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Sabatier (UPS), Toulouse, France
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Abstract1

Coordinated motion and collective decision-making in fish schools result from complex2

interactions by which individuals integrate information about the behavior of their3

neighbors. However, little is known about how individuals integrate this information4

to take decisions and control their motion. Here, we combine experiments with compu-5

tational and robotic approaches to investigate the impact of different strategies for a6

fish to interact with its neighbors on collective swimming in groups of rummy-nose tetra7

(Hemigrammus rhodostomus). By means of a data-based agent model describing the in-8

teractions between pairs of H. rhodostomus (Calovi et al., 2018), we show that the simple9

addition of the pairwise interactions with two neighbors quantitatively reproduces the10

collective behavior observed in groups of five fish. Increasing the number of interacting11

neighbors does not significantly improve the simulation results. Remarkably, and even12

without confinement, we find that groups remain cohesive and polarized when each agent13

interacts with only one of its neighbors: the one that has the strongest contribution14

to the heading variation of the focal agent, dubbed as the “most influential neighbor”.15

However, group cohesion is lost when each agent only interacts with its nearest neighbor.16

We then investigate by means of a robotic platform the collective motion in groups of17

five robots. Our platform combines the implementation of the fish behavioral model18

and a control system to deal with real-world physical constraints. A better agreement19

with experimental results for fish is obtained for groups of robots only interacting with20

their most influential neighbor, than for robots interacting with one or even two nearest21

neighbors. Finally, we discuss the biological and cognitive relevance of the notion of22

“most influential neighbors”. Overall, our results suggest that fish have to acquire only a23

minimal amount of information about their environment to coordinate their movements24

when swimming in groups.25

Keywords: collective behavior; flocking; fish school; interaction networks; computa-26

tional modeling; collective robotics.27
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Author Summary28

How do fish integrate and combine information from multiple neighbors when swimming29

in a school? What is the minimum amount of information about their environment30

needed to coordinate their motion? To answer these questions, we combine experiments31

with computational and robotic modeling to test several hypotheses about how individual32

fish could integrate and combine the information on the behavior of their neighbors33

when swimming in groups. Our research shows that, for both simulated agents and34

robots, using the information of two neighbors is sufficient to qualitatively reproduce the35

collective motion patterns observed in groups of fish. Remarkably, our results also show36

that it is possible to obtain group cohesion and coherent collective motion over long37

periods of time even when individuals only interact with their most influential neighbor,38

that is, the one that exerts the most important effect on their heading variation.39

Introduction40

One of the most remarkable characteristics of group-living animals is their ability to41

display a wide range of complex collective behaviors and to collectively solve problems42

through the coordination of actions performed by the group members [1–3]. It is now well43

established that these collective behaviors are self-organized and mainly result from local44

interactions between individuals [4, 5]. Thus, to understand the mechanisms that govern45

collective animal behaviors, we need to decipher the interactions between individuals, to46

identify the information exchanged during these interactions and, finally, to characterize47

and quantify the effects of these interactions on the behavior of individuals [6, 7]. There48

exists today a growing body of work that brought detailed information about the direct49

and indirect interactions involved in the collective behaviors of many animal groups,50

especially in social insects such as ants [8–11] and bees [12,13].51

Recently, we introduced a new method to disentangle and reconstruct the pairwise52

interactions involved in the coordinated motion of animal groups such as fish schools,53

flocks of birds, and human crowds [14, 15]. This method leads to explicit and concise54

models which are straightforward to implement numerically. It still remains an open55

and challenging problem to understand how individuals traveling in groups combine the56

information coming from their neighbors to coordinate their own motion.57

To answer this question, one first needs to identify which of its neighbors an individual58

interacts with in a group, i.e., which are its influential neighbors. For instance, does an59

individual always interact with its nearest neighbors, and how many? Most models of60

collective motion in animal groups generally consider that each individual is influenced by61

all the neighbors located within some spatial domain centered around this individual [16,62

17]. This is the case in particular of the Aoki-Couzin model [18, 19] and the Vicsek63

model [20]. In the latter, each individual aligns its direction of motion with the average64

direction of all individuals that are located within a fixed distance in its neighborhood.65

Other models, more directly connected to biological data, consider that the interactions66

between individuals are topological and that the movement of each individual in the67

group only relies on a finite number of neighbors. This is in particular the case for the68

work on starling flocks [21, 22] and on barred flagtails (Kuhlia mugil) [23]. In golden69

shiners (Notemigonus crysoleucas), another work has sought to reconstruct the visual70

information available to each individual fish during collective evasion maneuvers [24].71

In this species, it has been shown that the transmission of behavior in a school was72

best described by a model in which the response probability of a fish depends on the73

fraction of active neighbors perceived by that fish. However, because of the cognitive74

load that is required for an individual to constantly monitor the movements of a large75

number of neighbors, it has been suggested that animals may focus their attention on76
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a small subset of their neighbors [25–27]. In a previous work, we found experimental77

evidence that supports this assumption. In groups of rummy nose tetras (Hemigrammus78

rhodostomus) performing collective U-turns, we found that, at any time, each fish pays79

attention to only a small subset of its neighbors, typically one or two, whose identity80

regularly changes [28]. However, we still do not know if the same pattern of interaction81

holds true when fish are schooling, i.e., when individuals are moving together in a highly82

polarized manner and not performing some collective maneuver.83

Once the influential neighbors of a focal fish have been identified, one must then84

understand how this individual combines the information about the behavior of these85

neighbors. The most common assumption is that animals respond by averaging pairwise86

responses to their neighbors (with added noise) [16–18]. However, existing work shows87

that the integration of information might be much more complex. In golden shiners,88

Katz et al. [29] have shown that the combined effect of two neighbors on a fish response89

is close to averaging for turning, but somewhere between averaging and adding for speed90

adjustments. This observation brings us back to an often neglected factor which is the91

impact of the physical constraints imposed on a fish movement by their body. Fish92

mainly achieve collision avoidance through the control of their speed and orientation93

at the individual level. However, existing models seldom treat collision avoidance in a94

physical way and most models assume that individuals move at a constant speed [6].95

This is the main reason why these models cannot be directly implemented in real physical96

robotic systems [30].97

To better understand how individuals integrate and combine interactions with their98

neighbors in a group of moving animals, we first analyze the dynamics of collective99

movements in groups of five H. rhodostomus moving freely in a circular tank. Then,100

we investigate different strategies for combining pairwise interactions between fish101

and analyze their impact on collective motion. To do that, we use the data-driven102

computational model developed by Calovi et al. [14] that describes the interactions103

involved in the coordination of burst-and-coast swimming in pairs of H. rhodostomus,104

and a robotic platform that also allows us to investigate the impact of direction and105

speed regulation, and of collision avoidance. Finally, we compare the predictions of the106

computational and robotics models with the experiments conducted under the same107

conditions with groups of fish.108

Results109

We collect three sets of data corresponding to i) our experiments with N = 5 fish110

(H. rhodostomus), ii) our numerical simulations of the model derived in [14], and iii) our111

experiments using the robotic platform with N = 5 robots (see Fig. 1, S1 Video and112

