combines exhaustive search and
algebraic techniques: guess the values of some variables, then compute a Gröbner basis of
the remaining system which has become overdetermined.

Yang and Chen [24] as well as Bettale, Faugère and Perret [3] discuss the optimal number of
variables to fix. The BooleanSolve algorithm of Bardet, Faugère, Salvy and Spaenlehauer [2] is
the best embodiment of this idea at this point, with running time Õ

(
20.792n

)
on average, under

algebraic assumptions. It guesses some variables, then checks if a polynomial combination
of the remaining polynomials is equal to 1. If it is the case, then the guessed values are
incorrect (by Hilbert’s Nullstellensatz). Checking this is accomplished by deciding whether
large sparse linear systems have a solution. The inventors of BooleanSolve claim that it is
slower than exhaustive search when n ≤ 200, which seems to make it practically useless.
While conceptually simple, the algorithm is likely hard to implement because it requires a
sparse linear system solver for exponentially large matrices. To the best of our knowledge,
no implementation has ever been written.

The Crossbred algorithm of Joux and Vitse [18] also belongs to the “guess variables then
solve a linear system” family of algorithms. Its asymptotic complexity is not precisely known,
but its practical efficiency is spectacular: it has been used to solve a random system with
n = 74 variables and m = 148 equations, which is the current record (this would require
about 150 million CPU hours using exhaustive search). There is a public implementation
that uses GPUs by Niederhagen, Ning and Yang [22]. It is the first algorithm that has beaten
brute-force in practice on random non-overdetermined systems. This algorithm is discussed
more in-depth in section 5.1.

The simple algorithm presented in this paper is, to a large extent, a special case of all the
works surveyed up to this point.

A completely different family of algorithms emerged in 2017 when Lokshtanov, Paturi, Tamaki,
Williams and Yu [21] presented a randomized algorithm of complexity Õ

(
20.8765n

)
based

on the “polynomial method”. In strong contrast with almost all the previous ones, it does
not require any assumption on the input polynomials, which is a theoretical breakthrough.
The algorithm works by assembling a high-degree polynomial that evaluates to 1 on partial
solutions, then approximates it by lower-degree polynomials. The technique was later
improved by Björklund, Kaski and Williams [4], reaching Õ

(
20.804n

)
, then again by Dinur [13],

reaching Õ
(
20.6943n

)
.

Noting that the self-reduction that results in this low asymptotic complexity only kicks in for
very large values of n, Dinur proposed a simpler, lightweight and “concretely efficient” version
of his algorithm for the crypto community with complexity O

(
n220.815n

)
using n220.63n

bits of memory [12]. A closer look reveals that this is, in fact, concretely impractical: the
algorithm requires more than 2n operations as long as n ≤ 65, and for n ≥ 66 it requires
at least 1.5 petabyte of memory (the most powerful computer in the world at the time of
writing, fugaku, has about 5 petabyte of memory spread over more than 150 000 computing
nodes). All other incarnations of the “polynomial method” [21, 4, 13] are even worse from a
practical standpoint. They are therefore mostly of theoretical interest.

C. Bouillaguet, C. Delaplace and M. Trimoska 5

2 A Toy Example

Consider the following system in 5 variables:

f1 = ae+ bc+ be+ cd+ a+ d+ e+ 1,
f2 = ac+ ad+ ae+ bc+ bd+ ce+ de+ a+ b+ d,

f3 = ad+ be+ cd+ a+ b+ d+ 1,
f4 = ab+ ad+ bd+ be+ b+ d+ e,

f5 = ab+ ae+ bc+ bd+ cd+ ce+ de+ a+ e+ 1

These polynomials can be seen as vectors in the vector space spanned by all quadratic
monomials. The system can thus be written as a matrix:

M =

ab ac ad ae bc bd be cd ce de a b c d e 1


1 1 1 1 1 1 1 1 f1
1 1 1 1 1 1 1 1 1 1 f2

1 1 1 1 1 1 1 f3
1 1 1 1 1 1 1 f4
1 1 1 1 1 1 1 1 1 1 f5

Next, separate the first u = 3 variables, and write the polynomials in F2[a, b, c][d, e], i.e. as
polynomials in d, e whose coefficients are themselves polynomials in a, b, c. This yields a
matrix with coefficients in F2[a, b, c]:

