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Abstract Group-living organisms that collectively1

migrate range from cells and bacteria to human crowds,2

and include swarms of insects, schools of fish, and flocks3

of birds or ungulates. Unveiling the behavioural and4

cognitive mechanisms by which these groups coordinate5

their movements is a challenging task. These mecha-6

nisms take place at the individual scale and can be de-7

scribed as a combination of interactions between indi-8

viduals and interactions between these individuals and9

the physical obstacles in the environment. Thanks to10

the development of novel tracking techniques that pro-11

vide large and accurate data sets, the main character-12

istics of individual and collective behavioural patterns13

can be quantified with an unprecedented level of preci-14

sion. However, in a large number of studies, social inter-15

actions are usually described by force map methods that16

only have a limited capacity of explanation and predic-17

tion, being rarely suitable for a direct implementation18

in a concise and explicit mathematical model. Here, we19

present a general method to extract the interactions be-20

tween individuals that are involved in the coordination21

of collective movements in groups of organisms. We22

then apply this method to characterize social interac-23

tions in two species of shoaling fish, the rummy-nose24

tetra (Hemigrammus rhodostomus) and the zebrafish25

(Danio rerio), which both present a burst-and-coast26

motion. From the detailed quantitative description of27

individual-level interactions, it is thus possible to de-28

velop a quantitative model of the emergent dynamics29

observed at the group-level, whose predictions can be30

checked against experimental results. This method can31

be applied to a wide range of biological and social sys-32

tems.33

1 Introduction34

The identification and characterization of interactions35

between the constituent elements of a living system is36

a major challenge for understanding its dynamic and37

adaptive properties [1, 2]. In recent years, this issue38

is also at the heart of research conducted in the field39

of collective behaviour in animal societies [3, 4]. How-40

ever, the identification from field data of the interaction41

rules between individuals in species whose level of cog-42

nitive complexity can be quite high remains problem-43

atic. Indeed, the way in which individuals interact is44

strongly influenced and modulated by the physical char-45

acteristics of the environment in which the organisms46

live, such as temperature, humidity, brightness, or even47

by the presence of air currents (see for instance [5, 6]48

in social insects). The situation is quite different in49

the laboratory, where conditions can be precisely con-50

trolled and monitored. Moreover, new tracking tech-51

niques make it possible to record the behaviour of in-52

dividuals alone or in groups for relatively long periods53

of time [7, 8, 9, 10, 11]. Using large sets of tracking54

data, one can then reconstruct and model the social in-55

teractions between two individuals of the same species,56

and between them and the obstacles present in their57

environment [12, 13].58

Explaining collective behaviour in groups of orga-59

nisms consists in describing the mechanisms by which60

the behaviours of an individual is influenced by the be-61

haviour of the other group members that are present in62

its neighbourhood [14, 15]. This social influence is often63

assumed to result from the additive combination of pair-64

wise interactions of the individual with part or all the65

members of the group. Determining how these pairwise66

interactions may be combined, and which neighbours67

must be taken into account, is a central problem in the68

study of collective behaviour [16].69

The behavioural response of an individual is the set70

of its successive positions during a given period of time,71

usually at some discrete time steps. From these data,72

it is possible to draw the trajectories of all the indi-73

viduals in a group and calculate their instantaneous74

velocity and acceleration, their distance and angle of75

incidence to obstacles (e.g., the wall of an experimen-76

tal tank), their heading, as well as relative quantities77

such as the distance between individuals, the angle of78

their relative position, and group quantities such as co-79

hesion and heading polarization. These measures can80

reveal individual behavioural patterns such as the aver-81

age velocity or the frequency of heading changes close82

to obstacles, and also collective behavioural patterns83

such as the level of cohesion and polarization of the84

group. Thus, the analysis of collective behaviour con-85

sists in measuring behavioural changes at the individual86
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scale that likely result from social interactions, and to87

associate these measures with the relative state of the88

individuals involved in these interactions [12]. The rel-89

ative state of an individual j with respect to a focal90

individual i is determined by the distance dij between i91

and j, its relative velocity vij , its angular position with92

respect to i, ψij (viewing angle), and its relative head-93

ing φij (see Fig. 1). The behavioural changes are pre-94

cisely given by the variations of an individual’s position95

and velocity, or, equivalently, by the position, speed and96

heading variations.97

In fish that have a burst-and-coast swimming mode,98

the behavioural changes of an individual correspond99

to significant variations of its heading that occur ex-100

actly at the onset of the acceleration phase (i.e., the101

bursts). These discrete behavioural decisions are called102

“kicks” [12, 17]. Other quantities such as the inten-103

sity of the acceleration in the direction perpendicular104

to the direction of motion, or simply the turning direc-105

tion (right or left), can be used to detect behavioural106

changes. The task is thus to relate the heading varia-107

tion of a focal fish δφi with its state variables, that is,108

to find a function δφi(d, v, ψ, φ).109

In this article, we first show that force maps, that110

are widely used to describe the effects of social inter-111

actions on the behaviour of individuals, have important112

limitations when it comes to describe these interactions.113

These limitations result mostly from the limited num-114

ber of variables that force maps can handle, the dif-115

ficulty of identifying intermediate contributions to be-116

havioural patterns, and the difficulty of distinguishing117

the effects of state variables from constitutive param-118

eters. We then describe in detail a method to analyse119

behavioural data obtained from digitized individual tra-120

jectories. The method allows us (1) to quantify the so-121

cial interactions between two individuals and describe122

how the intensities of these interactions vary as a func-123

tion of the state variables of the individuals, and, (2) to124

reconstruct the interaction functions and to derive an125

explicit and concise mathematical model reproducing126

the observed behaviours. Finally, we apply this method127

to the analysis of the social interactions in two species128

of fish that both have a burst-and-coast type of swim-129

ming and that are characterized by very different levels130

of coordination when swimming in groups. The recon-131

struction of interaction rules allows to understand the132

origin of the differences in the level of coordination, and133

to predict in which experimental conditions other be-134

havioural differences can arise.135

2 Use and limitations of force136

maps to infer social interac-137

tions138

A first way to infer social interactions between individu-139

als directly from experimental data consists in using the140

force-map technique [13, 18]. This technique has been141

used, for instance, to estimate from experiments per-142

formed with two fish the effective turning and speeding143

forces experienced by an individual, once the relevant144

variables on which they may depend have been cho-145

sen [11, 18, 19]. This is a simple way to visualise the146

strength and direction of behavioural changes. How-147

ever, force maps have strong limitations that can induce148

profound misunderstandings.149

2.1 Visualisation of social interactions150

with force maps151

Force maps are planar representations of two-dimensio-152

nal functions of the form f(x, y) where the variation of153

the value of the function is represented by a colour gra-154

dient. Generating and interpreting force maps is easy155

and this explains their success for inferring interactions156

between moving groups of individuals.157

A 2D function f(x, y) given by a data set is a sequen-158

ce of N triplets (xn, yn, fn), where the index n denotes159

for example the instant of time tn, n = 1, . . . , N . To160

build a force map of this function, the (x, y)-space is dis-161

cretised in I×J boxes of the form [x̂i, x̂i+1]× [ŷj , ŷj+1],162

where the nodes x̂i and ŷj are given by163

x̂i = x̂min + (i− 1)(x̂max − x̂min)/I, i = 1, . . . , I + 1,

ŷj = ŷmin + (j − 1)(ŷmax − ŷmin)/J, j = 1, . . . , J + 1,

and the data (xn, yn, fn) is placed in the ij-box such164

that xn is in [x̂i, x̂i+1] and yn is in [ŷj , ŷj+1]. Then, the165

number of data ǫij in the ij-box and the mean value fij166

of the values of fn that fell in the ij-box are calculated.167

The value fij is then considered as the value of f(x, y)168

at the middle point of the ij-box, xi = (x̂i + x̂i+1)/2,169

yi = (ŷi + ŷi+1)/2. The resulting points (xi, yj , fij) are170

then represented in a colour surface, after optional in-171

terpolation with, for instance, multilevel B-splines [20].172

Figs. 2 and 3 show the force maps of the heading173

variation δφ of an individual fish performing a burst-174

and-coast type of swimming, as a function of differ-175

ent variables when there is another conspecific in a176

circular tank. In the case of Hemigrammus rhodosto-177

mus (Fig. 2), we used a tank of radius R = 0.25 m,178

about 8.3 times the body length (BL) of the fish, and179

in the case of Danio rerio (Fig. 3), a tank of radius180

RZ = 0.29 m, about 6.4 BL. In both Figs. 2 and 3, pan-181

els A show the intensity of δφ as a function of dij , the182

distance between fish, and ψij , the angle with which183

fish i perceives fish j, respectively, and panels B show184

δφ as a function of dij and φij , the heading difference185

between fish.186

These force maps provide some information about187

the individual behaviour of fish. In H. rhodostomus,188

Fig. 2A shows that the focal fish tends to turn towards189

its neighbour, to the left (resp. right) when the neigh-190

bour is on the left (resp. right), except when the neigh-191

bour is very close. In that case, the behaviour is quite192

complex, the fish performs small angular changes of am-193

plitude ≈ 30–60◦, probably due to collision avoidance194
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manoeuvres. When the neighbour is further away from195