S2 Video), from which we extract the trajectories of each individual (S3 Video). We113

characterize the collective behavior of fish, agents, and robots by means of five main114

quantities:115

• the group cohesion C(t) at time t, which characterizes the effective radius of the116

group, and hence its compactness;117

• the group polarization P (t), which quantifies the coordination of the headings of118

the individuals (P (t) = 1, if all individuals are perfectly aligned; P ∼ 1/
√
N , if119

the N individuals have uncorrelated headings, P becoming small only for large120

group size N , but being markedly lower than 1 for any N ≥ 5);121

• the distance rBw (t) of the barycenter B of the group from the wall of the tank,122

which is only small compared to the radius of the tank if individuals move together123

and along the wall of the tank;124
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• the relative orientation θBw (t) of the barycenter of the group with respect to the125

wall of the tank, which in particular characterizes whether the group is collectively126

swimming parallel to the wall of the tank (then, |θBw | ≈ 90◦);127

• the counter-milling index Q(t), which measures the relative direction of rotation of128

individuals inside the group (around the barycenter) with respect to the direction129

of rotation of the group around the center of the tank (see S4 Video).130

The Materials and Methods section and Figs. 2 and 3 provide the precise mathematical131

definition of these quantities. Moreover, we used the Hellinger distance (see Materials132

and Methods) between two probability distribution functions (PDF) in order to quantify133

the (dis)similarity between PDF obtained in fish experiments and the corresponding134

PDF obtained in the fish model (see Table 1) and in robot experiments (see Table 2)135

H. rhodostomus presents a burst-and-coast swimming mode, where a fish suddenly136

accelerates along a new direction (“kick”; see Fig. 1B, and S1 Video and S3 Video)137

and then glides passively until the next kick, along an almost straight line, a gliding138

phase during which the speed approximately decays exponentially [14]. The fish model139

derived in [14] explicitly implements this swimming mode and returns as the main140

information the new heading direction of the focal fish after each kick, which is controlled141

by its environment (wall of the tank, another fish). The interaction between a fish142

and the wall, and the interaction between two fish have been precisely extracted from143

actual experiments with H. rhodostomus [14]. The original procedure for extracting the144

interactions introduced in [14] exploited a large data set of ∼300000 kicks for one-fish145

trajectories (in tanks of 3 different radii) and ∼200000 kicks for two-fish trajectories,146

amounting effectively to a total of 70 hours of exploitable data. The measured interactions147

were then directly implemented in the model, which is hence not just a phenomenological148

model with mere guessed, albeit reasonable, interactions. Note however that the analysis149

in [14] does not provide any insight about how these interactions are combined in groups150

of more than two fish.151

The interaction between two fish was shown to be a combination of a repulsive (at152

short distance of order 1 BL – body length) and a long-range (in particular, compared to153

zebrafish [15]) attractive interaction at larger distance, and of an alignment interaction154

which tends to make the two fish align their heading direction. The attraction and155

alignment interaction functions determine the new heading angle of the focal fish in156

terms of the instantaneous relative state of the two fish, characterized by the distance157

between them, the viewing angle with which the neighbor is perceived by the focal fish,158

and their relative orientation (see Fig. 2). The additional change in heading angle due159

to the repulsive interaction between a fish and the wall of a circular tank is expressed in160

terms of the distance and relative angle of the fish to the wall (see Fig. 2). Finally, in161

addition to the fish-wall and fish-fish interactions, the change in heading angle includes162

a stochastic contribution describing the spontaneous fluctuations in the motion of the163

fish. In [14], the model was shown to quantitatively reproduce many fine measurable164

quantities in one-fish and two-fish experiments, ultimately producing a very precise165

description of the motion of one or two fish. For the sake of completeness, the model166

and its fish-wall and fish-fish interaction functions are summarized in the Materials and167

Methods section (Eqs. (4–15); see [14] for a more detailed description and justification168

of the model; see [14,15] for the extraction procedure of the interactions).169

When more than two fish are swimming in the tank (N > 2), the social pairwise170

interactions must be combined. In the framework of the fish model, it is natural to assume171

that the heading angle change of a focal fish is the sum of the pairwise contributions of172

some of its N − 1 neighbors. The resulting interaction thus depends on two factors: the173

number k of considered neighbors and the strategy to select them.174

We explore three different strategies of interaction between individuals and their175

neighbors in groups of size N = 5, comparing actual fish experiments with the resulting176
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fish model and the robotic platform. In the latter, the robots are programmed with the177

fish model and a control procedure to resolve collisions. The first strategy is based on178

the distance, so that individuals interact with their k nearest neighbors, with k = 1, 2, 3.179

The second strategy is a random strategy, where the k neighbors are randomly sampled180

among the other N − 1 individuals. Finally, the third strategy is based on the influence,181

defined below, where the k selected neighbors are those having the largest influence on182

the focal individual (as determined by the precise two-fish model of [14]). We also study183

the cases where there is no interaction between individuals (k = 0), and where each184

individual interacts with all its neighbors (k = 4).185

The influence Iij(t) of a neighbor j on a focal individual i at time t is defined as the186

intensity of the contribution of this neighbor j to the instantaneous heading variation187

of the focal individual i, as given by the firmly tested two-fish model of [14]. The188

influence Iij(t) depends on the relative state of the neighbor j with respect to the focal189

individual i, determined by the triplet (dij , ψij , φij), where dij is the distance between190

individuals i and j, ψij is the viewing angle with which i perceives j (i.e., the angle191

between the velocity of i and the vector ~ij), and φij is the difference of their heading192

angles, a measure of the alignment between i and j (see Fig. 2). The influence Iij(t) is193

evaluated at each kicking time of individual i by means of the analytical expressions of194

the pairwise interaction functions derived in [14] for fish swimming in pairs, according195

to Eq. (9) in the Materials and Methods section.196

To prevent cognitive overload, a reasonable assumption is that individual fish filter197

the information from their environment and thus limit their attention to a small set of198

their most salient neighbors [25–27] (to be followed; or to be avoided, by moving away199

or by aligning their headings), making the notion of most influential neighbors quite200

natural.201

The model for N > 2 agents thus proceeds as follows: at the time when the agent202

performs a new kick, its change in heading angle is calculated by adding the effects of203

the wall and the spontaneous noise to the effects of the k neighbors selected among the204

other N − 1 individuals according to one of the three strategies presented above:205

• by calculating the instantaneous distance between the focal individual i and each206

of its N − 1 neighbors and selecting the k nearest neighbors (strategy 1; nearest);207

• by randomly sampling k individuals among the N − 1 neighbors of i (strategy 2;208

random);209

• by calculating the instantaneous influence Iij(t) for each neighbor j of i and210

selecting the k neighbors with the largest influence (strategy 3; most influential).211

The strategy is thus characterized by the number k of neighbors taken into account in212

the social interaction and the criterion used to select them (nearest, random, or most213

influential). The strategy remains unchanged along the whole simulation. However,214

the identity of the neighbors selected to interact with a given agent can change from one215

kick to another, and must be updated at each kicking time of this agent. For instance,216

when using the nearest strategy with k = 2 in a group of N = 5 agents, the agents217

taken into account in the social interaction in the n-th kick of agent 1 can be the agents 2218

and 3, and the agents 4 and 3 in its (n+1)-th kick. In order to select these k neighbors at219

a specific kick, the N − 1 agents must be sorted according to the criterion corresponding220

to the strategy used in the simulation. This sorting process is carried out at each kicking221

time of the focal agent, independently of the state (kicking or gliding) of the other agents.222

If N is so large that the computational cost of this process becomes prohibitive, a more223

efficient algorithm can be implemented, such as keeping track of the agents that were224

selected in the most recent kicks and exploiting grid algorithms to identify neighbors.225

These interaction strategies explore different ways for an individual to focus its226

attention on the most relevant stimuli (i.e., neighbors).227
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Collective behavior in fish experiments228