M(a, b, c) =

de d e 1


0 c+ 1 a+ b+ 1 bc+ a+ 1 f1
1 a+ b+ 1 a+ c ac+ bc+ a+ b f2
0 a+ c+ 1 b a+ b+ 1 f3
0 a+ b+ 1 b+ 1 ab+ b f4
1 b+ c a+ c+ 1 ab+ bc+ a+ 1 f5

(1)

The columns corresponding to quadratic (resp. linear, constant) monomials in d, e contain
constant (resp. linear, quadratic) terms in a, b, c. Perform linear combinations of the rows to
put the columns corresponding to quadratic terms in reduced row echelon form :

M̃(a, b) =

de d e 1


1 a+ b+ 1 a+ c ac+ bc+ a+ b f2

0 c+ 1 a+ b+ 1 bc+ a+ 1 f1
0 a+ c+ 1 b a+ b+ 1 f3
0 a+ b+ 1 b+ 1 ab+ b f4
0 a+ c+ 1 1 ab+ ac+ b+ 1 f2 + f5

Any solution to the initial polynomial system is also a solution of the following equations,

6 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

Algorithm 1
1: Let A denote a `× v matrix of bits and b a size-` vector of bits
2: Compute a basis g1, . . . , g` of L
3: Write gi(y, z) = qi(y) + yBiz

t + Ciz
t

4: for ŷ ∈ {0, 1}u do
5: for 1 ≤ i ≤ ` do
6: b[i]← qi(ŷ)
7: A[i, ·]← ŷBi + Ci

8: Solve the linear system Azt = b

9: for each solution ẑ do
10: if 0 = f1(ŷ, ẑ) = · · · = fm(ŷ, ẑ) then
11: return (ŷ, ẑ)
12: return ⊥

taken by extracting non-pivotal rows:
c+ 1 a+ b+ 1

a+ c+ 1 b

a+ b+ 1 b+ 1
a+ c+ 1 1


︸ ︷︷ ︸

L(a,b,c)

(
d

e

)
=


bc+ a+ 1
a+ b+ 1
ab+ b

ab+ ac+ b+ 1


︸ ︷︷ ︸

Q(a,b,c)

Enumerate all the possible values of the first three variables (a, b, c) ; for each combination,
solve the linear system L(a, b, c) · (d, e)t = Q(a, b, c) for (d, e). Any solution of the linear
system is automatically a satisfying assignment for {f1, f3, f4, f2 + f5}. Check candidate
solutions against f2 ; they are then guaranteed to satisfy the original system.

The linear system, which is overdetermined, is inconsistent except for (a, b, c) = (1, 0, 1),
where it admits a single solution (e, d) = (0, 0). This solution is indeed a valid satisfying
assignment.

3 Formal Description and Heuristic Analysis

The ring of Boolean polynomials in n variables x1, . . . , xn, hereafter denoted by B[x1, . . . , xn],
is the quotient of the polynomial ring F2[x1, . . . , xn] by the ideal spanned by the “field
equations”

〈
x2

1 + x1, . . . , x
2
n + xn

〉
. As before, we consider a system ofm quadratic polynomial

equations {f1, . . . , fm} in B[x1, . . . , xn].

Suppose that the n variables x = (x1, . . . , xn) are arbitrarily partitioned in two sets with
x = (y, z), y = (y1, . . . , yu), z = (z1, . . . , zv) and u + v = n. In the sequel, we choose
v =

⌊√
2m− 2

⌋
. This choice guarantees that there are less than m non-constant quadratic

monomials in the variables z1, . . . , zv and will make it possible to solve quadratic systems of
m equations in v variables by linearization. Indeed, there are v(v + 1)/2 such monomials,
and this evaluates to m− 3v/2− 2 without rounding v towards zero.

We stated in the introduction that the algorithm consists in guessing the first u variables, and
solve the remaining system by linearization. In fact, we present below a slight algorithmic
refinement which, in our opinion, leads to a simpler formal exposition.

C. Bouillaguet, C. Delaplace and M. Trimoska 7

The ring of Boolean polynomials is in particular a vector space. Denote by Z the subspace
formed by the monomials that contain at most one variable from z. Now, consider the linear
span of the input polynomials 〈f1, . . . , fm〉 and let L denote its intersection with Z. In other
terms, L contains the linear combinations of the input polynomials in which all monomials
contain at most one zi. The point is that once the values of the y1, . . . , yu variables are fixed,
then polynomials in L depend only on z1, . . . , zv and they have degree at most one.