the focal fish, it maintains its heading (i.e., the white196

circular region at dij ≈ 1–2 BL). From this force map,197

one could conclude that a fish is attracted by its neigh-198

bour when it is beyond a distance of about 2 BL, and199

repulsed when its neighbour is too close (dij < 1 BL).200

The force map in Fig. 2B shows that the focal fish turns201

left (resp. right) when the relative heading of the neigh-202

bour is shifted to the left (resp. right). The larger the203

heading difference, the stronger the turn: the colour in-204

tensity increases as |φij | grows from 0 to 120 ◦. When205

fish swim in more or less opposite directions, the in-206

tensity of the heading change is small. This force map207

reveals that a fish tends to align with its neighbour.208

In D. rerio, Fig. 3A shows that the focal fish turns to-209

wards its neighbour when they are close to each other210

(dij ≈ 1–2 BL) or when the neighbour is located be-211

hind the focal fish (|ψij | > 90◦, whatever the distance).212

When the neighbour is at dij ≈ 2–3 BL in front of the213

focal fish (|ψij | < 60◦), the focal fish turns away from214

its neighbour, as well as when its neighbour is very close215

to it (dij < 0.5 BL). The reaction to neighbour’s head-216

ing is less intense than in H. rhodostomus, as shown by217

the wide white regions in Fig. 3B. When fish are beyond218

3 BL from each other, the focal fish turns to adopt the219

same orientation of its neighbour. At short distances,220

the behaviour is more complex, with changes of smaller221

size than those observed in H. rhodostomus.222

The visualisation of the data by means of force maps223

therefore suggests the presence of two distinct types of224

interaction: an attraction interaction, which leads a fish225

to turn towards its neighbour to get closer to it, and an226

alignment interaction, that leads a fish to turn so as to227

adopt the same heading than its neighbour. However,228

nothing can be deduced from these colour maps about229

what happens when both contributions to heading vari-230

ation have different signs. Thus, would a fish turn right231

or left when its neighbour is on its left side? Attraction232

alone would induce the focal fish to turn left. However,233

if the relative heading of the neighbour is turned to the234

right, alignment alone would induce the focal fish to235

turn right. This difficulty comes from the fact that a236

function (δφ) that depends on three variables (dij , ψij ,237

and φij) cannot be represented in 3D. To overcome this238

limitation, some authors use a kind of force map where239

the relative position of a fish with respect to a focal240

fish is decomposed in the left-right (LR) and front-back241

(FB) distances [13]. In Fig. 2A, (dij , ψij) are the polar242

coordinates of fish j in the system of reference centred243

on fish i pointing north. This is a continuous system of244

reference in which all the relative positions of fish can245

be represented. Instead, the LR and FB distances are246

projections of the relative position of a neighbour with247

respect to the focal fish on the dij -axis, where all the248

points of Fig. 2A that are in the left semicircle of radius249

1 BL are averaged in a single point where dLR
ij = −1 BL250

(where dLR
ij is the LR distance of fish j with respect to251

fish i), because these points are at 1 BL to the left of252

the focal fish. Then, the third variable φij is used to ex-253

pand this averaged point on a vertical line with different254

values of φij , in a system of reference with coordinates255

(dLR
ij , φij), giving rise to Fig. 2C. Similarly, the upper256

semicircles of Fig. 2A are averaged on the dFB
ij -axis in257

Fig. 2D.258

Force maps in panels C and D of Figs. 2 and 3259

provide additional information about individual fish be-260

haviour. In H. rhodostomus, Fig. 3C shows that turn-261

ing direction is homogeneously distributed in the upper262

and lower half-planes, meaning that the focal fish turns263

to adopt the heading of its neighbour almost indepen-264

dently of the LR distance separating them, although265

the turning intensity is larger when the neighbour is266

far from the focal fish and perpendicular to it (i.e., the267

regions of highly intense colour at |dLR
ij | > 2 BL and268

φij ≈ ±90◦). In the white horizontal region, the focal269

fish maintains its heading when it is aligned with its270

neighbour (|φij | < 10◦), whatever the horizontal dis-271

tance between them. Fig. 2D exhibits two large re-272

gions homogeneous in colour, showing that the focal273

fish turns almost always to adopt the heading direc-274

tion of its neighbour, except when this one is far be-275

hind it (i.e., the small regions of the opposite colour276

for dFB
ij < −2 BL). In D. rerio, the colour of each ver-277

tical half-plane of Fig. 3C is almost uniform, except278

for some regions close to the focal fish (dLR
ij ≈ ±1 BL)279

at φij ≈ ±90◦, and some distant regions located at280

dLR
ij ≈ ±3 BL and φij ≈ ±135◦). This means that281

the focal fish turns almost always towards its neigh-282

bour, and almost independently from its relative head-283

ing, except when both fish are close and perpendicular284

to each other, and when they are very far and almost285

anti-aligned. In Fig. 3D, one can see that the fish turns286

to adopt the same direction as that of its neighbour287

when this one is close and in front of it (i.e., the large288

green and orange homogeneous regions in the centre of289

the figure). But the fish tends to turn towards the op-290

posite direction when its neighbour is far ahead (small291

regions where dFB
ij > 2 BL) or behind it and not very292

close to it (regions where dFB
ij < −1 BL). This is a differ-293

ent and more complex behaviour than the one observed294

in H. rhodostomus, where heading changes depend on295

φij but not on dLR
ij . In D. rerio, we observe the opposite,296

and the dependence on the FB distance is more com-297

plex than in H. rhodostomus. However, neither dLR
ij , nor298

dFB
ij , separately, can determine the distance at which the299

neighbour is (e.g., a fish j located at 1 BL to the left can300

be at 0.5 or 2 BL to the front). Therefore, this kind of301

representation hides the effect of the absolute intensity302

of the interactions as a function of the distance between303

fish, and moreover does not allow to disentangle the con-304

tribution of intermediate effects such as attraction and305

alignment.306

2.2 Limitations of force maps307

The above descriptions show that the use of force maps308

to characterize interactions between individuals raises309

several problems, especially when more than two state310
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variables must be taken into account to describe the be-311

haviour of fish. Other issues are not exclusive of force312

maps. For example, data can be scarce; not only be-313

cause they are difficult to collect, but also because the314

phenomenon under observation rarely produce data of315

a given kind. This is what happens for instance when316

we consider the repulsive interactions: as individuals317

repel each other, there are very few cases in which the318

distance between them is small, so that repulsive inter-319

actions are very difficult to describe when the distance320

between fish is small. This particular issue is common321

to other methods, including ours. More importantly,322

data are rarely homogeneously distributed, so that dif-323

ferent regions of the map can result from averaging a324

very disparate number of data, meaning that similar325

colour intensities do not have the same relevance. For326

instance, Fig. 4 shows that the relative position of the327

neighbour of fish i is not homogeneously distributed on328

the (d, ψ)-plane, and is differently distributed in both329

panels, so that information from, e.g., the frontal region330

in Panel A is more relevant to describe the behaviour331

of H. rhodostomus, than the information from the same332

region in Panel B to describe the behaviour of D. rerio.333

Thus, the relative simplicity to visualise and inter-334

pret data with force maps comes at the cost of impor-335

tant limitations and oversimplifications. Four of the336

most critical of these limitations are the following:337

i) The reduced number of state variables involved338

in individual behaviour that force maps can han-339

dle is limited to 2, at most 3. This limitation340

leads to the use of projections and average values341

that can hide crucial features of the phenomenon342

under study. Moreover, when data are not ho-343

mogeneously distributed, the same limitation can344

even produce wrong or inaccurate observations or345

conclusions.346

ii) The difficulty of identifying and disentangling in-347

termediate contributions such as attraction and348

alignment to behavioural patterns;349

iii) The difficulty of finding simple analytical expres-350

sions of the interaction functions in order to im-351

plement them in a mathematical model;352

iv) The difficulty of distinguishing the effects of vari-353

ables (e.g., the distance between fish dij) from the354

effect of parameters (e.g., the body length of fish).355

Let us describe these limitations in more detail.356

(i) When a function depends on more than two357

variables, force maps are mere projections of the func-358

tion on a 3D surface, where the value of the function359

has been averaged with respect to one or more vari-360

ables. However, averaging raises two problems. First,361

the function can be odd with respect to the variable362

used to calculate the average, as it is the case of the363

heading change δφ with respect to the angle of per-364

ception ψij and the relative heading φij in H. rhodos-365

tomus, where δφ(dij , ψij , φij) = −δφ(dij ,−ψij , φij) =366

−δφ(dij , ψij ,−φij) [12]. Then, for instance, huge vari-367

ations of δφ with respect to ψij , but of different sign,368

can cancel each other and yield a small average value,369

as if δφ was almost independent of ψij . In other words,370

a crucial feature of the behaviour can be hidden by the371

averaging process. Second, averaging by simply adding372

the values and dividing by the number of values implic-373

itly assumes that the probability of occurrence is the374

same for all the possible states.1 This would mean for375

instance that the probability for a fish j of being at the376

state dij = 1 BL, ψij = 90◦ and φij = 10◦ with respect377

to a focal fish i, is the same than the probability of be-378

ing at (dij , ψij , φij) = (2, 0, 180), which is clearly not379

the case, at least in H. rhodostomus [12].380

Thus, even if averaging over some state variables to381

obtain a 2D force map can provide qualitative informa-382

tion, it can also hide crucial effects and can even pro-383

duce a completely misleading result due to the strong384

correlations between the states variables along the ac-385

tual trajectories. For instance, averaging the interac-386

tion between 2 fish (and neglecting the effect of the387

wall) over their distance d, to only keep the depen-388

dence on the two angular variables ψ (viewing angle)389

and φ (heading difference) in a 2D representation, in-390

volves the unknown correlation function C(d, ψ, φ) be-391

tween d, ψ, and φ along the experimental trajectories.392

Note that even if the true interactions were in fact sep-393

arable into a product of one-variable interaction func-394

tions, δφ = f(d)g(ψ)h(φ), the 2D projection would then395

be δφ(ψ, φ) = g(ψ)h(φ)×
∫

∞

0 C(r, ψ, φ)f(r) dr. The in-396

tegral term (averaging over the distance between the397

two fish) leads to an unknown and non trivial function398

of ψ, and φ, which is in general not separable unless the399

correlation function is itself separable... And it is not:400

if 2 fish are close, they are likely to be aligned (φ ≈ 0),401

whereas if they are far, their headings are much less cor-402

related (φ nearly uniformly distributed). This simple403

example demonstrates that force map projections not404

only do not recover the true interaction (g(ψ)h(φ) in405

this case), but can artificially produce a non-separable406

interaction, even if the actual interaction takes a prod-407

uct form!408

As a consequence, the small number of dimensions409

that can be represented by force maps constitutes a cru-410

cial limitation for an accurate description of behaviour,411

especially if more variables are taken into account, as,412

e.g., the relative speed vij , or the interaction of fish with413

an obstacle (such as the wall of a tank), which would414

require two more variables rw,i and θw,i, the distance415

and angle to the wall, respectively. Even for the de-416

picted intermediate values, the precise contributions of417

each variable on the heading change are still entangled.418

For instance, how does φi vary when j points to the left419

1The average function of a(x, y) with respect to the variable x is given by 〈a〉
x

(y) =
∫

x

p(x, y)a(x, y)dx, where p(x, y) is the probability

of occurrence of the state (x, y). However, force maps calculate the 〈a〉
x

(y) as the mean of the values of a(x, y) over all the values of x,

i.e., 〈a〉
x

(y) =
∑

x

a(x, y)/
∑

x

1, as if p(x, y) = 1 for all (x, y), because knowing p(x, y) is part of the problem.
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and is located at the right side of i, and how does this420