Fish form cohesive groups with an average cohesion C ≈ 5 cm (Fig. 4). They are highly229

polarized, with the 5 fish swimming almost in the same direction (large peak at P ≈ 1230

in the distribution of P ; Fig. 5). In some instances, groups are observed in which231

one fish swims in the opposite direction to that of the other four, as shown by the232

small bump at P ≈ 0.6 in Fig. 5. Indeed, in this situation, the polarization is close233

to P ≈ |1 + 1 + 1 + 1 − 1|/5 = 0.6. Even less frequent are situations where two fish234

swim in the opposite direction to that of the other three, as shown by the very small235

bump near P ≈ |1 + 1 + 1− 1− 1|/5 = 0.2. The density maps of polarization P with236

respect to cohesion C (panels labeled “fish” in S1 Fig–S4 Fig) allow to visualize the237

correlations between both quantities, and will permit a comparison with the predictions238

of the fish model and the results of the robot experiments for the three interaction239

strategies considered here.240

Groups of 5 fish rotate clockwise (CW) or counter-clockwise (CCW) along the tank241

wall for long periods and remain close to the border of the tank, the group barycenter242

being at a typical distance rBw ≈ 7 cm from the wall (Fig. 6). Therefore, the group swims243

almost always parallel to the nearest wall, with a relative angle to the wall of the heading244

of the barycenter close to |θBw | ≈ 90◦ (Fig. 7). In fact, the peak in the PDF of |θBw | is245

slightly below 90◦, since the fish are more often going toward the wall than away from246

it [14].247

We also find a collective pattern where individual fish rotate around the barycenter B248

of the group in a direction which is opposite to the direction of rotation of the group around249

the center T of the tank (see Fig. 3 and S4 Video). We call this collective movement a250

counter-milling behavior, and define the instantaneous degree of counter-milling Q(t) as251

a measure in [−1, 1] of the intensity with which both rotation movements are in opposed252

directions (see the Materials and Methods section for the precise mathematical definition253

of Q(t) and its general interpretation). When Q(t) < 0, the fish rotate around their254

barycenter B in the opposite direction to that of the group around T (counter-milling),255

while when Q(t) > 0, the fish rotate in the same direction around B as the group rotates256

around T (super-milling). Fig. 8 shows that the fish exhibit a counter-milling behavior257

much more frequently than a super-milling behavior. Counter-milling behaviors result258

from the fact that fish located at the front of the group have to reduce their speed as259

they get closer to the wall of the tank. Fish located at the back of the group (that260

are generally farther from the wall [14]) move faster and outrun the slowing down fish,261

ultimately relegating them to the back of the group. This process gives rise to the262

rotation of individual fish around the group center, in the opposite direction to the one263

that the group displays around the tank (Fig. 3). This collective behavior resembles a264

coordinated swimming by relays which is nevertheless due to simple physical constraints,265

as already reported on wolf-packs hunting preys moving in circles [31].266

Simulation results of the computational model267

Collective motion in a circular tank268

Panels (ABC) of Figs. 4–8 show the probability distribution functions for our 5 quantifiers269

as obtained in numerical simulations of the fish model. The panels correspond respectively270

to the strategy in which agents interact with their k nearest neighbors (A), with271

k neighbors chosen randomly (B), and with k neighbors selected according to their272

influence on the focal agent (C). For these three strategies (nearest; random; most273

influential), we have considered all the possible values of the number of interacting274

neighbors, k = 1, 2, 3, together with the case where there is no interaction between275

agents (k = 0) and the case where each agent interacts with every other agent (k = 4).276
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For comparison purposes, we have rescaled the distance corresponding to the model277

by a factor λM = 0.87. This value is the minimizer of the l1-norm of the difference278

between the PDF of group cohesion for fish data, and the PDF of group cohesion for the279

simulation data produced by the model when using the strategy involving the k = 2 most280

influential neighbors. Noticeably, the fact that the value of λM is close to 1 indicates281

that the model produces a quite satisfactory quantitative approximation to the data of282

real fish. This rescaling procedure only affects the PDF of C and rBw , and not the PDF283

of P , θBw , and Q (3 quantities invariant by a change of distance scale).284

When k = 0, there is no interaction between agents and, as expected, one does not285

observe any compact group: individuals turn independently around the tank remaining286

close and parallel to the wall (as expected for fish swimming alone [14]). Their position287

and rotation direction along the walls are uncorrelated, and the individuals are scattered288

along the border (cohesion peaked around C ≈ 18 cm; rBw ≈ 15 cm), with an almost flat289

PDF for θBw (random orientation of the barycenter with respect to the wall). This results290

in a bell-shaped probability distribution function PDF for the polarization P , vanishing291

at P = 1 (Figs. 4–7).292

For k = 1, whatever the strategy used to select the interacting neighbor (the nearest293

one; a randomly selected one; the most influential one), the dynamics immediately294

reveals that interactions are at play, with groups becoming more cohesive (Fig. 4) and295

more polarized (Fig. 5) than for k = 0. Yet, the nearest strategy still leads to a very296

broad PDF of the group cohesion C, with a substantial weight near the maximal value297

of C ∼ 20 cm obtained for k = 0, indicating that the group often breaks into parts. For298

the random and most influential strategies, the weight at large distance in the PDF299

of C is absent, but the PDF are still broader than in fish experiments. As confirmed by300

the Hellinger distance quantifier (see Table 1 and Materials and Methods), the most301

influential strategy clearly leads to the sharper distribution of C (peaked around302

C ≈ 6.5 cm, compared to C ≈ 10 cm for the random strategy). The next section will303

show that, contrary to the nearest strategy, the most influential strategy with304

k = 1 can lead to compactness of the group even for larger groups (N = 6–70) moving305

in an unbounded domain. As for the group polarization P (Fig. 5), the three strategies306

lead to a PDF clearly peaked near P ≈ 0.9 (and a smaller peak near P ≈ 0.6; see above),307

yet certainly not as peaked near P = 1 as the PDF for fish experiments. Again, the308

most influential strategy leads to the best agreement with fish experiments (see309

Table 1), although the difference between strategies is not as marked as for the group310

cohesion. For the three strategies, the barycenter of the group is closer to the border311

and moves more parallel to the wall (Figs. 6 and 7). Counter-milling is obtained for312

the three strategies with comparable PDF (Fig. 8; see also S5 Fig), quite similar to the313

one obtained in fish experiments (we will see that the agreement unfortunately worsens314

when increasing k; see Table 1). Polarization vs cohesion density maps confirm that the315

nearest and random strategies are insufficient to convey the necessary information to316

reach the degree of cohesion and polarization (and their correlation) observed in groups317

of fish (S1 Fig, S2 Fig). The most influential strategy density maps for k = 1 already318

present the main features of the fish experiments, despite a still too broad spreading319

in the (C,P ) plane. Overall, for k = 1, the most influential strategy gives rise to320

significantly better results than the nearest and random strategies (see Table 1).321

For k = 2, the three strategies lead to a collective behavior in much better agreement322

with the fish experiments (see Table 1). In particular, the nearest strategy now system-323

atically leads to compact groups, with a PDF of the group cohesion C (Fig. 4) similar324

to the one obtained for the random strategy (both peaked around C ≈ 6.5 cm). The325

most influential strategy produces a PDF in good agreement with fish experiments326

(both sharply peaked around C ≈ 5 cm). The PDF of the polarization is now sharply327

peaked at P = 1 for the three strategies, with a slightly lower level of polarization for328
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the random strategy compared to the two others (see Fig. 5 and Table 1). Like in the329

case k = 1, the distance and alignment of the group with respect to the wall are better330

recovered for the nearest strategy (Figs. 6 and 7; Table 1), the two other strategies331

leading to slightly broader PDF but much narrower compared to the case k = 1. The332

counter-milling Q is enhanced for the three strategies compared to the case k = 1 and333

appears stronger than for fish experiments (Fig. 8). The deterioration of the model334

results for the counter-milling compared to k = 1 and experiments suggests that the335

internal structure of a fish group is more rigid than predicted by the model, actual fish336

behaving closer to particles rotating on a vinyl record (see the interpretation of Q in337