Computing a basis g1, . . . , g` of L is easy: this can be done by putting the original polynomials
in reduced row echelon form with a suitable choice of pivots to eliminate the “bad” monomials
zizj . The algorithm works by enumerating all possible ŷ ∈ {0, 1}u, solving g1(ŷ, z) = · · · =
g`(ŷ, z) = 0, which is a linear system in z, then checking each candidate solution (ŷ, ẑ) against
the original quadratic polynomials. This is shown in Algorithm 1.

We write each gi as gi(y, z) = qi(y) + yBiz
t + Ciz

t, where qi is a quadratic polynomial in
B[y], Bi is a u× v matrix with coefficients in F2 and Ci is a length-v vector with coefficients
in F2. This amounts to distinguish monomials that depend only on y, are bilinear in (y, z)
or linear in z, respectively.

Assuming that the input polynomials are linearly independent (which seems a mild assump-
tion), then the intersection L has dimension greater than or equal to ` = m − v(v − 1)/2.
Our choice of v guarantees that ` ≥ 5v/2.

Assembling the linear system (steps 5–7) requires evaluating the ` quadratic polynomials
qi’s in u variables and performing ` matrix-vector products with the Bi’s which are of size
u× v. This requires O (`u(u+ v)) operations, while solving the linear system using Gaussian
elimination requires O

(
`v2) operations.

Let us assume that m = Θ (n), so that v = O (
√
n) and ` = O (

√
n). Assembling the

linear system costs O
(
n2.5) while solving it costs O

(
n1.5). Assembling the linear system is

dominated by the evaluation of the quadratic polynomials. We show in section 4.1 that it is
possible to decrease this cost to O (n).

The main problem of this algorithm is that it is difficult to bound the total number of
iterations of the solution-checking loop (step 9–11). Morally speaking, because the linear
system Azt = b is quite overdetermined, then most of the time there should be no solution
at all.

Let us make the heuristic assumption that the b vectors are uniformly random (in fact, they
are the result of the evaluation of quadratic polynomials). The image of A is a subspace of
dimension less than or equal to v in {0, 1}`, therefore it contains the random vector b with
probability less than 2v−`. When the linear system is consistent, it has at most 2v solutions.
This yields a crude upper-bound on the expected number of solutions N of each random
linear system:

E(N) ≤ 2vPr(the linear system is consistent) = 22v−` ≤ 2−v/2

It follows that the total time spent checking solutions (in steps 9–11) is asymptotically
negligible compared to the rest of the algorithm. The total expected running time of the
algorithm, under the heuristic assumption that the b vectors are random, is O

(
n2.52n−

√
2m
)
.

It would be nice to drop the heuristic assumption that the b vectors are random, but this
seems difficult. At the very least, the authors of the BooleanSolve algorithm face a comparable
problem and resort to different, albeit comparatively strong assumptions: they assume that

8 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

the “specialized” polynomial systems {f1(ŷ, z), . . . , fm(ŷ, z)} only deviate from a generic
behavior for a sufficiently small fraction of all the possible ŷ (they call this the “strong
semi-regularity” assumption). This implies in particular that the specialized systems only
rarely have solutions, which is exactly what we need as well.

4 Practicality

Algorithm 1 can actually be implemented and executed. Toy implementations in a computer
algebra systems such as SageMath are easy to write. A user-friendly and competitive
implementation in pure C using low-level optimizations is about 650 lines long (it is accessible
in the supplementary material). This is possible because the algorithm itself is simple, and
because it does not rely on sophisticated data structures or complex sub-algorithms such as
fast multivariate polynomial multiplication, fast multipoint evaluation/interpolation, Gröbner
basis computations or large sparse linear system solvers. In addition, its space complexity is
negligible and it is trivially parallelizable.

This section discusses what is needed to obtain a serious implementation.