change vary with the distance dij? The contribution of421

each variable cannot be disentangled from those of the422

other variables.423

Moreover, force maps of 3D-functions like δφ require424

huge amounts of data. Using 30 bins per variable with425

an average of 100 points per bin would require 2.7×106
426

data points, which is very far from being the amount of427

data collected in most of the experiments on collective428

motion. We anticipate here that, in order to get the429

same level of precision, our procedure described bellow430

reduces the required number of data up to 150 times.431

(ii) Another limitation of force maps is that inter-432

mediate contributions are difficult or often impossible433

to identify. A function f can depend on the state vari-434

ables x and y through two intermediate functions a435

and b such that f(x, y) = f(a(x, y), b(x, y)). This is436

precisely the case of the heading change δφ, which de-437

pends on the state variables dij , ψij and φij through438

the combination of at least two intermediate contribu-439

tions, attraction and alignment, themselves depending440

on the three state variables [12]. Moreover, attraction441

and alignment can have opposite contributions, so that442

their combined effect can be cancelled as if the fish were443

isolated from each other, while both forces are in action.444

Force maps are not able to identify which part of the445

heading change is due to the attraction or the align-446

ment, that is, the functions a(x, y) and b(x, y) cannot447

be directly extracted from force maps. Even if repre-448

sentations in 7D were possible, these “maps” would not449

allow to identify intermediate contributions.450

(iii) Extracting analytical expressions from a colour451

map is difficult unless the relation between variables is452

very simple. However, it is essential to build mathemat-453

ical models to understand how the combination of social454

interactions gives rise to the observed behaviour [14, 21].455

The simulations of these models will then be used to456

make predictions in other experimental situations, to457

draw phase portraits, etc. Simple piecewise linear func-458

tions interpolating the data are not suitable because459

they lack the physical or biological meaning and do not460

help to build explicit and concise mathematical models.461

Fig. 2 and 3 show the force maps of δφ for two differ-462

ent species of fish. Significant differences appear be-463

tween maps, e.g., in Panels A, the left-right symmetry464

of the heading change with respect to the position of the465

neighbour in H. rhodostomus, while in D. rerio the sym-466

metry is with respect to the position of the focal fish;467

in Panels C, the half-planes of homogeneous colour are468

horizontal in H. rhodostomus, but vertical in D. rerio.469

Will such a difference be observed if larger groups are470

considered? Force maps cannot be extrapolated from471

one experimental situation to another.472

(iv) Finally, it is difficult to distinguish the effect of473

a variable from the effect of a parameter in a force map,474

e.g., the effect of the instantaneous distance between475

fish at each instant of time, from the effect of the fixed476

body length of individuals. Are the differences observed477

in the previous maps of each species due to the experi-478

mental conditions (e.g., the radius of the arena, which479

is a variable of the experimental setup), or to the phys-480

ical characteristics of the species (e.g., the body length,481

which is a fixed parameter of the species)?482

The method we present below does not have these483

limitations, first, because it can handle a large number484

of state variables (i.e., of dimensions), and second, be-485

cause the analytic expressions it provides are precisely486

the optimal way to disentangle the interaction functions487

at play and to describe the role of each state variable488

and each parameter of the system. These analytic ex-489

pressions can then be exploited to build an explicit and490

yet concise model, whose agreement with experiment491

can be tested, and whose predictions can be further in-492

vestigated experimentally.493

3 Method to extract and model494

social interactions from be-495

havioural data496

Section 2 shows that force maps are representations of497

one quantity (action force, acceleration, heading varia-498

tion, etc.) as a function of pairs of other quantities (rela-499

tive position, velocity or orientation, angle of perception500

of other individuals, etc.). These quantities only make501

sense in a framework of the physical world described502

by a mathematical model which, even if it is often not503

mentioned explicitly in studies [18, 19, 22, 23] (but see504

also [13, 24, 25]), is usually based on equations of mo-505

tion built in analogy with Newtonian mechanics.506

The method consists essentially in defining this507

framework and deriving the mathematical model de-508

scribing the relation between the quantities used to509

quantify the behavior of an organism and its interac-510

tions with other organisms or physical objects that are511

present in its environment.512

Of course, our procedure requires the measurements513

(i.e., the distribution) of the heading changes δφ, and514

also to calculate the average in each box of the discre-515

tised grid. However, our procedure does not require at516

any moment to represent heading changes as a function517

of two or more variables, i.e., using force maps.518

3.1 Outline of the method519

Fig. 5 provides a general overview of the method used to520

design the mathematical model and to extract the social521

interactions functions. The method consists of five con-522

secutive steps, starting from experimental observations523

and ending with numerical simulations of a model repro-524

ducing these observations. These five steps are repeated525

in a cycle as shown in Fig. 5, as the model predictions526

allow to perform better targeted experiments, which in527

turn allow to refine the model: the experiments feed the528

model, and in turn the model helps the design of exper-529

iments. Fig. 6 shows the same five steps in a detailed530

flow chart that includes the test of the model.531
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3.1.1 Data collection and preparation532

The method starts by carrying out experiments, moti-533

vated by a fundamental question, or the results of the534

previous cycle of an ongoing modelling process. Then,535

data are collected and prepared in the form of individ-536

ual trajectories ~ui(t) resulting from a tracking procedure537

conveniently purged from identification errors (step 1 in538

Figs. 5 and 6). The velocity vector ~vi of an individual i539

is calculated from successive positions with finite differ-540

ences, and its heading φi is extracted directly from the541

tracking data, or, alternatively, taken as the orientation542

of the velocity vector.543

3.1.2 Identification and analysis of state vari-544

ables and observables545

The second step consists in identifying and analysing546

the state variables and the relevant observables that can547

be used to describe the phenomenon under study (step 2548

in Figs. 5 and 6).549

In the case considered here, the individual state of a550

fish is characterized by its position and velocity vectors,551

or, equivalently, by its speed and its distance and orien-552

tation to the wall, v, rw, and θw, respectively. The state553

of a fish i with respect to another fish j is characterized554

by the distance between them dij , the relative speed vij ,555

the viewing angle with which j is perceived by i, ψij556

(6= ψji), and their relative heading φij = φj − φi. The557

heading angle change δφS resulting from social interac-558

tions is thus a function of four variables.559

Then, an analysis is performed on a series of observa-560

bles that can be used to describe both the individual561

and collective behaviour of fish when swimming in pairs.562

These observables are the probability density function563

(PDF) of the spatial distribution of individuals, their564

velocity, their distance and orientation to obstacles,565

their heading variation, the distance between individu-566

als (cohesion), their relative positions, and their relative567

heading (polarization). Fig. 7 shows the PDF of dij , ψij568

and φi corresponding to the species of fish studied here.569

The analysis of these observables relies exclusively on570

the experimental data and is independent of a model.571

Eventually, force maps can be drawn.572

3.1.3 Modelling hypotheses573

The next step consists in defining a class of models that574

can provide the more suitable description of the ob-575

served phenomenon (step 3 in Figs. 5 and 6). This is576

by far the crucial part of the method.577

This process has been described in detail in [12] in578

the case of H. rhodostomus; here we simply summarise579

it, as it is identical for D. rerio. We first consider that580

fish move straight during short time intervals of differ-581

ent duration. These time intervals are separated by in-582

stantaneous “kicks” during which fish adjust their direc-583

tion and make an abrupt acceleration, after which the584

speed decays exponentially as the fish glides between585

two kicks. These assumptions come from the analysis586

of the trajectories and the variation of the velocity [12].587

We also assume that the effects of social interactions oc-588

cur exclusively when kicks are performed, that is, at the589

decision times when fish adjust their heading. Then, we590

provide an explicit equation for the heading variation of591

the focal fish δφ when the fish performs a kick, in terms592

of the quantities that can potentially have an effect on593

δφ. The selection of the duration and length of the594

gliding phase and the motion of the fish, with quasi-595

exponential decay of the velocity between two kicks,596

are given by simple analytical probability distributions597

fairly reproducing the experimental ones, as described598

in [12].599

The equations for the time-evolution of the vector
position ~u(t) and and the heading φ(t) of a fish are

~u(t+ dt) = ~u(t) + l(t)~e(φ(t + dt)),

φ(t+ dt) = φ(t) + δφ(t),

where l(t) is the length of the kick, performed in the600

direction of the angle φ(t + dt), given by the unitary601

vector ~e(φ(t+ dt)). The choice of the kick length is de-602

scribed in detail in [12]. Here we focus on the equation603

for the heading variation δφ, that, we hypothesize, ac-604

counts for the effects of the social interactions between605

fish, and reads606

δφ(t) = δφR(t) + δφw(t) + δφS(t), (1)

where δφR is a random angle change accounting for the607

spontaneous decisions of the fish, δφw is due to the re-608

pulsion of the wall when the fish is close to a tank wall,609

and δφS is due to the social interactions with other fish,610

usually attraction, alignment, or a combination of both,611

so that612

δφS(t) = δφAtt(t) + δφAli(t). (2)

Eqs. (1)-(2) are based on the hypotheses that δφR, δφw,613

δφAtt, and δφAli are the main contributions to the head-614

ing variation of a fish, and that these contributions are615

combined linearly (additive hypothesis).616

3.1.4 Extraction of interactions functions from617

trajectory data618

Step 4, which is the one we wish to emphasize in this ar-619

ticle, consists in extracting, from the experimental data,620

the interaction functions determining the contributions621

of a neighbouring fish and of the obstacles in the en-622

vironment to the instantaneous heading variation of a623

fish. It is a relatively long step that involves several624

substeps, for which an overview is presented in Fig. 8.625

Discretising the 6 state variables in Ω = Q×P ×I×626

J ×K×M boxes, and calculating the mean value of δφ627

in each box from the experimental data, Eq. (1) can be628

rewritten as a system of Ω equations and Ω unknowns,629

δφw(rq , θp) + δφS(di, ψj , φk, vm) = δφqpijkm , (3)

where the noise term δφR vanishes as it is assumed to630

have zero mean in each box. We used the convention631

that unknowns are written in the left hand side of the632
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equation and the knowns values in the right hand side.633

Event if one could build seven-dimensional representa-634

tions, the contributions of each variable would still be635

entangled, and intermediate functions impossible to de-636

tect in the corresponding behavioural maps of social637

interactions.638

The key hypothesis to the procedure consists in as-
suming that the contribution of each state variable to
each kind of interaction can be separated in a product

form, which is the case for physical particles [12]:

δφw(rw, θw) = f̄(rw) ḡ(θw), (4)

δφAtt(d, ψ, φ, v) = f(d) g(ψ)h(φ) l(v), (5)

δφAli(d, ψ, φ, v) = f̂(d) ĝ(ψ) ĥ(φ) l̂(v). (6)

Note that functions with a hat are in general different639

from the functions without hat, (i.e., f(d) 6= f̂(d), etc.).640

With this additional hypothesis, the procedure provides641

analytical expressions of the interaction functions of at-642

traction and alignment, and of the contribution of each643

of them to the heading variation. In the case where the644

contribution of one of the interactions is non-existent,645

for instance, if there is no explicit alignment, then the646

procedure will detect it.647

For the sake of simplicity, we consider here the case648

where fish are far enough from the tank wall so that the649

contribution of δφw to the heading variation can be ne-650

glected with respect to the effects of social interactions.651

The procedure can easily be extended to extract both652

the social interactions and the interaction with the wall,653

but to the cost of more complicated notations. We refer654

the reader to the work of Calovi et al. [12], in which the655

disentangling of the combined effects of a tank wall and656

social interactions between fish is described in detail.657

Hence, we are left with 4 state variables, so that658

the heading change δφ(t) is averaged in 4-dimensional659

ijkm-boxes. We introduce the notation f(di) = fi,660

g(ψj) = gj, . . . , l̂(vm) = lm, so that, after removing661

the interaction with the wall, the system (3) becomes662

fi gj hk lm + f̂i ĝj ĥk l̂m = δφijkm, (7)

which is a system of I × J × K × M equations with663

D = 2(I+J+K+M) unknowns, which is much smaller664

than the number of boxes, and in practice, to the usual665

number of data available.666

The goal is now to solve this system of equations.667

This will provide the discrete values of the interaction668

functions (the unknowns fi, gj , . . . , l̂m) in function of669

the known values δφijkm (calculated from the experi-670

mental data as the mean heading change in each box).671

Systems with more equations than unknowns are called672

overdetermined systems and rarely have a solution. One673

way of overcoming this problem consists in reducing the674

overdetermined system to a solvable one by minimizing675

the error ∆ with which the overdetermined system is676

satisfied by a candidate solution that is updated itera-677

tively. This corresponds to the step 4.1 in the flowchart678

of Fig. 6, which is described in detail in Box 1 and in the679

next section 3.2 for a simple 2D-case where the equa-680

tion is fi gj = aij . Fig. 9 shows how the error function681

is built in this simple case.682

The error function is a function ∆( ~X) of D =
2(I + J +K +M) variables which returns a real value
calculated as follows:

∆( ~X) =

I
∑

i=1

J
∑

j=1

K
∑

k=1

M
∑

m=1

ǫijkm(δφS,ijkm − δφijkm)2, (8)

where ~X is the vector of dimension D683

~X = (f1, . . . , fI , g1, . . . , gJ , h1, . . . , hK , l1, . . . , lM ,

f̂1, . . . , f̂I , ĝ1, . . . , ĝJ , ĥ1, . . . , ĥK , l̂1, . . . , l̂M ),

and where δφS,ijkm = fi gj hk lm + f̂i ĝj ĥk l̂m is the dis-684

cretisation of the social force in each ijkm-box (the685

unknowns), δφijkm is the mean heading change in the686

ijkm-box (calculated from experimental data), and687

ǫijkm is the number of data in the ijkm-box. By weight-688

ing the regions with more data, the factor ǫijkm allows689

to preserve the structure of the dataset and the corre-690

lations between variables resulting from the dynamics691

(see also note 1 in Sec. 2). For a given ~X, the local692

error in the ijkm-box is defined as the difference be-693

tween ~X and the experimental data, δφS,ijkm − δφijkm.694

Then, the local error is squared and weighted by the695

number of data in the box, ǫijkm, and summed up over696

all the I × J × K × M boxes. The result is a positive697

real value ∆( ~X) that must be as small as possible, so698

that an optimal ~X must be found.699

The minima of ∆( ~X) are obtained by finding the ze-700

ros of the gradient of ∆ (see the inset in Box 1). Find-701

ing the zeros of a function (or root finding) can be car-702

ried out by different methods such as descent methods703

or other iterative methods. Here, we use an iterative704

method based on the fact that the equation that each705

component must verify is linear in this component, so706

that each component can be written explicitly in terms707

of the other components. This relation is found as fol-708

lows.709

For the gradient to be zero, we must have710

∂∆

∂f1
= 0,

∂∆

∂f2
= 0, . . . ,

∂∆

∂fI
= 0, . . . ,

∂∆

∂lM
= 0.