Materials and Methods). Compared to the case k = 1, where they were particularly far338

from the experimental maps, polarization vs cohesion density maps for the nearest339

and random strategies and k = 2 show a correlation between P and C in much better340

agreement with experiments (S1 Fig, S2 Fig). The most influential strategy results,341

already fair for k = 1, also improve. The nearest strategy leads to the best agreement342

with experiments in the representation of S1 Fig, while the most influential strategy343

leads to the best results in the representation of S2 Fig.344

When interacting with k = 3 neighbors, the results are almost identical for the345

three strategies because neighbors are the same a high percentage of the time. For two346

(respectively, three) given strategies, the selected neighbors are exactly the same 25% of347

the time (respectively, 6.25%); they have at least 2 neighbors in common 75% of the348

time (respectively, 93.75%); there is always at least one neighbor in common. Interacting349

with the 3 nearest neighbors instead of 2 only improves the group cohesion (see Table 1350

and Fig. 4), while using the 3 most influential ones, instead of 2, does not improve351

significantly any of the measures, including density maps (S1 Fig, S2 Fig). As already352

noted for k = 2, the counter-milling remains too pronounced compared to experiments353

for the three strategies and k = 3 (see Fig. 8 and S5 Fig).354

Finally, interacting with k = 4 neighbors does not significantly change the results355

obtained for k = 3 (see Figs. 4–8 and Table 1).356

Collective motion of 5 agents in an unbounded domain357

The model allows us to simulate the condition where agents are swimming in an un-358

bounded domain by removing the interaction with the wall. This condition is particularly359

interesting to assess the impact of the confinement of the agents due to the arena on360

group cohesion and polarization.361

Figs. 9 and 10 show respectively the time evolution of group cohesion and polarization362

for the most influential strategy (Panels AD) and the nearest strategy (Panels BE),363

and for k = 1 to 4. Despite the absence of confinement due to the wall, all the strategies364

except the one that consists in interacting only with the nearest neighbor (k = 1) allow365

the group to remain cohesive and polarized for more than 2.5 hours (≈ 104 kicks) in366

numerical simulations (see Figs. 9ABC and 10AB). When agents only interact with their367

most influential neighbor, the group is highly cohesive (C ≈ 0.1 m, Fig. 9A), but less368

than in the arena (C ≈ 0.07 m, Fig. 4C). However, the polarization is higher when the369

group swim in an unbounded domain (mean of P ≈ 0.93, Fig. 10A) in comparison to370

the arena (mean of P ≈ 0.78, Fig. 5C). Therefore, the confinement due to the arena371

reinforces the group cohesion and weakens the group polarization, which still remains at372

a high level for the most influential strategy.373

However, when agents only interact with their first nearest neighbor, the group374

disintegrates very quickly and then diffuses, with C2(t) growing linearly with the time t375

(Fig. 9C), and P (t) oscillating around 0.6 (Fig. 10B). Compact groups are recovered for376

the nearest strategy with k = 2, 3, but the most influential strategy systematically377

leads to more cohesive and more polarized groups (Fig. 9AB).378

In order to better understand to what extent the group cohesion depends on the379
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interaction strategy and/or on the long-range nature of the attraction [14], we have380

also simulated the model by truncating the attraction interaction between two agents i381

and j when their distance dij is greater than a cut-off distance dcut: FAtt(dij) = 0, if382

dij > dcut, where FAtt is defined in Eq. (10) of the Materials and Methods section. When383

dcut decreases below some critical value d∗cut, we expect that the group will break and384

that the agents will ultimately freely diffuse, illustrating the importance of the range385

of the attraction interaction to ensure the cohesion of the group (see Fig. 9DE) and386

Fig. 10DE).387

For the most influential strategy with k = 1, the group remains highly cohesive388

(Fig. 9D) and highly polarized (Fig. 10D) for dcut > d∗cut ≈ 0.9 m. For k = 2, 3,389

and 4, d∗cut is found to be slightly smaller than for k = 1 (d∗cut ≈ 0.8 m; Fig. 9D). For390

the nearest strategy with k = 2 (the group is never cohesive for k = 1, even for391

dcut =∞; see above), we find d∗cut ≈ 3.5 m (Fig. 9E), much higher than for k = 1 in the392

most influential strategy. Here, we clearly see that even at a smaller k, the most393

influential strategy is much more effective than the nearest strategy in ensuring394

the cohesion of the group, for finite-range attraction cut-off at dcut. For k = 3, the395

nearest strategy leads to a critical cut-off d∗cut ≈ 0.9, of the same order as for the most396

influential strategy (for k = 3, the involved neighbors are often the same for both397

strategies; see above).398

In conclusion, for groups of 5 agents in an unbounded domain, we have shown that399

the most influential strategy leads to a highly cohesive and polarized group for all400

k = 1, 2, 3, provided the range of the attraction is not too small (dcut > 0.8 m). For the401

nearest strategy, the group is never cohesive for k = 1, and a much larger range of the402

attraction (dcut > 3.5 m) is required to ensure the cohesion of the group for k = 2.403

Collective motion of larger groups in an unbounded domain404

For agents moving in an unbounded domain, we have simulated the model with the most405

influential strategy with k = 1, for groups of N = 6 to 70 individuals starting initially406

in a compact configuration (see Fig. 10C). The group remains highly cohesive for all sizes407

(up to N = 70), with a group cohesion of order C ∼ 0.1 m. The polarization remains408

high (P > 0.7) in groups of size N ≤ 20, and decreases as the group size increases. This409

suggests a smooth cross-over between a schooling phase up to moderate group sizes410

N ∼ 20, and a more disordered swarming phase for larger N . In fact, for the largest411

values of N investigated, schooling periods are also observed, alternating with periods412

of collective milling, resulting de facto in a reduced polarization of the group. The413

occurrence of the swarming, schooling, and milling phases as a function of the model414

parameters (group size N , strategy to select the interacting neighbors, intensity and415

range of the attraction/alignment interactions...) will be studied in a future work, as it416

has been previously done for the species Kuhlia mugil [32] (a species displaying a smooth417

swimming mode, instead of a burst-and-coast swimming mode).418

When agents only interact with their nearest neighbor, groups larger than N = 5419

disperse immediately and a larger number of neighbors k must be taken into account to420

preserve some degree of cohesion. We have also simulated larger groups (N = 6, . . . , 26;421

N even) with k = 1 to N − 1 for the nearest strategy. The results of S7 Fig (and422

Fig. 10F, in the particular case N = 20) show that each agent must interact at least423

with k ∼ N/2 nearest neighbors in order to obtain a degree of cohesion similar to the424

one observed for the most influential strategy with k = 1. Moreover, once k > N/2,425

groups become less cohesive as the number of nearest neighbors taken into account by426

agents increases. In fact, for N > 6 and whatever the value of k, the nearest strategy427

always leads to less cohesive groups (S7 FigA) than for the most influential strategy428

with k = 1, for which C ∼ 0.1 m.429

The simulation results also show that for the nearest strategy with k < 7, the430
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degree of polarization decreases with the group size. Moreover, the polarization reaches431

a maximum for k ∼ N/2 until N ≤ 14. For larger groups, interacting with more than432

k = 7 nearest neighbors reduces the degree of polarization, which becomes smaller as k433

increases (see S7 FigB and the particular case of N = 20 in Fig. 10F).434

Collective behavior in robotics experiments435

We now present the results of a series of experiments with N = 5 robots exploiting the436

three interaction strategies considered in the fish model. The robots are programmed437

to reproduce the model behavior (Eqs. (4–15) in Materials and Methods), with model438

parameters adapted to the different spatial and temporal scales of the robotic experi-439

mental setup (see Table 3). In addition, robots operate a control procedure designed to440

resolve collisions with the wall, and most importantly, with other robots (see Materials441

and Methods). Indeed, contrary to point particle agents in the fish model or to real fish442

swimming in shallow water (a truly 3D environment), robots moving on a strictly 2D443

setup cannot physically cross each other. The robots hence combine a behavioral model444

and an engineering-minded control system to deal with real-world physical constraints.445