4.1 Faster Polynomial Enumeration Using a Gray Code
As discussed in section 3, the running time of the algorithm is dominated by the need to
evaluate quadratic polynomials (step 6 of algorithm 1). Evaluating a quadratic polynomial
on ŷ ∈ {0, 1}u naively requires O

(
u2) operations. This can be reduced by enumerating all

values of ŷ using a Gray code, so that only a single bit of ŷ changes at each iteration. This
technique seems to belong to the folklore. The point is that once the value of qi(ŷ) is known,
only the monomials that depend on the flipped variable must be reevaluated, and there are
only u.

Consider an arbitrary quadratic polynomial f(x) = c+
u∑

i=1

u∑
j=1

M [i, j]yiyj .

Observe that f(x+ y) = f(x) + f(y) + x (M +M t) yt + f(0). Let êk ∈ {0, 1}u denote the
vector which is zero everywhere except on the k-th coordinate. Define the partial “derivative”
of f with respect to its k-th variable as:

∂f

∂k
(y) = f(y) + f(y + êk).

Using the above observation, one quickly find that:

∂f

∂k
(y) = M [k, k] +

u∑
i=1

(M [i, k] +M [k, i])yi.

These modifications transform Algorithm 1 into Algorithm 2. Maintaining A and b consistent
with the single-bit updates to ŷ now requires O (u) operations on step 10 and O (v) operations
on step 11, respectively. All in-all, the total cost of assembling the linear system has dropped
from O

(
n2.5) to O (n1.5), and it now matches that of solving it.

This can again be improved a little by observing that each individual “partial derivative” is
evaluated on related inputs (only two bits differ from one evaluation to the next). Taking
advantage of this observation leads to the fast exhaustive search algorithm of Bouillaguet,
Chen, Cheng, Chou, Niederhagen, Shamir and Yang [6]. Using this technique allows to

C. Bouillaguet, C. Delaplace and M. Trimoska 9

Algorithm 2 Rearrangement of Algorithm 1 (incremental updates to A and b)
1: ŷ ← 0 . Setup ŷ, A and b
2: for 1 ≤ i ≤ ` do
3: b[i]← qi(0)
4: A[i, ·]← Ci

5: for 1 ≤ i ≤ 2u do . Main loop
6: Solve the linear system Azt = b and process its solution as before
7: k ← index of the rightmost bit of i . Update ŷ
8: ŷ ← ŷ + êk

9: for 1 ≤ i ≤ ` do . Update A and b
10: b[i]← b[i] + ∂qi

∂k (ŷ)
11: A[i, ·]← A[i, ·] +Bi[k, ·]

update each b[i] in constant time, and brings down the total time needed to update A and b
to O (n).

4.2 Simplifying the Linear Algebra
Implementing these algorithmic optimizations result in a program that spends all its time
examining a large number of very small overdetermined linear systems modulo 2 (say, of
size 20× 10). Optimizing the linear algebra is therefore the next step. The overwhelming
majority of the linear systems will have full rank and be inconsistent. Therefore, it makes
sense to process them in two phases:

1. Check whether the linear system is both full-rank and inconsistent. If this is the case, we
can move on. This is performance-critical.

2. Otherwise, we actually need to compute a particular solution, or even possibly a basis of
the solution space. This is a rare occurrence, therefore it is not necessary to optimize
this part.

We now argue that the second phase is (heuristically) rarely invoked. As argued in section 3,
each linear system Azt = b is consistent with probability less than 2−3v/2 (under the heuristic
assumption that b is random). We now crudely lower-bound the probability that a random
`× v matrix is full rank. This happens when each column is chosen out of the linear span of
the previous columns, and the probability of this event is:

p :=
∏̀

j=`−v+1

(
1− 2−j

)
This is always greater than

(
1− 2v−`

)v. Let e denote the excess ratio e := `/v − 1. Because
we always have ` ≥ 5v/2, then e ≥ 3/2. This implies that p ≥ (1− 2−ev)v. Taking an
asymptotic expansion for v → +∞ shows that this is 1− v2−ev +O

(
v22−2ev

)
. Therefore, we

expect the proportion of rank-defective linear systems to be smaller than v2v−`. In practice,
this holds quite well.

4.3 Vectorization
Vectorization is a key implementation technique to obtain competitive performance on current
hardware, leading to a constant speedup of about 40×.

10 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

Consider a Boolean circuit C with (`+ 1)v input wires for A and b as well as v output wires
for z and two extra output wires c and d. The c output wire indicates whether the linear
system Azt = b is consistent while the d output wire indicates whether the matrix A is
rank-defective.