For the component fi, the partial derivative of ∆ is711

∂∆

∂fi
= 2

J
∑

j=1

K
∑

k=1

M
∑

m=1

ǫijkm gj hk lm(δφS,ijkm − δφijkm),

so the condition ∂∆/∂fi = 0 is equivalent to

fi =

−

J
∑

j=1

K
∑

k=1

M
∑

m=1

ǫijkm gjhklm(f̂iĝjĥk l̂m − δφijkm)

J
∑

j=1

K
∑

k=1

M
∑

m=1

ǫijkm(gjhklm)2

. (9)
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The corresponding equations for the other components712

are derived in the same way and all have the same struc-713

ture where each component is given by an explicit com-714

bination of the other components and the known values715

δφijkm and ǫijkm. For instance, the equation of gj is716

obtained by replacing “gj” by “fi”, “j = 1” by “i = 1”,717

and “J” by “I”, and the equation for a function with718

a hat (e.g., “f̂i”) is obtained by replacing the functions719

that have a hat by the same functions without the hat,720

and vice versa (i.e., “gj” is replaced by “ĝj”, “ĝj” is721

replaced by “gj”, and so on. . . ).722

The resulting set of explicit equations for each com-723

ponent can be written in the following form,724

f1 = R1(g1, . . . , gJ , h1, . . . , ĥK , l̂1, . . . , l̂M ),

f2 = R2(g1, . . . , gJ , h1, . . . , ĥK , l̂1, . . . , l̂M ),

... =
...

fI = RI(g1, . . . , gJ , h1, . . . , ĥK , l̂1, . . . , l̂M ),

g1 = RI+1(f1, . . . , fI , h1, . . . , ĥK , l̂1, . . . , l̂M ),

... =
...

ĝJ = RI+J(f1, . . . , fI , h1, . . . , ĥK , l̂1, . . . , l̂M ),

... =
...

l̂M = RD(f1, . . . , fI , g1, . . . , ĝJ , ĥ1, . . . , ĥK)).

To find the solution of such a system, it is possible to725

write it in a compact form as ~X = ~R( ~X), where ~R is726

a function from R
D to R

D, and consider the problem727

as finding a fixed point ~X0 of the function ~R. This728

is done by means of an iterative method, as explained729

in detail in Box 2, which also shows how this method730

works in the 1D-case. Again, note that the number731

D = 2(I + J + K + M) of fitting parameters is much732

smaller than the number of boxes I × J ×K ×M .733

In the end, the procedure provides the values of each734

interaction function at the points representing each box735

minimizing the error functions. Depending on the num-736

ber of boxes, a satisfactory analytical form of each one-737

variable function can be obtained, based on physical738

principles and specific observations. This part corre-739

sponds to the step 4.3 in Fig. 6 and depends on the spe-740

cific phenomenon under study; it is detailed in Sec. 4741

for the case of fish swimming in pairs. For example,742

the function of the angle of perception g(ψ) must be743

odd, i.e., g(−ψ) = −g(ψ), because the attractive effect744

of a neighbour on the heading change of a focal fish745

has the same intensity wherever the neighbour is lo-746

cated at the right or at the left of the focal fish, but has747

opposite directions, and hence opposite signs, in each748

case: if the neighbour is at the right (resp. left) side,749

the focal fish would turn right (resp. left) to approach750

the neighbour. Physical properties of the interactions751

at play, such as the exponential decay of some interac-752

tions, must be taken into account and guide the choice753

of the final analytical expressions.754

3.1.5 Numerical simulations of the model755

The last step consists in performing numerical simula-756

tions of the model with the double purpose of 1) veri-757

fying that the simulation results are in good agreement758

with the experimental results, and 2) making new pre-759

dictions that can be ultimately confirmed by new exper-760

iments. If one of these two points is not satisfactorily761

verified, then it is necessary to go back to a previous762

step: step 3 to revise or reformulate the model, step 2763

to use alternative state variables or observables, or even764

step 1 to carry out new experiments or measures of the765

data (Fig. 6).766

3.2 Application to a simple case study767

In order to illustrate how the extraction procedure768

(step 4 of our methodology in Fig. 6) can be used, we769

have produced artificial data for a simple case in which770

the interaction functions are known and in which we771

controlled the level of noise and the distribution of data.772

This simple case also allows us to illustrate the efficiency773

of the procedure and the accuracy that can be obtained774

according to the quality of the data.775

Figs. 10AB show the colour map of a real function776

of two variables a(x, y) going from [0, L] × [−π, π] to R,777

for two levels of noise:778

a(x, y) =
√

2e−(x/x0)2

sin y, (10)

with x0 = 0.1 and L = 2. The map is built as follows.779

We first discretise the 2D-space (x, y) in Ω = I × J780

rectangular cells [x̂i, x̂i+1] × [ŷj , ŷj+1], where781

x̂i = (i− 1)
L

I
, i = 1, . . . , I + 1,

ŷj = −π + (j − 1)
2π

J
, j = 1, . . . , J + 1.

Then, we evaluate the function a(x, y) on 100000 points782

randomly selected, and place each point on the corres-783

ponding cell ij. After that, we count the number of784

points in each cell, ǫij , and we assign to aij the aver-785

age of the values of the function for all the points that786

are in the cell ij. To simulate the effect of the noise,787

which is always present in real data sets, for each point788

found in the cell ij, we add a small noise of zero mean789

and standard deviation = 0.35 to the value of aij . This790

value corresponds to the noise intensity observed in the791

experiments with pairs of real fish [12]. The resulting792

value is then considered as the measured value of the793

function a(x, y) in the corresponding cell, denoted by794

(xi, yj), and usually defined as the middle point of the795

cell: xi = (x̂i+1 − x̂i)/2, yj = (ŷj+1 − ŷj)/2.796

We now apply the procedure described in Sec. 3.1.4,797

which provides analytical expressions of the interaction798

functions of x and y that give rise to this colour map.799

The key hypothesis is that there exist two decoupled
functions f(x) and g(y) such that a(x, y) = f(x) g(y).
Evaluating these functions in each ij-cell, this means
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that

fi gj = aij , i = 1, . . . I, j = 1, . . . , J. (11)

The values of fi and gj are unknown for all i and all j.
The values of aij are known for all ij because it is the
mean value of the data found in the ij-cell. These I×J
equations and I + J unknowns constitute precisely the
overdetermined system (7). Following the procedure to
reduce this overdetermined system, we write the error
function ∆( ~X), for ~X = (f1, . . . , fI , g1, . . . , gJ),

∆( ~X) =

I
∑

i=1

J
∑

j=1

ǫij(fi gj − aij)2, (12)

which has the same form as the one shown in Eq. (27)800

of Box 1. Fig. 9 shows how ∆( ~X) is calculated as the801

sum of all the squared local errors in each box, denoted802

by the vertical green line between the yellow and green803

balls corresponding to aij and figj respectively.804

To minimize the error function, we look for the zeros
of its gradient. The partial derivatives are

∂∆

∂fi
= 2

J
∑

j=1

ǫijgj(fi gj − aij), (13)

∂∆

∂gj
= 2

I
∑

i=1

ǫijfi(fi gj − aij), (14)

and they are equal to zero when

fi =

J
∑

j=1

ǫijgjaij

/

J
∑

j=1

ǫijg
2
j , (15)

gj =

I
∑

i=1

ǫijfiaij

/

I
∑

i=1

ǫijf
2
i . (16)

Note that each component is explicitly given by a com-805

bination of the other components. This property al-806

ways holds, independently of the number of interaction807

functions. This is due to the hypothesis of separability808

of variables and to the square norm used in the error809

function. Moreover, in this particularly simple case, we810

observe that the “fi’s” are given by the “gj’s”, and vice811

versa (recall that the values aij and ǫij are known for812

all ij). Note finally that the minus sign that appears in813

Eq. (9) does not appear here.814

Thus, starting from an initial guess of the solution,815

~X0 = (f0
1 , f

0
2 , . . . , f

0
I , g

0
1 , g

0
2 , . . . , g

0
J), it is possible to ob-816

tain the values of the fi’s and the gj’s after one iteration,817

that is, ~X1 = (f1
1 , f

1
2 , . . . , f

1
I , g

1
1, g

1
2 , . . . , g

1
J), repeating818

this process iteratively, ~X1 → ~X2 → ~X3 → . . . until819

convergence, i.e., ~Xn+1 ≈ ~Xn.820

When the jumps between iterations are excessively
abrupt, for example if the initial guess is far from a so-
lution, it is convenient to smooth or relax the iterative
process by averaging the new values with those of the
previous step weighted with a larger coefficient:

fn+1
i = λfn

i + (1 − λ)f̃n
i , (17)

gn+1
j = λgn

j + (1 − λ)g̃n
j . (18)

Here f̃n
i and g̃n

j are calculated from the values of ~Xn
821

in the previous step with the formulas (15)-(16), and822

λ ∈ [0, 1] is chosen with the compromise that the iter-823

ations progress smoothly but in a reasonable computa-824

tional time. See also Box 2.825

Fig. 11 shows the successive values that each com-826

ponent fi, gj adopt during the first 120 steps of the it-827

eration process, starting from an initial condition where828

f0
i = g0

j = 1 for all i and j. We used I = 11, J = 17,829

a value of λ = 0.975 quite close to 1 in order to il-830

lustrate the convergence process in detail, and a final831

tolerance |∆( ~Xn+1) − ∆( ~Xn)| < ε = 1.87 × 10−7 (using832

ε = I × J × 10−9). Typical values of λ can be much833

smaller (λ = 0.75), depending on how close the initial834

guess is from the solution.835

The final state to which the iterative method has836

converged, that is, the points {fi}I
i=1 and {gj}J

j=1 that837

solve the reduced system (31), is shown in Figs. 10CD.838

There is an excellent agreement with the original data,839

despite the addition of noise, including in the case of a840

much larger noise than the one inferred in the actual841

data of our fish experiments.842

Note that if f and g are a solution of (31), then843

the functions (1/α)f and αg, where α is a real num-844

ber, are also a solution of (31), since the product of the845

two functions remains invariant. Hence, we need to im-846

pose an additional condition in order to account for this847

under-determination and to generally allow for a proper848

comparison of reconstructed interaction functions. Fol-849

lowing [12], we chose to normalize all angular functions850

so that their squared average is equal to 1. In particu-851

lar, g is normalized such that (1/2π)
∫ π

−π g(y)2dy = 1, a852

normalization applied in Figs. 10CD.853

The last step consists in finding simple analytical854

expressions that interpolate the discrete values of the855

reconstructed interaction functions, in order to imple-856

ment them in an explicit mathematical model. There857

is an infinite number of combinations, so that one must858

be guided by key physical features of the phenomenon859

under study that are well established, properties such860

as symmetries, analogies with other physical systems.861

For example, in the case of angular functions, the par-862

ity is often easily identifiable from the data or can be863

asserted from general principles (mirror symmetry, left-864

/right symmetry...), so that few Fourier modes can be865

sufficient to interpolate the angular functions from the866

data that result from the reconstruction procedure.867

3.3 On the hypothesis of separation of868

variables of interaction functions869

The central assumption of the extraction procedure is870

the separation of variables made in (4)-(6). Without871

this hypothesis, the solution of Eq. (3) far from the wall872

is δφS(di, ψj , φk, vm) = δφijkm , and we are lead back to873

force maps, with all contributions still entangled and874

no analytical expressions of the interaction functions.875

Variables separability is thus crucial for our method.876
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However, what happens if the interaction functions do877

not satisfy this condition?878

Consider a 2D-function a(d, ψ), odd in ψ. Such a
function can always be expanded in Fourier series as

a(d, ψ) = sinψ

∞
∑

k=0

ck(d) cos(kψ). (19)

In order to be separable as a(d, ψ) = f(d)g(ψ), the func-879

tions ck(d) in (19) have all to be proportional to some880

f(d), that is, ck(d) = αkf(d), with αk constant for all k.881

Then, g(ψ) = sinψ
∑

∞

k=0 αk cos(kψ).882

A simple and biologically meaningful example, in-
spired by the fish interaction functions, would consist
in writing ck(d) = αk exp[−d2/(2l2k)] in (19) and using
only the modes k = 0 and 2:

a(d, ψ) = sinψ
[

α0e
−d2/(2l2

0
) + α2e

−d2/(2l2

2
) cos(2ψ)

]

.