Our robotic platform provides a concrete implementation of these two elements and446

understanding their interplay and their combined impact on the collective behavior of447

robots is certainly one of the main motivation of the experiments presented here.448

Panels (DEF) of Figs. 4–8 show the results of the robotic experiments performed in449

the same conditions as those studied with the model, including the case where robots do450

not interact with each other (k = 0) and the case where each robot interacts with all its451

neighbors (k = 4). However, the robotic experiment for the case k = 3 for the most452

influential strategy was not performed. Counter-milling in robots is illustrated in S6453

Fig, and the density maps of cohesion and polarization are shown in S3 Fig and S4 Fig.454

The robotic platform and the monitoring of a group of 5 robots in motion are shown in455

S2 Video.456

Despite the fact that the spatial and temporal scales of the robotic platform have457

been scaled at best to correspond to that of the fish experiments (in particular, 4× 4 cm458

square robots in an arena of radius R = 42 cm vs elongated fish of typical length 3 cm459

swimming in a tank of radius R = 25 cm), the border and other robots have a stronger460

effect on a focal robot at short distance. Indeed, as explained above, the collision461

avoidance protocol (see Materials and Methods) induces effective interactions between462

the robots that have a longer range than the interactions between fish. In addition, the463

square shape of the robot also makes them effectively bigger than if they were elongated464

like fish. Hence, the rescaling of distances as measured in robot experiments is necessary465

to be able to compare the different spatial distributions in fish and robot experiments,466

although it does not affect polarization, counter-milling, or angular distributions. As a467

result, we found a much smaller scaling factor than in model simulations: λR = 0.35.468

Note that once the optimal scaling factor is determined, it is kept fixed in all considered469

situations (strategy to select the interacting neighbors and their number k). From now,470

all distances in the robot experiments mentioned in this section are hence expressed471

after rescaling to be comparable to corresponding distances in the fish experiments.472

When k = 0, robots move independently from each other when they are sufficiently473

far from each other, and tend to remain dispersed along the border of the arena (S5474

Video). The group cohesion is weak (cohesion peaked at C ∼ 12 cm; Fig. 4DEF), and475

the distance of the barycenter to the wall is large (rBw ∼ 12 cm; Fig. 6DEF). Robots are476

relatively more cohesive and closer to the wall compared to the fish model for k = 0 due477

to volume exclusion effects (two colliding robots can end up going in the same direction478

as a result of the control procedure) and because the confining effects of the border of479

the arena are stronger in robots than in agents (see also S3 Fig and S6 Fig). Robots are480

not polarized, as already observed in the fish model simulations for the same condition481
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k = 0 (Panels DEF in Figs. 5).482

Interacting only with k = 1 nearest neighbor does not allow robots to coordinate their483

motion and move as a coherent group (see S6 Video). Panel (D) of Figs. 4–8 (cohesion;484

polarization; distance to the wall; angle with respect to the wall; counter-milling) show485

that the results for k = 1 are similar to those obtained for k = 0, with a marginal486

improvement of the group cohesion and polarization. On the other hand, when the487

robots interact with their most influential neighbor (S7 Video), the group is highly488

cohesive (C ∼ 6.5 cm; Fig. 4F) and highly polarized (large peak at P = 1 in Fig. 5F).489

The robots collectively move close to the border (rBw ∼ 7 cm; Fig. 6F). Counter-milling is490

also clearly visible (Fig. 8F, S7 Video and S6 Fig). Moreover, for the random strategy491

with k = 1, the results are somewhat intermediate between those for the nearest and492

most influential strategies, in terms of cohesiveness, polarization, and counter-milling493

(see Panel E in Figs. 4, 5, 8 respectively, and S8 Video). The similarity of the density494

maps of cohesion and polarization with those found in fish experiment is the highest for495

the most influential strategy compared to the other two strategies (S3 Fig and S4496

Fig). Overall, and as confirmed by the Hellinger distances listed in Table 2, the most497

influential strategy with k = 1 produces highly cohesive and polarized robot groups498

leading to a qualitative agreement with fish experiments, whereas the nearest strategy499

does not even lead to any significant group coordination.500

Extending the interaction to the k = 2 nearest neighbors reinforces group coordination501

(S9 Video): groups are more cohesive (the peak in the PDF of C decreases from around502

10 cm for k = 1, to 7 cm), and simultaneously more polarized (S3 Fig). However, the503

polarization remains weak compared to fish experiments, and even compared to the504

most influential strategy for k = 1: the PDF of P has a wide region of high values505

centered in P ≈ 0.85 and is not peaked at P = 1 (Fig. 5D). The high peak at P = 0.6506

reveals that situations in which groups of 4 robots move in the same direction while the507

fifth robot moves in the opposite direction are quite frequent. Wide groups (C > 8 cm,508

Fig. 4D) moving far from the border (rBw > 9 cm, Fig. 6D) are still frequent, and509

counter-milling is still barely visible (S6 Fig). On the other hand, interacting with the510

two most influential neighbors definitively produces patterns that are similar to those511

observed in fish experiments, especially if we consider the polarization, where the peak512

at P = 1 clearly narrows and doubles its height (Fig. 5F and S10 Video), although the513

improvement with respect to the most influential strategy with k = 1 is small, or514

even negligible, if we consider the counter-milling index (Fig. 8F). Again, the random515

strategy with k = 2 leads to an overall much better agreement with fish experiments516

than the nearest strategy with k = 2 (see Hellinger distances between PDF in Table 2).517

Except for the weaker polarization, the results for the random strategy are similar to518

the ones obtained for the most influential strategy with k = 2 (see Table 2 and S11519

Video).520

For k = 3, the results for the nearest strategy (see S12 Video) improve drastically521

and are in comparable agreement with fish experiments as the results for the random522

strategy (S13 Video), and on par with those for the most influential strategy for523

k = 1, 2 (see Table 2). For the nearest and random strategies (sharing 2, and often524

3, common neighbors for k = 3), groups are highly cohesive (Fig. 4DE) and polarized525

(Fig. 5DE), with a narrower PDF of C than in fish experiments, pointing to the robot526

groups having less internal fluctuations than fish groups. Accordingly, the PDF of rBw527

(Fig. 6DE) is peaked at the same value as in fish experiments, rBw ≈ 5.5 cm, but is again528

narrower, with much less weight at distances rBw > 8 cm. The PDF of θBw (Fig. 6DE) is in529

good agreement with fish experiments, and counter-milling is clearly obtained (S6 Fig).530

When robots interact with k = 4 neighbors (S14 Video), the results are very similar to531

the case k = 3 within the non negligible statistical fluctuations due to our shorter robot532

experiments compared to the fish experiments and fish model simulations.533
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In conclusion, many of the results of the robotic experiments are qualitatively similar534

to those found in the simulations of the model, despite the robots being submitted535

to real-world physical constraints. Yet, for robots, the most influential strategy536

with k = 1 is found to lead to cohesive and polarized groups (like in the model), while537

the nearest strategy with k = 1 does not lead to any significant group coordination538

(weaker coordination for the model in a confining domain, but no cohesive groups in an539

unbounded domain).540

Discussion541

Collective motion involving the coherent movements of groups of individuals is primarily542

a coordination problem. Each individual within a group must precisely adjust its543

behavior to that of its neighbors in order to produce coordinated motion. Determining544

how these relevant neighbors are selected at the individual scale is therefore a key545

element to understand the coordination mechanisms in moving animal groups. Previous546

experimental works on fish and birds have identified interacting neighbors using short-547

term directional correlations [17,34] or anisotropy of the position of the nearest neighbors548