The point is that on a CPU equipped with w-bit registers, w copies of the circuit can be
evaluated in parallel on w distinct inputs by performing normal Boolean operations between
registers (the i-th copy operates on the i-th bit of all w-bit values). Most current x86-64 CPUs
have AVX2 instructions, which allows to perform Boolean operations on 256-bit registers.

This allows to group the iterations of the main loop of the algorithm in batches of size w.
The most common situation is that all linear systems in a batch are full-rank and inconsistent
(which results in d ∨ c = 0000 . . . 000). In this case, there is nothing to do except moving on
to the next batch. Otherwise, the individual elements of the batch must be examined, but
this is a rare occurrence.

Such a Boolean circuit is not difficult to obtain, as this amounts to perform an LU factorization
of A with partial pivoting. Of course, conditional instructions have to be rewritten: if
b then swap x and y becomes delta = b & (x ^ y); x ^= delta; y ^= delta. This
kind of conversion can be done automatically [14].

We actually use the following relaxed specification: if d = 1 (the system does not have
full-rank), then the other outputs are unspecified. If d = 0 and c = 0, then the system is
inconsistent ; lastly, if d = 0 and c = 1 then the only solution of the system can be read on the
z wires. Giving up on producing a meaningful result when the system is rank-defective allows
several simplifications that reduce the size of the circuit. Actually obtaining the solution z
when the system is consistent has negligible cost. The circuit we use has approximately 3`v2

gates.

4.4 Comparison with exhaustive search
The wall-clock running time of fast software implementations of exhaustive search is T = α2n,
for some constant α which depends on the implementation and on the machine. The running
time of Algorithm 1 is T ′ = P (m)2n−2

√
m, for some polynomial P that also depends on the

machine. An implementation of Algorithm 1 “beats brute force” when T/T ′ > 1, in other
terms when α2

√
2m > P (m). This always happens for sufficiently large m, i.e. if there are

sufficiently many equations, regardless of the number of variables.

We use the exhaustive search implementation in libfes-lite for comparison. Determining the
threshold m such that both programs take the same time is a simple matter ; using a single
core on the recent laptop of one of the authors, we found that it is m = 48, which we consider
to be rather low. In that case, both program take about two hours to run.

5 Making it complicated with Higher-Degree Multiples

Algorithm 1 exploits the well-known idea that a polynomial system can be solved in polynomial
time by linearization when the number of (linearly independent) equations exceeds the number
of non-constant monomials that appear in them. The number of non-constant monomials
of degree ≤ D in n variables is ND(n) =

∑D
i=1
(

n
i

)
. A degree-D Boolean system with m

linearly independent polynomials can be linearized when m ≥ ND(n). By guessing variables,
we decrease the value of n until this “linearization condition” is satisfied.

C. Bouillaguet, C. Delaplace and M. Trimoska 11

A contrasting idea consists in increasing the number of linearly independent polynomial
equations. Any polynomial contained in the ideal I = 〈f1, . . . , fm〉 can indeed by appended
to the original equation system without altering its set of solutions. Seen as a vector space,
I is spanned by the tfi, where t ranges across all possible monomials and 1 ≤ i ≤ m. Note
that when we add these “multiples” of the original polynomials, the degree of the system
grows and as a result, the total number of monomials in the system grows as well.

A problem is that the tfi are not linearly independent, if only because of the trivial relations
fifj + fjfi = 0 and fi(fi + 1) = 0, not to mention the fact that there are m2n such multiples
while B[x] has dimension only 2n.

Let ID denote the vector space spanned by the tfi for all monomials t of degree less than or
equal to D − 2 and all 1 ≤ i ≤ m. Generally speaking, we expect to have dim I3 = (n+ 1)m
and dim I4 = (n2−m+n+1)m/2, with the assumption that there are no surprising algebraic
dependencies between the fi’s except the trivial ones mentioned above. Estimating the
dimension of ID for larger D is more complicated. In general, it depends not only on n and
m but on the actual polynomials f1, . . . , fm (it is related to the Hilbert function of the ideal,
see [11]). The usual regularity and semi-regularity assumptions state that, up to a certain
degree, the trivial linear dependencies are the only ones, which means that dim ID is a fixed
function of n and m (independently of the actual polynomials), at least when D is not too
large.