When l2 = l0, the variables are separable and we have

a(d, ψ) = α0e
−d2/(2l2

0
) sinψ

[

1 +
α2

α0
cos(2ψ)

]

, (20)

which, when α0 =
√

2, l0 = x0/
√

2, and α2 = 0, cor-883

responds to the simple case used in Sec. 3.2, for which884

the reconstruction procedure worked quite well.885

Let see the result of applying our procedure to a
similar function b(d, ψ) that does not satisfy the sepa-
rability condition. Using the Fourier expansion (19), we
consider two examples b1(d, ψ) and b2(d, ψ) of the form

b1,2(d, ψ) =
√

2e−d2/(2l2

0
) sinψ + 1.13e−d2/(2l2

2
) sinψ cos(2ψ),

where l2 = 2l0/3 ≈ 0.047 and l2 = 3l0/2 ≈ 0.106 respec-886

tively, and α2 = 0.8α0 ≈ 1.13 in both functions. Note887

that the first term is precisely the function used in the888

simple case of Sec. 3.2, and the presence of the second889

term makes the functions b1 and b2 not separable.890

Figs. 12AB show the colour maps of b1(d, ψ) and the
solution found by the reconstruction procedure fi gj .
The general shape is quite well reproduced, and differ-
ences appear only at a relatively small scale. Fig. 12CD
shows the reconstructed functions f(d), g(ψ) for which
we have found the following analytical expressions,

f(d) = β0e
−d2/[2(l̄0)2], (21)

g(ψ) = β1 sinψ [1 + β2 cos(2ψ)] , (22)

with β0 = 0.72, l̄0 = l0 = 0.071, β1 = 1.86, β2 = 0.62.
The resulting interaction function is

f(d)g(ψ) = 1.34e−d2/[2(l̄0)2] sinψ
[

1 + 0.62 cos(2ψ)
]

,

where the first term is quite close to the one of b1(d, ψ)891

(with 1.34 instead of 1.41), and the second is not892

too far from the corresponding one of b1(d, ψ), with893

1.34 × 0.62 = 0.83 instead of 1.13, apart from the dif-894

ferent decreasing rate of the exponential.895

Although the procedure provided an apparently sat-896

isfactory result (panels A and B of Fig. 12 are quite897

similar), the reconstructed functions fail to reproduce898

some features such as the (two) changes of variation of899

the intensity along the radial coordinate (first increas-900

ing, then decreasing) when the neighbour is at one side901

of the focal individual (ψ ≈ ±π/2), and introduce an902

artificial slight decrease in the intensity when the neigh-903

bour is far (d ≈ 3BL) and at one side (ψ ≈ ±π/2) of904

the focal individual (see Fig. 12CD).905

A similar qualitative result is obtained in the second
case with b2(d, ψ), as shown in Fig. 13. In that case, we
found β0 = 0.69, l̄0 = 0.078, β1 = 1.99, β2 = 0.9, so the
interaction function provided by our procedure is

f(d)g(ψ) = 1.37e−d2/[2(l̄0)2] sinψ
[

1 + 0.9 cos(2ψ)
]

In both examples, the worst agreement between the re-906

constructed interaction and the actual one is obtained907

for the angular dependence of the interaction at very908

large distance (blue curves in Figs. 12D and 13D),909

and for the radial dependence of the interaction at910

ψ = ±π/2 (red curves in Figs. 12C and 13C). However,911

both cases correspond to situations where the interac-912

tion is the weakest and the reconstructed interaction913

matches perfectly the actual one in situations where the914

interaction is most significant (black and red curves in915

both panels D; black and blue curves in both panels C).916

Let us now discuss the general validity of the prod-917

uct assumption on the illustrative example of the inter-918

action of a fish with a circular wall. In this case, the919

heading angle change between two time steps (kicks)920

is δφ(rw, θw), where rw is the distance of the fish from921

the wall, and θw is the angle between the fish heading922

and the normal to the wall. Here, the product hypoth-923

esis amounts to assume that δφ(rw, θw) = f(rw)g(θw).924

As explained in [12], the product assumption is veri-925

fied for physical particles interacting with a wall via a926

conservative force (deriving from a potential energy),927

with g(θw) given exactly by g(θw) = sin(θw) (projec-928

tion of the central force on the normal to the veloc-929

ity, i.e., on the angular acceleration). For animals, and930

in particular fish, the anisotropic perception of their931

environment generally leads to non conservative inter-932

actions. The product hypothesis assumes that this933

anisotropic perception can be fully encoded in a non-934

trivial function g(θw) generally different from a simple935

sinus, while the function remains odd if the left/right936

symmetry is preserved. As explained above, δφ(rw, θw)937

for animals takes the general Fourier expansion form938

of Eq. (19), δφ(rw, θw) = sin(θw)
∑

∞

k=0 ck(rw) cos(kθw).939

Strictly speaking, δφ(rw, θw) can be separated into the940

product of two functions of rw and θw only if all func-941

tions ck(rw) are proportional to each other. However,942

if these functions decay similarly with the distance to943

the wall rw, the proportionality assumption and hence944

the product assumption would be only weakly invalid,945

as illustrated in the practical examples presented above.946

In fact, we generally expect only a few Fourier modes947

to be relevant in the above expansion (in [12], it was948
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found that only 1 or 2 non-zero modes were enough to949

describe all interactions; see next section). Hence, the950

product assumption can be only severely invalidated if951

the few relevant functions ck(rw) have very different be-952

haviour. However, on general biological grounds, we953

expect that all these functions characterizing the inter-954

action with the wall should decay smoothly with the955

distance rw. Similarly, for the corresponding functions956

describing the attractive interaction between two fish,957

we expect them to first increase with distance between958

the fish before decaying at larger range. Hence, even959

if these few functions are not strictly proportional to960

each other, their similar anticipated behaviour should961

lead to effective product interactions grasping the most962

important features of the actual interactions.963

In conclusion of this section, the product assump-964

tion allows for an efficient method to reconstruct the965

individual one-variable interaction functions, only re-966

quiring a moderate amount of experimental data. Even967

if the product assumption is not strictly verified by the968

actual interactions, general biological considerations en-969

sure that the product interactions would still describe970

their main features. In any case, the product form offers971

an explicit representation of the interactions, separating972

the different contributions (interaction with the wall,973

attraction/repulsion and alignment between individu-974

als). The reconstructed one-variable interaction func-975

tions can be fitted by simple analytic forms (see next976

section) and the full interaction functions can then be977

straightforwardly implemented in an explicit and con-978

cise model whose predictions can be checked against ex-979

perimental results, hence providing a further validation980

of the product assumption. In addition to ultimately981

producing models for the dynamics of animal groups,982

the simple and explicit form of the interactions allows983

for a precise analysis of the behavioural interactions at984

play in the system, and in particular, for the disentan-985

gling of their different components.986

4 Extraction and comparison of987

social interactions in different988

species of fish989

The model proposed in Sec. 3 is based on the assump-990

tion that social interactions are combined in an additive991

form (see step 3, Fig. 6). In Eq. (2), two functions δφAtt992

and δφAli were introduced to account for the attraction993

and alignment interactions, for which no a priori as-994

sumptions were made except that their dependence on995

the state variables dij , ψij and φij is decoupled; see996

Eqs. (5)-(6). Steps 4.1 to 4.3 in Fig. 6 provide us with997

functional forms, but do not determine which functional998

form corresponds to which kind of interaction.999

To do that, the analysis of the relevant observables1000

(step 2 in Fig. 6) is used to say that δφ must change1001

sign when ψij and φij both change sign, and that, con-1002

sequently, the same must happen for δφAtt and δφAli.1003

This way, the parity of the angular components of the1004

interaction functions is univocally determined. Thus, to1005

have an interaction of attraction, the fish must turn left1006

(resp. right) if its neighbour is on its left (resp. right);1007

that is, δφ > 0 if ψij > 0 (resp. δφ < 0 if ψij < 0). As-1008

suming perfect left/right symetry, this exactly means1009

that δφAtt must be an odd function of ψij , and thus1010

an even function of φij , provided fish do not have side1011

preferences to turn (that is, fish do not prefer turning1012

left to turning right). Similarly, to have an interaction1013

of alignment, the fish must turn left when the relative1014

heading of its neighbour is turned to the left, and turn1015

right if it is turned to the right; that is, δφAli must be1016

an odd function of φij , and thus an even function of ψij .1017

This allows us to rewrite the interaction functions1018

from Eqs. (5)-(6) as follows:1019

δφAtt(dij , ψij , φij) = FAtt(dij)OAtt(ψij)EAtt(φij), (23)

δφAli(dij , ψij , φij) = FAli(dij)EAli(ψij)OAli(φij), (24)

where function names “O” and “E” stand for “odd”1020

and “even” respectively. The six unknown interaction1021

functions are then tabulated on a grid with typically1022

30 boxes leading to effectively 180 fitting parameters,1023

a number much smaller than the number of kicks ex-1024

perimentally recorded (2 × 105 for H. rhodostomus and1025

4×104 in D. rerio). Ultimately, these fitting parameters1026

are determined by minimizing the corresponding error1027

function (see Sec. 3).1028

Fig. 14 shows the social interaction functions recon-1029

structed with the procedure described in the previous1030

section in the case of two H. rhodostomus (Panels ABC)1031

and two D. rerio (Panels DEF) swimming in circular1032

arenas. In both species, attraction and alignment have1033

been detected and, although some important differences1034

can be observed, each kind of interaction has essentially1035

a similar shape and intensity, although the interaction1036

ranges are very different. Hence, we used the analytical1037

expressions introduced in [12] for H. rhodostomus (solid1038

lines in Fig. 14) to fit the discrete values of D. rerio1039

extracted from the experimental data in step 4 of our1040

method (Fig. 6), that is, with the procedure described1041

in Section 3 (points in Fig. 14).1042

These expressions are, for the intensity of the social
interaction of attraction and alignment, as follows:

FAtt(d) = γAtt

(

d

dAtt
− 1

)

1

1 +

(

d

lAtt

)2 (25)