[21]. In a starling flocks (Sturnus vulgaris), each bird coordinates its motion with a finite549

number of closest neighbors (typically seven), irrespective of their distance [21]. However,550

in fish schools, experimental studies suggest that each individual only interacts with a551

smaller number of influential neighbors. For instance, in the mosquitofish (Gambusia552

holbrooki), each fish mostly interacts with a single nearest neighbor [35]. In the rummy553

nose tetra (Hemigrammus rhodostomus) during collective U-turns [28,36], the analysis554

of directional correlations between fish suggests that each fish mainly reacts to one or555

two neighbors at a time [28]. These results are in line with theoretical works that have556

suggested that, instead of averaging the contributions of a large number of neighbors,557

as suggested by many models [18–20,23,37, 38], individuals could pay attention to only558

a small number of neighbors [25–28,39]. This mechanism would overcome the natural559

cognitive limitation of the amount of information that each individual can handle [33].560

Here, we addressed this question in groups of five H. rhodostomus swimming in a561

circular tank. This species of fish is of particular interest because of its tendency to form562

highly polarized groups and its burst-and-coast swimming mode [14], which allows us to563

consider that each fish adjusts its heading direction at the onset of each bursting phase,564

that is labeled as a “kick”. Just before these brief accelerations, a fish integrates and565

filters the information coming from its environment and picks its resulting new heading.566

In our experiments, groups of five fish remain highly cohesive, almost perfectly567

polarized, and swim along and close to the wall of the tank, keeping the same direction of568

rotation for very long periods [36]. Fish groups also display a remarkable counter-milling569

collective behavior where individual fish rotate around the group barycenter in the570

opposite direction to that of the group in the tank, so that individuals alternate their571

positions at the front of the group.572

Based on a previous work in which we have reconstructed and modeled the form of the573

interactions of H. rhodostomus fish swimming in pairs [14], we analyzed three strategies574

for combining the pairwise interactions between a focal fish and a number k = 1 to 3 of575

its neighbors by means of a computational model and a robotic platform. In the nearest576

strategy, neighbors are selected according to their distance to the focal individual. In577

the random strategy, neighbors are randomly chosen, and in the most influential578

strategy, neighbors are selected according to the intensity of their contribution to the579

heading variation of the focal individual. The impact of these strategies on the resulting580

collective behavior was then measured and analyzed by means of five quantities: group581

cohesion, group polarization, distance and relative orientation of the barycenter with582

respect to the border of the tank, and counter-milling index.583
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Our results suggest that when individuals (agents or robots) interact with a minimal584

number of neighbors, namely two, a group of individuals is able to reproduce the main585

characteristics of the collective movements observed in the fish experiments.586

In the simulations of the model for N = 5, when the agents are interacting with587

a single neighbor, this immediately leads to the formation of groups. Whatever the588

strategy used to select a neighbor, the quantities used to quantify group behavior show589

that the exchange of information with a single neighbor leads agents to get closer to each590

other, at least temporarily for the nearest strategy. However, whatever the strategy591

considered, cohesion, polarization, and counter-milling are still weak compared to fish592

experiments, although the most influential strategy convincingly leads to the best593

group coordination for k = 1.594

The simulations of the model in an unbounded domain show that group cohesion is595

maintained over long periods of time when agents only interact with their most influential596

neighbor, provided the attraction range is above a critical threshold distance. However,597

when agents only interact with their nearest neighbor, this systematically leads to the598

diffusive dispersion of the group. For groups of size up to N = 70, interacting with the599

most influential neighbor leads to compact groups, while one needs to consider typically600

at least ∼ N/2 nearest neighbors to achieve the same result for the nearest strategy.601

Therefore, the cohesion of the group observed in the arena is not a merely consequence602

of the confinement of the agents, but mainly results from the higher quality of the603

information provided by the influential neighbors in comparison to the one provided by604

the nearest neighbors.605

Then, when agents acquire more information about their environment (k = 2), all606

the interaction strategies implemented in the model give rise to collective behaviors that607

are in qualitative agreement with those observed in the experiments with fish, and a608

quantitative agreement is even reached for some quantities characterizing group behavior609

(see Table 1). When agents collect even more information about their environment610

(i.e., when they pay attention to k = 3 neighbors), the agreement with fish experiments611

is not improved if the neighbors are chosen according to their influence. However,612

groups become more cohesive and polarized when the agents interact with their nearest613

neighbors. Yet, for k = 3, the three strategies lead to comparable results, which is614

consistent with the facts that two strategies have necessarily at least two common615

neighbors for groups of five individuals. Note that for k = 2 and k = 3, and for all616

three strategies, the intensity of the counter-milling is larger in the model than in fish617

experiments, suggesting that the internal structure of real fish groups is more rigid than618

predicted by the model.619

In summary, the simulation results clearly indicate that group behaviors similar620

to those observed in fish experiments can be reproduced by our model, provided that621

individuals interact with at least two of their neighbors at each decision time and no622

clear gain is obtained when agents interact with a third additional neighbor. When only623

one interacting neighbor is considered, the most influential strategy leads to the624

best group coordination, which even survives when the group moves in an unbounded625

domain.626

By implementing the behavioral fish model and the same local interaction strategies627

in our robotic platform, we also investigated the impact of the physical constraints and628

the collision avoidance protocol based on speed control on the group behavior. The629

most influential strategy is much more efficient than the two other strategies to630

ensure group cohesion and polarization (see Table 2). Remarkably, and as already631

observed in the model simulations, even when robots only interact with their most632

influential neighbor, the group remains highly cohesive and polarized, and close to the633

border. By contrast, when robots only interact with their nearest neighbor, they are634

not able to exhibit any kind of coordinated behavior. Everything happens as if pairwise635
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interactions between robots were screened by the effect induced by the collision avoidance636

protocol: the distributions of the group cohesion, the polarization, and the distance637

of the barycenter of the group to the border of the tank are almost identical to those638

obtained with the null model, in which no interaction exists between robots except for639

collision avoidance. When robots interact with two neighbors, the agreement with the640

results of fish experiments is improved, but it is only when robots interact with three641

nearest neighbors that the nearest strategy produces highly cohesive and polarized642

groups.643

Overall, and even more convincingly than in the case of the fish model, the most644

influential strategy leads to the best overall agreement with fish experiments for k = 1645

and k = 2, even producing strongly coordinated groups for k = 1. Compared to the646

case of the fish model, the nearest strategy does not lead to any significant group647

coordination for k = 1, and only to moderately cohesive and polarized groups for k = 2,648

yet being even less efficient than the random strategy. The robot collision avoidance649

protocol induces a strong effective repulsion between close neighbors, which screens the650

behavioral interactions for the strategy based on these nearest neighbors.651

Note that implementing the k-most influential strategy in a computational652

model for larger groups of agents is not more computationally challenging than the653

implementation of the more common k-nearest strategy, and is even less demanding654

than the consideration of the first layer of neighbors in a Voronoi construction used in655

many phenomenological flocking models [21, 22, 32]. For very large groups (N > 10000),656

rarely considered in the context of fish models, the implementation of the k-most657

influential and k-nearest strategies could also be optimized by exploiting grid658

algorithms commonly used in computational physics and astrophysics.659

However, beyond its purely computational complexity, the possible biological relevance660

of the most influential strategy (with small k) for fish and potentially other animals661

is certainly an important question. In vertebrates, and in particular in fish, the midbrain662

and forebrain networks are carrying out computation in parallel to process the visual663

information and select the most salient stimuli that are the focus of attention. The664

midbrain network continuously monitors the environment for behaviorally relevant665

stimuli [40]. This is a primary site where the information about the neighbors is filtered666

for cognitive decision. Then, the forebrain network selects those stimuli on which the fish667

focuses its attention. The interaction strategies that we have investigated in this work668

correspond to different ways for an individual to focus its attention on the stimuli (i.e.,669

its relevant neighbors). In the context of fish schools, individuals filter the information670

from their environment and thus limit their attention to a small set of their most salient671

neighbors [25–27], hence giving priority to the few neighbors to be avoided (by moving672

away or by aligning their headings) or the ones to be followed. These few neighbors673

requiring an immediate action from the focal fish should, by definition, trigger a larger674

response than other neighbors, hence making the notion of most influential neighbors675

quite natural. Our results show that each fish interacts with typically two neighbors676

that are the most salient, a process which reduces the amount of information that needs677

attention and which hence permits to avoid any cognitive overload.678

In conclusion, each individual must acquire a minimal amount of information about679

the behavior of its neighbors for coordination to emerge at the group level, thus allowing680

fish to avoid information overload when they move in large groups [33].681
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Materials and Methods682