Several algorithms related to Gröbner basis computation use these multiples [15, 16, 10, 2, 18].
This follows from the observation by Lazard [20] that the tfi are linearly independent in
K[x] when the fi form a Gröbner basis; a contrario, echelonizing the tfi of sufficiently high
degree provides a way to compute a Gröbner basis of {f1, . . . , fm}.

In this section, we explore how the common method of using higher-degree multiples can be
used to extend Algorithm 1. Two different directions naturally suggest themselves. One of
them leads to the Crossbred algorithm of Joux-Vitse [18], the other one gives the FXL [10]
and the BooleanSolve [2] algorithms.

5.1 The Crossbred algorithm
The Crossbred algorithm can be described as follows. Proceed exactly as in Algorithm 1,
but replace the original polynomials f1, . . . , fm by the degree-D multiples tfj where t ranges
across all monomials of degree less than or equal to D − 2 and 1 ≤ j ≤ m. Algorithm 1
is in fact exactly the Crossbred algorithm with D = 2, which is the simplest possible case.
Computing the intersection with the subspace Z yields degree-D polynomials where the
z1, . . . , zv variables only occur linearly.

Working with higher-degree multiples enables the use of larger values of v, and therefore
reduces the number of variables that must be guessed. For instance, let us see what happens
when D = 3. Starting from the m initial polynomials, we obtain (n+1)m (hopefully) linearly
independent degree-3 multiples. To obtain a basis of L, which is the intersection of the
linear span of the multiples with Z, we need to eliminate the “bad” monomials that contain
more than one variable of z. These are monomials of the form zjzk, yizjzk and zizjzk. Their
number is easy to determine:

#{zizj}+ #{yizizj}+ #{zizjzk} =
(
v

2

)
+ (n− v)

(
v

2

)
+
(
v

3

)
= v(v− 1)(3n− 2v+ 1)/6.

12 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

The dimension of L is thus at least ` = m(n+ 1)− v(v− 1)(3n− 2v+ 1)/6 and as in section 3
we want to have ` ≥ 5v/2. The right value of v is therefore the largest positive root of :

3nv2 − 2v3 − 3nv + 3v2 + 14v = 6m(n+ 1)

The solutions to this cubic equation are hairy expressions of n and m, but one can check
that values slightly larger than

√
2m are permitted. For instance, with n = m = 64, v = 12

is admissible, while the original presentation of Algorithm 1 needs v ≤ 8. However, when
n ≈ m and n→ +∞, the cubic equation essentially becomes 3nv2 = 6mn and the value of v
converges towards

√
2m.

Extensions to higher degrees are possible, however both the analysis and the implementation
become more complicated. Joux and Vitse used D = 4 to solve a random system with n = 74
and m = 148, a computational record. Larger values of D require sparse linear algebra on
matrices of size O

(
nD
)
, which quickly become problematic.

5.2 The FXL and BooleanSolve Algorithms
Lastly, we consider a different way to extend Algorithm 1 with higher-degree multiples: guess
some variables, then solve the higher-degree system by plain linearization. More precisely,

1. Generate the degree-D multiples of the form tfi where t ranges across all degree-(D − 2)
monomials in z1, . . . , zv (only).

2. Guess the values of y1, . . . , yu.

3. Solve the remaining degree-D polynomial system in z1, . . . , zv by linearization.

The FXL and BooleanSolve algorithms essentially do this, with steps 1 and 2 in reverse
order (they commute). The parameter v is again chosen as the highest value where the
linearization condition is satisfied, i.e. when there are more linearly independent multiples
than ND(v). The linearized system has size ND(v) = O

(
vD
)
, and solving it by Gaussian

elimination therefore takes time O
(
v3D

)
. This can be reduced a little by observing that

degree-D monomials in z1, . . . , zv are unaffected by guessing y1, . . . , yu. They can therefore
be eliminated in advance, before guessing any variables, by performing suitable linear
combinations of the multiples and focusing on the remaining equations, which only contain
monomials of degree D − 1 in the zi. Solving this subsystem costs O

(
v3(D−1)).