FAli(d) = γAli
d

dAli
exp

[

−
(

d

lAli

)2
]

, (26)

where the values of the parameters depend on the1043

species and on the size of the arena. Note that the1044

expression of the intensity of the alignment has been1045

simplified with respect to the one obtained in [12] and1046

now has one less parameter. Here, γAtt and γAli are the1047

(dimensionless) intensities of the attraction and align-1048

ment interactions, dAtt is the distance below which at-1049

traction changes sign and becomes repulsion, lAtt and1050
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lAli are the ranges of each interaction (the higher the1051

value, the longer the range), and dAli = 1 BL is a1052

characteristic length used to make γAli dimensionless.1053

Having dimensionless factors γAtt and γAli allows di-1054

rect comparison between intensities of social interac-1055

tions and with the intensity of the interaction with ob-1056

stacles δφw and the spontaneous decision term δφR in1057

Eq. (1). Table 1 shows the parameter values correspond-1058

ing to each species. Note that the values for H. rhodos-1059

tomus have been adapted from those in [12], according1060

to the slightly different expression used here.1061

H. rhodostomus D. rerio

R (m) 0.25 0.29
R/BL 8.33 6.44

γAtt 0.124 0.42
dAtt (m) 0.03 0.015
lAtt (m) 0.193 0.042
γAli 0.092 0.32

dAli (m) 0.03 0.045
lAli (m) 0.16 0.1

1062

Table 1. Parameter values for H. rhodostomus and1063

D. rerio in circular arenas of radius 0.25 m and 0.29 m1064

respectively.1065

Regarding the normalized angular functions for
D. rerio, we found the following expansions (with at
most 2 Fourier modes in addition to the trivial zero
mode):

OAtt(ψ) = 1.66 sin(ψ)[1 − 0.77 cos(ψ) + 0.6 cos(2ψ)],

EAtt(φ) = 0.81[1 − 0.95 cos(φ) + 0.12 cos(3φ)],

EAli(ψ) = 0.54[1 + cos(ψ) − 2 cos(2ψ)],

OAli(φ) = 1.53 sin(φ)[1 + 0.24 cos(φ)].

Following the step 5 of our methodology (Fig. 6),1066

these analytical expressions should be implemented in1067

the model introduced in Section 3. Then, numeri-1068

cal simulations of the model should be performed and1069

compared with the known experiments, and predictions1070

should be made, that must be verified a posteriori. This1071

corresponds to the step 6 of our methodology (Fig. 6);1072

it was done for H. rhodostomus in [12], and will be done1073

elsewhere for D. rerio and other species.1074

Comparing the interaction functions found for both1075

species, we observe that they have a similar shape, espe-1076

cially the angular functions (see the angular functions of1077

attraction in Fig. 14B, for which one can use the same1078

function of the angle of perception ψij). The intensi-1079

ties of attraction and alignment have the same order of1080

magnitude in both species: the maximum of the attrac-1081

tion is around 0.4 in both species, and the maximum of1082

the alignment is around 0.2–0.3 (Fig. 14A).1083

The most important difference between the two1084

species is that the range of the interactions is much1085

larger in H. rhodostomus than in D. rerio: in H. rhodos-1086

tomus, the maximum intensities of attraction and align-1087

ment are around 7 BL and 3.5 BL respectively, while in1088

D. rerio these maxima are both near 1.5 BL. Moreover,1089

the intensity of these interactions decays more rapidly1090

in D. rerio than in H. rhodostomus, especially with re-1091

spect to the fish body length (in D. rerio, the alignment1092

intensity is zero beyond 5 BL ≈ 22.5 cm, but it is still1093

noticeable at a distance of 10 BL ≈ 30 cm in H. rhodos-1094

tomus). Attraction almost always dominates alignment1095

in D. rerio (the intersection of the red and blue lines1096

in Fig. 14A is at around 0.5 BL), while, in H. rhodos-1097

tomus, alignment was found to dominate attraction at1098

short distances (under 2.5 BL).1099

In H. rhodostomus, a fish i is subject to a stronger1100

attraction when the other fish j is at its right or left1101

side (OAtt reaches its highest values when ψij ≈ ±90◦;1102

see Fig. 14B) and moves more or less perpendicular to1103

it (EAtt is higher when φij ≈ 90–100◦; see Fig. 14C).1104

Alignment is stronger when the other fish is in front1105

(EAli is higher when |ψij | < 80◦). In D. rerio, attrac-1106

tion is stronger when the other fish is clearly behind1107

the focal fish (OAtt is higher when ψij ≈ ±135◦) and1108

moves in the opposite direction (EAtt is higher when1109

|φij | > 100◦; see Figs. 14EF).1110

In both species, the strength of the alignment van-1111

ishes when fish are already almost aligned (OAli ≈ 01112

when |φij | < 30◦; see panels C and F in Fig. 14). In1113

D. rerio, the strength of the alignment is active essen-1114

tially when both fish are perpendicular to each other1115

(the high intensity of |OAli| ≈ 1.5 is reached when1116

φij ≈ ±85◦) and the focal fish has its neighbour at1117

one of its sides (EAli is peaked at ψij ≈ ±85◦), while1118

in H. rhodostomus, the ranges of interaction both in1119

the angle of relative heading and in the angle of per-1120

ception of the neighbour are much wider: alignment1121

is active when the neighbour is ahead of the focal1122

fish (|ψij | < 100◦) and fish are simply slightly aligned1123

(45◦ < |φij | < 135◦).1124

In summary, when swimming in pairs, H. rhodosto-1125

mus interact in a much wider range of situations than1126

D. rerio. This is true with respect to the three state1127

variables of a focal fish: 1) the distance dij at which1128

both attraction and alignment interactions are active is1129

much larger in H. rhodostomus than in D. rerio; 2) the1130

zone around a focal fish where the strength of the inter-1131

actions with a neighbour is important is much wider in1132

H. rhodostomus than in D. rerio, and 3) the same is true1133

for the range of relative headings for which the intensity1134

of interactions between fish is not negligible. Finally,1135

the maximum intensity of the interaction is similar in1136

both species, although high intensity values are reached1137

in a much wider range of situations in H. rhodostomus1138

than in D. rerio.1139

5 Discussion and conclusions1140

Behavioural biology has recently become a “big-data1141

science” mainly supported by the advances in imaging1142

and tracking techniques. These new tools have revolu-1143

tionized the observation and quantification of individual1144
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and collective animal behaviour, improving to unprece-1145

dented levels the variety and precision of available data1146

[9, 26, 27, 28]. As the access to large volumes of data1147

is gradually stepping animal behaviour research into a1148

new era, there is also a growing need for understand-1149

ing interactions between individuals and the collective1150

properties that emerge from these interactions. Ani-1151

mal societies are complex systems whose properties are1152

not only qualitatively different from those of their indi-1153

vidual members, but whose behaviours are impossible1154

to predict from a prior knowledge of individuals [3, 4].1155

However, understanding how the interactions between1156

individuals in swarms of insects, schools of fish, flocks1157

of birds, herds of ungulates, or human crowds give rise1158

to the “collective level” properties requires the devel-1159

opment of mathematical models. These models allow1160

to investigate how complex processes are connected, to1161

systematically analyse the impact of perturbations on1162

collective behaviour (e.g., when a predator is detected1163

in the neighbourhood), to develop hypotheses to guide1164

the design of new experimental tests, and ultimately,1165

to assess how each biological variable contributes to the1166

emergent group level properties.1167

We have presented a general methodology which1168

leads to the measurement of the social interactions (de-1169

fined in the framework of a model) from a set of in-1170

dividual trajectories. This procedure, illustrated here1171

on two different species of fish, can be similarly applied1172

on any set of trajectories of other organisms, includ-1173

ing humans [29, 30]. Once the experimental trajecto-1174

ries have been obtained, the extraction of interaction1175

functions only makes sense after they have been defined1176

in the framework of a general model for the equation1177

of motion of an individual interacting with its environ-1178

ment (i.e., the obstacles and another individual). The1179

model should involve the relevant variables regarding1180

the interaction with obstacles (distance to the nearest1181

wall, angle of the velocity with respect to the normal1182

to the wall...) and another individual (distance be-1183

tween individuals, relative velocities, viewing angle...).1184

In addition, each interaction components (repulsion, at-1185

traction, alignment...) is reasonably assumed to con-1186

tribute additively: for instance, the influence of the1187

wall and another individual on the focal individual is1188

the independent sum of the two corresponding interac-1189

tions. More importantly, the central hypothesis of our1190

approach consists in assuming that the contribution of1191

each interaction can be adequately described by a prod-1192

uct of unknown single-variable functions of the relevant1193

variables, or of a combination of these variables. The1194

structure of the model is obviously also constrained by1195

the considered species, their motion mode, and their an-1196

ticipated interactions. For instance, for the fish species1197

that have a burst-and-coast swimming mode, the dy-1198

namical model is intrinsically discrete in time and re-1199

turns the angle change of an individual after each kick.1200

For humans or some other fish species with a smooth1201

swimming mode, a continuous-time model is necessary.1202

The unknown interaction functions defined in the1203

structure of the model are not constrained, and the aim1204

of the extraction procedure (step 4 in Fig. 6) is to mea-1205

sure them, without any a priori assumption about their1206

form or intensity. In order to achieve that, each un-1207

known single-variable interaction function is tabulated1208

on a one-dimensional grid, and their values at each grid1209

point are the fitting parameters. These parameters are1210

then determined by minimizing the mean quadratic er-1211

ror between the prediction of the model and the ex-1212

perimental angle changes after a kick (in the case of1213

discrete dynamics) or the experimental acceleration (in1214

the case of a continuous time dynamics). This mini-1215

mization process (Box 1) is achieved by solving, for in-1216

stance with an iterative method (Box 2), the equations1217

expressing the vanishing of the partial derivatives of the1218

error with respect to each fitting parameters, as we have1219

done here, or by gradient descent methods. Once the1220

interaction functions have been obtained on their re-1221

spective grid, they are fitted and represented by simple1222

analytical forms that best capture their general shape1223

(Fig. 14).1224

The original general equation of motion is now1225

complemented by these explicit interaction functions,1226

leading to a concise and explicit model, which can1227

be straightforwardly implemented numerically and can1228

even be studied mathematically. The ability of the1229

model to reproduce the experimental results and even1230

to predict the behaviour of individuals in other situa-1231

tions not yet investigated experimentally can then be1232

assessed. The original model can also be extended and1233

the full extraction procedure repeated if an important1234

feature appears to be missing. In particular, quantities1235

like the probability distributions of the distance to the1236

wall, of the distance between two individuals, of the an-1237

gle between the two velocities or between the velocity1238

and the normal to the wall, as well as other observables,1239

permit to assess the predictive power of the model. Note1240

that the interaction functions appearing in the model1241

are determined by finding the best equation of motion1242

describing the instantaneous decisions of the individu-1243

als. It is by no means trivial that this is enough for the1244

resulting dynamical model to be able to reproduce ob-1245

servable quantities measured after averaging over many1246

trajectories, or to predict the behaviour of individuals1247

in different experimental conditions. A model able to1248

achieve this certainly provides a convincing indication1249

that its original and general structure and its extracted1250

interaction functions properly represent and describe1251

the behaviour and motion of the studied species.1252

The main limitations of our methodology lie in the1253

reasonable assumption of additive contributions for the1254

different interactions, and more critically, in assuming1255

that each of these interactions is the product of single-1256

variable interaction functions. This is the cost to pay1257

for only involving a limited number of fitting parame-1258

ters, yet capturing a large part of the complex structure1259

of these interactions, and also for ultimately obtaining1260

a concise, explicit, and exploitable model.1261

To address these issues, we are planning in the near1262
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future to test our models on a robotic platform [31].1263