Fish experiments683

Ethics statement. Our fish experiments have been approved by the Ethics Committee684

for Animal Experimentation of the Toulouse Research Federation in Biology N◦ 1 and685

comply with the European legislation for animal welfare.686

Study species. Rummy-nose tetras (Hemigrammus rhodostomus) were purchased687

from Amazonie Labège (http://www.amazonie.com) in Toulouse, France. Fish were kept688

in 150 l aquariums on a 12:12 hour, dark:light photoperiod, at 25.2 ◦C (±0.7 ◦C) and689

were fed ad libitum with fish flakes. The average body length of the fish used in these690

experiments is 31 mm (±2.5 mm).691

Experimental setup. We used a rectangular experimental tank of size 120× 120 cm,692

made of glass, supported by a structure of metal beam 20 cm high. A plywood plate693

was interposed between the mesh and the basin to dampen the forces exerted on the694

glass basin by its own weight and water. This structure also enables the attenuation695

of vibrations. The setup was placed in a chamber made by four opaque white curtains696

surrounded by four LED light panels to provide an isotropic lighting. A circular tank of697

radius R = 250 mm was set inside the experimental tank filled with 7 cm of water of698

controlled quality (50% of water purified by reverse osmosis and 50% of water treated699

by activated carbon) heated at 24.9 ◦C (±0.8 ◦C). Reflection of light due to the bottom700

of the experimental tank is avoided thanks to a white PVC layer.701

Each trial started by placing groups of N = 5 fish randomly sampled from the702

breeding tank into the circular tank. Fish were let for 10 minutes to habituate before703

the start of the trial. A trial then consisted of one hour of fish freely swimming in704

the circular tank with experimenters out of the room. Fish trajectories were recorded705

by a Sony HandyCam HD camera filming from above the setup at 25 Hz (25 frames706

per second) in HDTV resolution (1920×1080p). We performed 11 trials with groups of707

N = 5 fish, and for each trial, we used different fish taken from the breeding tank.708

Robotic platform709

Robots. We used a robotic platform composed by small compact mobile robots that710

we named “Cuboids”, a name chosen in reference to the first realistic computer program711

that simulated the flocking behavior in birds and the schooling behavior in fish, called712

“Boids”, developed in 1986 by Craig Reynolds [41]. The Cuboids robots were specifically713

designed by us for this experiment.714

Cuboids have a square basis of 40 × 40 mm, they are 60 mm high and weigh 50 g715

(Fig. 11). We now describe the elements of a Cuboid (numbers between parentheses716

refer to labels in Fig. 11). Each robot is equipped with two differential wheels (7)717

driven by small DC motors (13). The small belts (9) connect wheels to the DC motors,718

which can drive the robot with a maximum speed of 50 mm/s. The two wheels are719

mounted on a central axis (6). An IEEE 802.11n/WIFI module (8) with a range of720

approximately 200 m is used for communication network between robot and a wireless721

router. A Li-Poly rechargeable battery (15) provided energy for about 6 hours in our722

experimental conditions. In addition, a coil (12) located under the robot, can be used723

to charge the robot wirelessly while it is working. The charging circuit is located on724

the side board (11). The robot bottom hosts a 32-bit, 168 MHz ARM microprocessor725

STM32F4 (14), which can provide multi control loops with the time duration up to726

2 ms. Besides, another 8-bit microcontroller PIC18F25k22 is mounted on the top sensor727

board (1), which controls a LCD screen (16) to display information and a 3-colors728
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LED (17). The microprocessor communicates with the microcontroller by 4 copper729

bars (4), which can simultaneously provide power and communication bus.730

Each Cuboid also has several sensors to measure the relative positions of other robots731

in its neighborhood and to send and receive messages from these robots. Within a732

sensing range of about 20 cm, a robot can send messages (infrared signals) by the center733

IR transmitter (3). There are two IR receivers (2) on both sides of the robots, which734

can determine the distance of a neighboring robot that transmits the infrared signal.735

From the two distance values provided by the IR receivers, the angle with which this736

neighboring robot is perceived by the focal robot can be calculated by triangulation.737

Furthermore, the relative position of the neighboring robot to the focal one can be738

computed by the information of the distance and the angle of perception acquired before.739

On the other side, the IR signal also carries a short message that includes information740

on robot ID, orientation angle, speed and states. The heading of a Cuboid is measured741

by a motion tracking sensor MPU-9250 (18). This device consists of a 3-Axis gyroscope,742

a 3-Axis accelerometer, and a 3-Axis magnetometer. Hence, the MPU-9250 is a 9-axis743

Motion Tracking device that also combines a Digital Motion Processor. With its I2C bus744

connected with PIC18F25K22, the MPU-9250 can directly provide complete 9-axis745

Motion Fusion output to the microcontroller. These sensing and local communication746

devices have not been used in the experiments that have been done in a supervised747

mode.748

We tested the model with the robotic platform because there are many physical aspects749

that have to be considered to assess the robustness of the coordination mechanisms when750

they are implemented in a physical hardware. These physical aspects include the friction751

of wheels, the noise of gear box, the blurring of the camera, the wrong identification of752

the tracker, the delay of the communication, the overload of computation, the blocking753

of the onboard communication bus, the square shape collision of the robot frame, the754

mismatch parameters of the interaction model, the impact of the obstacle avoidance755

protocol, and the non-holonomic constraint of the robot. All these physical aspects can756

have a large effect on the individual and collective behaviors (especially when robots757

move in a crowded space) and are difficult to include in a model.758

Experimental platform. The robotic experimental setup consisted of a circular759

arena of radius 420 mm resting on a 1× 1 m square flat surface with a camera (Basler760

piA2400-17gc) mounted on the top (see Fig. 12). The setup was placed in a chamber761

made by 3 opaque wooden boards and 1 white curtain. 2 LED light panels provide a762

diffused lighting. A circular cardboard wall of radius R = 420 mm delimited the border763

of experimental platform. The floor of the experimental platform was made with a rough764

wooden board that prevented the reflections of light. A computer is connected to the765

camera to supervise the actions of the robots in the arena, and to perform the necessary766

image processing to track each robot and compute in real time its position (x, y) and767

heading angle φ.768

The clock cycle of the imaging process module is 300 ms, a limit imposed by the769

camera updating speed. A tracking software (Robots ID Tracker), based on the Kalman770

filter technology, is then used to assign the location data to the right robots on a shorter771

time scale (every 20 ms). These data are used in real time to control the reaction of772

each robot in its changing environment, and are also stored in the computer for off-line773

a posteriori trajectory analysis. Thanks to the high precision of our tracking system, we774

are able to compute in real time and for each robot i the quantities that characterize its775

instantaneous state with respect to its environment: the distance and relative orientation776

to the wall riw and θiw, and the distance, relative angular position, and relative orientation777

with respect to other robots j, dij , ψij and φij , respectively (Fig. 2). All this information778

is used to compute the output of the interactions of a robot with its local environment779
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by means of an Object-Oriented Programming software developed by us. The robot780

behavior is driven by the mathematical fish model, which combines the interactions with781

the obstacles and with the other robots, and generates the control signals dispatched782

in a distributed way to each individual robot through a WIFI communication router783