The problematic part is that the dimension of the vector space spanned by the multiples is
difficult to compute, for reasons stated above. But the case where D = 3 is easy: we can
create (v + 1)m multiples of degree three, which we assume to be linearly independent, and
there are (v2−v+6)(v+1)/6 monomials of degree less than 3 in z1, . . . , zv. The linearization
condition is satisfied by v = b

√
6mc in particular, a much higher value than what is possible

with the Crossbred algorithm discussed above. The drawback is that the linear systems that
have to be solved for each choice of ŷ have size O (m), which is larger than the O (

√
m) used

in the Crossbred algorithm. This yields an algorithm of complexity O
(
m32n−

√
6m
)
.

While this complexity is asymptotically better than that of Algorithm 1, it seems that the
concrete number of operations needed by this degree-3 extension is actually larger when
m ≤ 200. This suggests that using higher degree multiples in this fashion gives a better
asymptotic complexity, but is not more efficient for practical parameters. This is consistent
with the fact that the Crossbred algorithm is very practical, while the BooleanSolve algorithm
has not even been implemented.

C. Bouillaguet, C. Delaplace and M. Trimoska 13

References

1 Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of the F5 gröbner
basis algorithm. J. Symb. Comput., 70:49–70, 2015. doi:10.1016/j.jsc.2014.09.025.

2 Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On
the complexity of solving quadratic boolean systems. J. Complexity, 29(1):53–75, 2013.
doi:10.1016/j.jco.2012.07.001.

3 Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving mul-
tivariate systems over finite fields. J. Math. Cryptol., 3(3):177–197, 2009. doi:10.1515/JMC.
2009.009.

4 Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of polynomial equations
over GF(2) by a parity-counting self-reduction. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.26.

5 Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra System I: The
User Language. J. Symb. Comput., 24(3/4):235–265, 1997.

6 Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen,
Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems in F2. In Stefan
Mangard and François-Xavier Standaert, editors, Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, volume 6225 of Lecture Notes in Computer Science, pages 203–218. Springer,
2010. doi:10.1007/978-3-642-15031-9_14.

7 Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques Patarin, Ludovic Perret,
and Jocelyn Ryckeghem. GeMSS: A Great Multivariate Short Signature. Research report,
UPMC - Paris 6 Sorbonne Universités ; INRIA Paris Research Centre, MAMBA Team, F-
75012, Paris, France ; LIP6 - Laboratoire d’Informatique de Paris 6, December 2017. URL:
https://hal.inria.fr/hal-01662158.

8 Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe.
From 5-pass MQ-based identification to MQ-based signatures. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference
on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part II, volume 10032 of Lecture Notes in Computer Science,
pages 135–165, 2016. doi:10.1007/978-3-662-53890-6_5.

9 Nicolas T. Courtois, Louis Goubin, Willi Meier, and Jean-Daniel Tacier. Solving underdefined
systems of multivariate quadratic equations. In David Naccache and Pascal Paillier, editors,
Public Key Cryptography, 5th International Workshop on Practice and Theory in Public
Key Cryptosystems, PKC 2002, Paris, France, February 12-14, 2002, Proceedings, volume
2274 of Lecture Notes in Computer Science, pages 211–227. Springer, 2002. doi:10.1007/
3-540-45664-3_15.

10 Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms
for solving overdefined systems of multivariate polynomial equations. In Bart Preneel, editor,
Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding,
volume 1807 of Lecture Notes in Computer Science, pages 392–407. Springer, 2000. doi:
10.1007/3-540-45539-6_27.

https://doi.org/10.1016/j.jsc.2014.09.025
https://doi.org/10.1016/j.jco.2012.07.001
https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.1515/JMC.2009.009
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.1007/978-3-642-15031-9_14
https://hal.inria.fr/hal-01662158
https://doi.org/10.1007/978-3-662-53890-6_5
https://doi.org/10.1007/3-540-45664-3_15
https://doi.org/10.1007/3-540-45664-3_15
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/3-540-45539-6_27

14 A Simple Deterministic Algorithm for Systems of Quadratic Polynomials over F2

11 David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate
Texts in Mathematics). Springer-Verlag, Berlin, Heidelberg, 2007.

12 Itai Dinur. Cryptanalytic applications of the polynomial method for solving multivariate
equation systems over GF(2). In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science, pages 374–403.
Springer, 2021. doi:10.1007/978-3-030-77870-5_14.