Such a platform could also allow us to study bidirec-1264

tional interactions between robots reproducing the tra-1265

jectories generated by our models and real fish, to ob-1266

tain a more representative validation of our models of1267

interactions [32].1268

Yet, the advantages and benefits of our approach are1269

numerous. First, the number of fitting parameters (typ-1270

ically 30 for each of the typically 5-8 interaction func-1271

tions), although apparently large (a total of typically1272

150-300 parameters), is in general much smaller than1273

the number of data points in the available experimental1274

trajectories (typically 104 for human groups [29], and1275

105 for fish [12]). In comparison, a complete force map1276

in typically 5 or more dimensions (one dimension per1277

relevant variable) on a mesh involving 305 boxes, with1278

enough data points in each of them, would require mil-1279

lions if not billions of experimental data points, which is1280

in general impossible to achieve. Two-dimensional force1281

maps obtained after projection (i.e., averaging on the1282

other 5 − 2 = 3 variables), although less noisy than the1283

original force map, cannot be exploited to build a model,1284

since it can be shown that they are strongly affected by1285

the existing correlations between these variables along1286

actual trajectories. For instance, if a fish is very close to1287

a wall, there is a high probability that it swims parallel1288

to the wall, so that its distance from the wall is strongly1289

correlated with its heading angle. On the other hand,1290

it can be shown [12] that our methodology to extract1291

interaction functions is not at all affected by the likely1292

correlations present in the system, and actually exploit1293

them.1294

Our method is also robust with respect to the pres-1295

ence of noise in the data (intrinsic behavioural noise or1296

unwanted experimental noise), and can actually be used1297

to measure the spontaneous fluctuations of the speed1298

and heading angle of the individuals [12, 30]. More-1299

over, the extraction of interaction functions requires1300

very limited computing power, being obtained within1301

a few seconds on a standard workstation. Ultimately,1302

the analysis of the resulting interaction function allows1303

to make general qualitative conclusions about the inter-1304

action at play for the considered species. Force maps1305

can also help in this analysis, but our approach allows1306

for an even finer analysis thanks to the disentangling of1307

interactions by means of separate and explicit interac-1308

tion functions, instead of mere projected colour maps1309

affected in an uncontrolled manner by the inherent cor-1310

relations present in the system and the mixing of the1311

different interaction contributions.1312

More importantly, our methodology ultimately leads1313

to a concise and explicit model which can be exploited1314

to understand and explain diverse experimental features1315

and various forms of collective behaviour, and which has1316

a predictive power, while force maps cannot be directly1317

exploited to build such explicit models. Note that the1318

structure of the model should be robust for different1319

species having comparable motion mode. For instance,1320

this structure is the same for H. rhodostomus and D. re-1321

rio (or for any species with a burst-and-coast or run-1322

and-tumble motion mode), and the behavioural differ-1323

ences between the species is solely and fully encoded in1324

their different measured interaction functions.1325

In the specific case of H. rhodostomus and D. rerio,1326

we have also found that the interaction functions char-1327

acterizing their interaction with the wall are very similar1328

(see [12] for H. rhodostomus), which explains their com-1329

mon tendency to swim close to the wall, especially when1330

a fish swims alone in a tank. However, even if the inter-1331

action functions describing the repulsion/attraction and1332

alignment interactions between two fish have a similar1333

general structure and shape for both species (Fig. 14),1334

the range of the attraction and alignment interactions is1335

much shorter for D. rerio. In addition, the intensity of1336

both interactions in D. rerio is strongly reduced when1337

the focal fish is behind and hence follows the other fish1338

(i.e., when |ψij | < 30◦). Both features contribute to1339

a much weaker coordination of the motion in groups1340

of two fish in D. rerio, compared to H. rhodostomus,1341

which can already be qualitatively noticed by observ-1342

ing recorded trajectories. This weaker coordination is1343

quantitatively illustrated by the probability distribution1344

of the distance between two fish (panels A and D in1345

Fig. 14), which is wider for D. rerio and extends up to1346

much larger distances. Moreover, the probability distri-1347

bution of the heading angle difference between the two1348

fish is less peaked near φij = 0 in D. rerio (Fig. 14F).1349

Finally, the weaker coordination observed in D. rerio1350

results in a similar behaviour for the geometrical leader1351

and follower, whereas the leader and follower have a1352

very distinct behaviour in H. rhodostomus.1353

Materials and methods1354

Ethics. Experiments with H. rhodostomus have been1355

approved by the Ethics Committee for Animal Experi-1356

mentation of the Toulouse Research Federation in Biol-1357

ogy No. 1 and comply with the European legislation for1358

animal welfare. Experiments with D. rerio were con-1359

ducted under authorization approved by the state eth-1360

ical board of the Department of Consumer and Veteri-1361

nary Affairs of the Canton de Vaud (SCAV) of Switzer-1362

land (authorization No. 2778). During the experiments,1363

no mortality occurred.1364

Study species. H. rhodostomus were purchased1365

from Amazonie Labège (http://www.amazonie.com) in1366

Toulouse, France. Fish were kept in 150 L aquariums1367

on a 12:12 hour, dark:light photoperiod, at 26.8 ◦C1368

(±1.6 ◦C) and were fed ad libitum with fish flakes. The1369

average body length of the fish used in the experiments1370

was 31 mm. Wild-type D. rerio with short fins (AB1371

strain) were acquired in a number of 60 from a pet1372

shop, and stored in a 60-litre aquarium. The average1373

body length of the fish used in the experiments was ap-1374

proximately 4.5 cm in length. The water in the housing1375

aquarium was kept at a temperature of 26 ◦C. The fish1376
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were fed once per day with commercial food between1377

16:00 and 18:00. Additionally, we opted to use enrich-1378

ment for the aquarium in the form of plastic plants,1379

Cladophora, gravel, rocks, and aquatic snails.1380

Experimental procedures and data collection.1381

The experimental tank (120×120cm2) used to investi-1382

gate swimming behaviour in H. rhodostomus was made1383

of glass and was set on top of a box to isolate fish from1384

vibrations. The setup, placed in a chamber made by1385

four opaque white curtains, was surrounded by four1386

LED light panels giving an isotropic lighting. A circular1387

tank of radius R = 25 cm was set inside the experimen-1388

tal tank filled with 7 cm of water of controlled quality1389

(50% of water purified by reverse osmosis and 50% of1390

water treated by activated carbon) heated at 26.1 ◦C1391

(±0.3 ◦C). Reflections of light due to the bottom of the1392

experimental tank are avoided thanks to a white PVC1393

layer. Each trial started by setting two fish randomly1394

sampled from their breeding tank into a circular tank.1395

Fish were let for 10 minutes to habituate before the1396

start of the trial. A trial consisted in one or three hours1397

of fish freely swimming (i.e., without any external per-1398

turbation) in a circular tank. A total of 16 trials were1399

performed. Fish trajectories were recorded by a Sony1400

HandyCam HD camera filming from above the set-up1401

at 50 Hz (50 frames per second) in HDTV resolution1402

(1920×1080p).1403

In the case of D. rerio, the experimental setup had1404

dimensions of 100×100×25cm3, inside which a circu-1405

lar tank of radius R = 29 cm was placed. The sides1406

and bottom part of the tank were covered with a Teflon1407

plate to avoid reflections. Furthermore, the setup was1408

confined behind white sheets to isolate the fish from ex-1409

ternal stimuli in the room, while also maintaining a con-1410

sistent lighting environment inside the setup bounds. A1411

uniform luminosity for the room was provided by four1412

110 watt fluorescent lamps placed at each of the four1413

sides of the tank. Prior to placing fish in the experi-1414

mental setup, we ensured that the height of the water1415

was 6 cm. Then, 10 videos of 70 min duration each were1416

recorded in the circular tank. Subsequently, a group of1417

fish was randomly selected and caught from the rear-1418

ing tanks to participate in the experiment. A pair of1419

fish was then chosen and placed in the setup. The fish1420

were allowed to habituate for 5 min before starting the1421

70 min long recording. After a single experiment was1422

completed, the fish were returned to the original rear-1423

ing tank without being re-inserted in the selected group1424

(i.e., no individual was used twice in the same day).1425

The positions of fish on each frame were tracked with id-1426

Tracker 2.1 [8]. Time series of positions were converted1427

from pixels to meters and the origin of the coordinate1428

system was set to the centre of the ring-shaped tank.1429

Tracking errors (approx. 20% of the data) were cor-1430

rected and instances where at least one fish moves less1431

than 0.5 body length per second during 4 seconds were1432

removed. More than 8 hours remained during which1433

one fish can kick.1434

We provide the dataset of each species in Figshare:1435

https://doi.org/10.6084/m9.figshare.9933356.v1.1436

Segmentation of trajectories. Instants of kicks1437

were identified as local minima of the velocity preceding1438

local maxima (which are more easy to identify), along1439

time intervals [t− tw, t+ tw], where tw is a time window1440

of 0.32 seconds. Trajectories are thus considered as a1441

sequence of kicks. Fish almost never kick at the same1442

time (asynchronous kicks); the position of the other fish1443

is calculated at each instant of kick of the focal fish by1444

simple linear interpolation.1445

Fortran code. We provide the code to perform the1446

analysis described in Sec. 3.2, together with a simple1447

script for quick visualisation of the result in the gnuplot1448

environment and the required data, in Figshare:1449

https://doi.org/10.6084/m9.figshare.11777325.1450
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Figure 1: State variables of a focal fish i with respect to its neighbour j. Fish position is determined by the position
of the centre of mass of the fish (black circles) in a orthonormal system of reference Oxy. dij : distance between fish;
~vij = ~vj − ~vi: relative velocity of j with respect to i; ψij : viewing angle with which i perceives j; φij = φj − φi:
relative heading of j with respect to i. Angles are measured with respect to the horizontal axis of coordinates Ox;
we use the convention that angles are positive in the counterclockwise direction.
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Figure 2: Force maps of H. rhodostomus swimming in a circular arena of radius 0.25 m. Heading change δφ of a focal
fish, located at the origin and pointing north in the four panels, as a function of (A) the distance to its neighbour dij

and the angle of perception of its neighbour ψij , (B) the distance dij and its relative heading φij , (C) the left-right
distance dLR

ij and φij , and (D) the relative heading φij and the front-back distance dFB
ij . The colour scale shown in

the right represents the average value of heading change δφ. Distances are measured in body lengths (BL), angles in
degrees.
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Figure 3: Force maps of D. rerio swimming in a circular arena of radius 0.29 m. Heading change δφ of a focal fish,
located at the origin and pointing north in the four panels, as a function of (A) the distance to its neighbour dij

and the angle of perception of its neighbour ψij , (B) the distance dij and its relative heading φij , (C) the left-right
distance dLR

ij and φij , and (D) the relative heading φij and the front-back distance dFB
ij . The colour scale shown in

the right represents the average value of heading change δφ. Distances are measured in body lengths (BL), angles in
degrees.
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Figure 4: Density maps of the location of a neighbouring fish j in the system of reference centred on the focal fish i.
(A) H. rhodostomus in an arena of radius 0.25 m, and (B) D. rerio in the arena of radius 0.29 m, when the focal fish is
at least at 2 BL (6 cm) in H. rhodostomus and 1 BL (4.5cm) in D. rerio from the wall of the tank. The vertical arrow
pointing north located at the centre of the coordinate system indicates the position and orientation of the focal fish i.
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Figure 5: General overview of the methodology. The successive steps carried out in our method are labeled with a
number and illustrated with a representative picture: 1: Trajectories of real fish from experimental data; 2: Observables
of collective behaviour, the distance dij between fish, the relative position φij , and the relative orientation φij , and
PDF of dij ; 3: Model equations of the heading angle changes δφ; 4: Extracted interaction functions FAtt, FAli,
EAtt, OAtt, OAli, and OAli, and their dependence on dij , ψij , and φij ; 5: Trajectories resulting from the numerical
simulations of the model. The dark blue arrow illustrates the possibility that the cycle starts again, which includes
the realisation of a new set of experiments or the design of a new setup, to check the predictions of the model or to
deepen our understanding of the mechanisms at work.
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Figure 6: Flowchart of the methodology, with a special emphasis on the procedure of extraction of the interaction
functions (step 4). When the test at point 6 is not verified, the cycle starts again at a previous step, depending on
the reason for which the test failed: if the model has to be revised (e.g., because the relation between observables and
state variables is not well reproduced), then go to step 3; if other state variables or observables have to be considered
in the model (e.g., because they may contribute to some observed effect), then go to step 2; if new experiments must
be carried out (e.g., because there are not enough data or some important case has not been observed), then go to
step 1.
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Figure 7: Probability density functions (PDF) of (A) distance between fish dij , (B) difference of heading φij , and (C)
angle ψfollower with which a fish i perceives its neighbour j when |ψij | < |ψji| (the “geometrical follower” is hence the
fish which would have to turn the less to face the other fish, the latter being called the “geometrical leader”). Blue
lines: H. rhodostomus in a circular arena of radius 0.25 m, red lines: D. rerio in a circular arena of radius 0.29 m.
The vertical dashed lines in panel (A) denote the relative radius R/BL of the arena with respect to fish body length
of each species, 8.3 in H. rhodostomus and 6.4 in D. rerio (with 1 BL= 0.03 m in H. rhodostomus and 0.045 m in
D. rerio).
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Figure 8: Detailed description of the successive substeps involved in the extraction of the interaction functions (step 4
of our method). For each substep, a short text describes what is done and the main formulas used to carrying it out.
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Figure 9: Construction of the error function ∆( ~X) in a simple two-dimensional case where a(x, y) = f(x)g(y). After
discretising the variables x and y in I and J intervals respectively, the values of a(x, y) are distributed in the resulting
ij-boxes. The number of data in each box ǫij is counted, and the mean value of a(x, y) in each box, aij , is calculated.
The square error is formulated in each box, (figj − aij)2, and summed up along all boxes. Starting from an initial
guess of I + J values f0

i , g0
j , i = 1, . . . , I, j = 1, . . . , J , which produces a set of I × J green balls (one per ij-box),

the iterative process is carried out. At each iteration, the green balls of each box converge globally towards the yellow
balls, until a minimum of the error ∆( ~X) is reached. The final values fn

i , gn
j (blue and red points respectively) are

then fitted by means of analytical expressions, which are the interaction functions represented by the blue and red
solid curves. Note that n is the index of iteration, not the time discretisation index.
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Figure 10: Force maps and reconstruction of the interaction functions in a simple case. (AB) Force maps of the
function a(x, y) + η(x, y) for two levels of noise, of zero mean and amplitude (A) 0.35, which is the one observed in
the experiments with H. rhodostomus, and (B) 3.5, a level of noise ten times higher. We used the same distribution
of points ǫij than the one observed in the experiments with H. rhodostomus. (CD) Reconstruction of the interaction
functions (C) f(x) and (D) g(y) extracted with our procedure (red dots and blue circles), compared to the analytical
expressions exp[−(x/x0)2] and

√
2 sin(y) respectively (black lines). The red dots correspond to the case of a noise of

amplitude 0.35, where we used 20 nodes in x and 31 in y, and the blue circles to the case with a much higher level of
noise (3.5) and with less nodes in x, 11 instead of 20. Note that the function g(y) is normalized.
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Figure 11: Evolution of the iterative process for the minimization of the error function ∆( ~X) in the simple case where
a(x, y) =

√
2 exp[−(x/x0)2] sin(y). Blue circles denote the successive values of the I + J components of the unknown

functions fn
i and gn

j during the first 120 steps of the iterative process. Red lines show the initial guess of each function

f0
i = g0

j = 1, i = 1, . . . , I and j = 1, . . . , J , and the final state of convergence. Note that n is the index of iteration,
not the time discretisation index.
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Figure 12: Colour maps of (A) the non-separable function b(d, ψ) =
√

2e−d2/(2l2

0
) sinψ+1.13e−d2/(2l2

2
) sinψ cos(2ψ) and

(B) the solution found by the reconstruction procedure f(d)g(ψ) = 1.34e−d2/(2l2

0
) sinψ + 0.83e−d2/(2l2

0
) sinψ cos(2ψ).

Red and blue solid lines: Cuts of the surface of b1(d, ψ) for a fixed value of (C) ψ = π/2 (red) and ψ = π/4 (blue), and
(D) d = 0.03 (red) and d = 0.1 (blue). Black dots denote the reconstructed functions fi in (C) and gj in (D). Solid
black lines in both panels are the analytical expressions found for the reconstructed functions. Red and blue dots
are cuts of the reconstructed solution figj corresponding to the respective cut of the non-separable function b1(d, ψ).
Values of the cuts are f(0.03) = 0.67, f(0.1) = 0.26, g(π/2) = 0.73 and g(π/4) = 1.36. A noise of the same amplitude
as the one measured in the experimental data of H. rhodostomus was added to b1(d, ψ) to create the data set for the
reconstruction procedure. The same data structure (number of data per box) as the one found in real fish has been
used. We have used I = 21 and J = 31.
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Figure 13: Colour maps of (A) the non-separable function b(d, ψ) =
√

2e−d2/(2l2

0
) sinψ+1.13e−d2/(2l2

2
) sinψ cos(2ψ) and

(B) the solution found by the reconstruction procedure f(d)g(ψ) = 1.34e−d2/(2l2

0
) sinψ + 0.83e−d2/(2l2

0
) sinψ cos(2ψ).

Red and blue solid lines: Cuts of the surface of b2(d, ψ) for a fixed value of (C) ψ = π/2 (red) and ψ = π/4 (blue), and
(D) d = 0.03 (red) and d = 0.1 (blue). Black dots denote the reconstructed functions fi in (C) and gj in (D). Solid
black lines in both panels are the analytical expressions found for the reconstructed functions. Red and blue dots
are cuts of the reconstructed solution figj corresponding to the respective cut of the non-separable function b2(d, ψ).
Values of the cuts are f(0.03) = 0.23, f(0.1) = 0.29, g(π/2) = 0.66 and g(π/4) = 1.38. A noise of the same amplitude
as the one measured in the experimental data of H. rhodostomus was added to b2(d, ψ) to create the data set for the
reconstruction procedure. The same data structure (number of data per box) as the one found in real fish has been
used. We have used I = 21 and J = 31.
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Figure 14: Analytical expressions of the social interaction functions of H. rhodostomus (ABC) and D. rerio (DEF)
swimming in arenas of radius 0.25 and 0.29 m respectively (solid lines), interpolating the discrete values extracted
from the experimental data with the procedure described in Sec. 3 (dots). (AD) Intensity of the attraction (red) and
alignment (blue), modulated by the angular functions of (BE) attraction and (CF) alignment.
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Box 1. Minimizing the error between data and a product form

Let us consider a N ×M two-dimensional array aij , for instance, built after averaging some quantity obtained
from experiments on a N × M grid. We look for the best approximation of aij under a product or separable
form, aij ≈ xi × yj , i = 1, . . . , N , j = 1, . . . ,M (see the system (7), in the more general case when more than
two dimensions are involved). Note that under the product form, the number of unknown variables is only
N + M , compared to the much larger size N × M of the original array of data aij . In order to quantify the
accuracy of the product description, we define the quadratic error function ∆:

∆(x1, . . . , xN , y1, . . . , yM ) =
N

∑

i=1

M
∑

j=1

ǫij(xiyj − aij)2. (27)

Here ǫij is the number of data that fall in the cell ij. For systems that derive from physical and biological
phenomena, it is fundamental to modulate the contribution of each cell, not only to give a higher weight to
the more frequent values, but also to preserve actual correlations arising between the variables.
The goal is thus to find a set of values x1, . . . , xN , y1, . . . , yM that minimizes the error ∆. ∆ = 0 implies that
xiyj = aij , for all i and j, and that the original data had exactly a product form. Finding the minima of a

function requires finding the zeros of its derivative, which, in high dimensions, is the gradient vector ~∇∆, given
by the partial derivatives of ∆ with respect to its components; see the Box Finding minima below.

Finding minima

A minimum of a one-vatiable function f(x) is a point xm where the derivative vanishes, f ′(xm) = 0,
and the second derivative is positive, f ′′(xm) > 0.

In several dimensions, the “derivative” of a function F : RD → R is the gradient vector ~∇F (~x), whose
components are given by the partial derivatives of the function with respect to each component of ~x:
~∇F (~x) = (∂F/∂x1, ∂F/∂x2, . . . , ∂F/∂xD). The gradient vector points in the direction of maximum
variation of F , and is therefore zero (i.e., equal to the null vector ~0) when ~x is a extremum, and in
particular, a minimum:

∂F/∂x1 = 0, ∂F/∂x2 = 0, . . . , ∂F/∂xD = 0. (28)

In principle, to ensure that the extremum is indeed a minimum, one also has to check that the Hessian
matrix of second-order partial derivatives has only strictly positive eigenvalues, a condition generically
satisfied for squared error functions like the one considered here.

Differentiating (27) with respect to xk gives

∂∆

∂xk
=

N
∑

i=1

M
∑

j=1

∂

∂xk

[

ǫij(xiyj − aij)2
]

= 2

M
∑

j=1

ǫijyj(xkyj − akj), (29)

where we used the fact that xiyj does not depend on xk, if i 6= k. Then,

∂∆

∂xk
= 2xk

M
∑

j=1

ǫijy
2
j − 2

M
∑

j=1

ǫijyjakj , (30)

and the conditions ∂∆/∂xi = 0 and ∂∆/∂yj = 0 for all i and j can be rewritten as

xi =

M
∑

j=1

ǫijyjaij

M
∑

j=1

ǫijy
2
j

, i = 1, . . . , N, yi =

M
∑

i=1

ǫijxiaij

M
∑

i=1

ǫijx
2
i

, j = 1, . . . ,M. (31)

This is a system of N+M equations and unknowns that can be solved with different methods. Due to the large
dimension of the systems arising in social interaction analysis, iterative method are often used. See Box 2.
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Box 2. Fixed point iterations

A point x∗ ∈ R is a fixed point of a function f : R → R

if f(x∗) = x∗. Fixed points can be found under cer-
tain conditionsa by means of the iterative method

xn+1 = f(xn). (32)

Starting from an initial point x0, the method builds
a sequence x1, x2, x3, ... that converges to (one of) the
fixed point(s) of f ; see Fig. 15.
In d dimensions, a vector ~x ∗ ∈ R

d is a fixed point of
a function ~F : Rd → R

d if ~F (~x ∗) = ~x ∗.
When the dimension of the system d = N+M is very
large, and in order to improve the stability of the re-
cursion dynamics, it is convenient to use a relaxation
method,

~xn+1 = λ~xn + (1 − λ)~F (~xn), (33)

where λ ∈ (0, 1) is the weight of the previous iteration

in the value of the new iteration, averaged with what
would have been the new iteration.
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Figure 15: Iterations converging to (x∗, x∗). Red line:
function f(x); brown line: y = x; thin polygonal: ite-
ration process; coloured dots: successive values of xn.

aThe function f must be contractive and the initial value of the iterations must be sufficiently close to the fixed point.