13 Itai Dinur. Improved algorithms for solving polynomial systems over GF(2) by multiple
parity-counting. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2550–2564.
SIAM, 2021. doi:10.1137/1.9781611976465.151.

14 Amr Elmasry and Jyrki Katajainen. Lean programs, branch mispredictions, and sorting. In
Evangelos Kranakis, Danny Krizanc, and Flaminia L. Luccio, editors, Fun with Algorithms -
6th International Conference, FUN 2012, Venice, Italy, June 4-6, 2012. Proceedings, volume
7288 of Lecture Notes in Computer Science, pages 119–130. Springer, 2012. doi:10.1007/
978-3-642-30347-0_14.

15 Jean-Charles Faugère. A new efficient algorithm for computing grobner bases (f4). Journal of
Pure and Applied Algebra, 139(1-3):61–68, 1999.

16 Jean Charles Faugère. A new efficient algorithm for computing gröbner bases without reduction
to zero (f5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, page 75–83, New York, NY, USA, 2002. Association for Computing
Machinery. doi:10.1145/780506.780516.

17 Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of hidden field equation
(HFE) cryptosystems using gröbner bases. In Dan Boneh, editor, Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science,
pages 44–60. Springer, 2003. doi:10.1007/978-3-540-45146-4_3.

18 Antoine Joux and Vanessa Vitse. A Crossbred Algorithm for Solving Boolean Polynomial
Systems. In NuTMiC, volume 10737 of Lecture Notes in Computer Science, pages 3–21.
Springer, 2017. https://eprint.iacr.org/2017/372.pdf.

19 Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic,
May 2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 206–222.
Springer, 1999. doi:10.1007/3-540-48910-X_15.

20 Daniel Lazard. Gröbner-bases, gaussian elimination and resolution of systems of algebraic
equations. In J. A. van Hulzen, editor, Computer Algebra, EUROCAL ’83, European Computer
Algebra Conference, London, England, March 28-30, 1983, Proceedings, volume 162 of Lecture
Notes in Computer Science, pages 146–156. Springer, 1983. doi:10.1007/3-540-12868-9_99.

21 Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–2202.
SIAM, 2017. doi:10.1137/1.9781611974782.143.

https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1137/1.9781611976465.151
https://doi.org/10.1007/978-3-642-30347-0_14
https://doi.org/10.1007/978-3-642-30347-0_14
https://doi.org/10.1145/780506.780516
https://doi.org/10.1007/978-3-540-45146-4_3
https://eprint.iacr.org/2017/372.pdf
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-12868-9_99
https://doi.org/10.1137/1.9781611974782.143

C. Bouillaguet, C. Delaplace and M. Trimoska 15

22 Ruben Niederhagen, Kai-Chun Ning, and Bo-Yin Yang. Implementing joux-vitse’s crossbred
algorithm for solving MQ systems over GF(2) on gpus. In Tanja Lange and Rainer Steinwandt,
editors, Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018, Fort
Lauderdale, FL, USA, April 9-11, 2018, Proceedings, volume 10786 of Lecture Notes in
Computer Science, pages 121–141. Springer, 2018. doi:10.1007/978-3-319-79063-3_6.

23 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two
new families of asymmetric algorithms. In Ueli M. Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in
Computer Science, pages 33–48. Springer, 1996. doi:10.1007/3-540-68339-9_4.

24 Bo-Yin Yang and Jiun-Ming Chen. Theoretical analysis of XL over small fields. In Huaxiong
Wang, Josef Pieprzyk, and Vijay Varadharajan, editors, Information Security and Privacy:
9th Australasian Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004. Proceedings,
volume 3108 of Lecture Notes in Computer Science, pages 277–288. Springer, 2004. doi:
10.1007/978-3-540-27800-9_24.

https://doi.org/10.1007/978-3-319-79063-3_6
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-540-27800-9_24
https://doi.org/10.1007/978-3-540-27800-9_24

	Introduction
	A Toy Example
	Formal Description and Heuristic Analysis
	Practicality
	Faster Polynomial Enumeration Using a Gray Code
	Simplifying the Linear Algebra
	Vectorization
	Comparison with exhaustive search

	Making it complicated with Higher-Degree Multiples
	The Crossbred algorithm
	The FXL and BooleanSolve Algorithms