(HUAWEI WS831).784

Although the robot has its own sensors to ensure it autonomous control and move-785

ments, in this work, we used a remote-control mode. This is because our goal was to786

compare the performances between the software simulation and the robot experiment787

with the same computational model and the same local information input (see the788

Hardware In Loop simulation in Fig. 13; [42]).789

Fig. 13 (red and blue boxes) shows the “Hardware In Loop” (HIL) simulation used790

to control the Cuboids robots. The HIL simulation integrates the robots hardware into791

the distributed control loops of the platform computer software. As such, it differs792

from a traditional software simulation, being a semi-real one. Compared with pure793

theoretical simulations “in silico” (i.e., the software simulation box in Fig. 13), the HIL794

simulation integrates both the hardware constraints (i.e., the mechanical constraints of795

the robots, the time delay of the control loop which includes the shooting by the camera,796

the time of calculation and sending orders by the WIFI router), and those that result797

from the movement of the robots in a physical environment, in particular the need to798

avoid collisions with obstacles and other robots (see the blue box in Fig. 13).799

The main difference between the HIL simulation and the software simulation is the800

real time control of the behavior of each robot, which is achieved by the Motion Control801

and the Real Time Control modules (see the red box in Fig. 13).802

The Motion Control module can produce two kinds of motion patterns: rotating and803

moving straight. The first motion pattern is Spot Rotation, which means that the robot804

rotates around its center by means of wheels differential driving. The speed control of805

the two wheels is described by the following equation:806

VR,i = −VL,i = pt δφci,

where VR,i and VL,i are the speeds of the right and left wheels of the robot respectively,807

pt is a constant factor of proportionality, and δφci is the real-time value of the heading808

variation, which is determined by the Real Time Control module. The second motion809

pattern that the robot can display is Moving Straight, where the speeds of the left and810

right wheels are the same:811

VR,i = VL,i = pm lci,

where pm is a constant factor of proportionality and lci is the value of the kick length,812

which is also determined by the Real Time Control module.813

The Real Time Control module ensures the safe movement of each robot and helps814

the robot to rotate and move straight towards a target place. This module first converts815

the decision of the computational model (δφi(tdec), li(tdec)) at the last decision time tdec816

into a real-time decision that is then performed by the robot, (δφci(t), lci(t)), t > tdec.817

818819

Algorithm of the Real Time Control module820

821

Input:822

Computational Model decision: (δφi(tdec), li(tdec)),823

Current position and heading: (xci(t), yci(t)), φci(t).824

Output:825

Real-time decision: (δφci(tdec), lci(tdec))826
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1. δφci(t) = φi(tdec) + δφi(tdec)− φci(t), t > tdec.827

2. lci(t) = li(tdec)−
√(

xci(t)− xi(tdec)
)2

+
(
yci(t)− yi(tdec)

)2
.828

3. If |δφci(t)| > δφThreshold, then829

Do Spot rotation for Motion Control in real-time.830

else831

Do Moving straight for Motion Control in real-time.832

4. If |δφci(t)| < δφThreshold and lci(t) < lThreshold, then833

the target is reached;834

Goto Compute state (computational model) for a new decision.835

5. If the path is not free, then836

Do Obstacle Avoidance procedure.837

6. End838

839840

There are two time-scales in the control for the robots. The long time scale is841

determined by the time taken in simulating the computational model, which is about842

1.3 s. The short time-scale corresponds to the Real Time Control module, which operates843

at a high frequency with respect to the real time motion of the robot. This module is844

used to control the navigation of the robot toward the target and the obstacle avoidance845

(see the table of Algorithm of the Real Time Control module). The maximum time846

interval of the Real Time Control module is 20 ms for each robot. With such a fast847

frequency, the communication channel is always busy. To solve this problem, we designed848

and used a specific protocol to broadcast in one loop the Motion Control command (VR,i,849

VL,i) to each respective robot i, based on TCP protocol, thus guaranteeing the speed850

and the robustness of the communication channel. The average duration of one of these851

loops (for all robots) in the Real Time Control is about 13 ms (Fig. 13).852

Implementation of the behavioral model in the robots. We use the LabVIEW853

object-oriented programming (OOP) tool to design the distributed control software854

for the Cuboids robots (Fig. 13). It first establishes independent memories for each855

robot as an agent to store real time information, such as robot ID, location and heading856

(xci(t), yci(t), φci(t)) at time t, and real time decision (δφci(t), lci(t)). We design a state857

machine control structure to implement the HIL simulation control for each robot. With858

the new speed control command determined by the Motion Control module, the actuators859

of the robot are controlled wirelessly by the WIFI signals sent by the computer. The860

robot controls its wheels to move towards the new target place while LED colors display861

the state of the robot.862

Robots use a constant kick length li(tdec) of around 8 cm, that is, twice the body863

length of a robot, which corresponds to the mean kick length measured in experiments864

with five fish. Using a constant straight step also allows to check if the new target865

place can be reached or not, in particular, to prevent the case where the agent could be866

intercepted by another agent, in which case the distance traveled by the agent will be867

shorter than li(tdec).868

The state machine control structure for an individual robot includes two main states:869

COMPUTE state and MOVE state; see the flow chart of the robot state machine and870

the finite state machine diagram in Fig. 14 and S8 Fig respectively. The robots are871

programmed to perform a burst-and-coast movement mimicking the swimming mode of872

fish. When a robot is in the COMPUTE state at time tdec, the computational model873

determines a new decision (δφi(tdec), li(tdec)) (see hereafter and [14] for the description874
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of the model; the model parameter for the robots are listed in 3 Table). After that, the875

robot switches to the MOVE state and adjusts its wheels to move towards the decision876

place in real time thanks to the Motion Control and Real Time Control modules. Since877

other robots are moving around asynchronously, the robot must avoid these dynamic878

obstacles while being in the MOVE state. To prevent collisions between robots, we879

designed and implemented an obstacle avoidance protocol. When no valid targets can880

be generated during the COMPUTE state (due to the impediment imposed by nearby881

robots), the robot generates a valid target place by means of a scanning method and,882

alternatively, just moves back over a short distance. However, this circumstance rarely883

occurs in our experiments (except in the absence of behavioral interactions, k = 0; see884

S5 Video).885

We describe below the two states and the additional procedures used to avoid collisions886

with dynamical obstacles.887

• COMPUTE State: This state generates a new decision (δφi(tdec), li(tdec)) for888

the focal robot by means of the computational model, which is programmed in889

MATLAB. In this state, the robot takes the information about its local environment890

(rw,i, θw,i) and selects the neighbors to be taken into account corresponding to the891

current local interaction strategy. Then, the robot computes the variation of its892

heading angle δφi(tdec) that, combined with the kick length li(tdec), determines a893

new target place. The location of the new target is then checked and validated894

by the OOP software so as to avoid any collision with static obstacles, before the895

robot switches to the MOVE state (see Fig. 14, S8 Fig). While a robot is in the896

COMPUTE State, the white LED light is turned on.897

• MOVE State: In this state the robot evaluates whether its heading angle φci is898

aligned with the new pace target. If the deviation δφci is too large, the robot899

first rotates towards the target and then moves straight until it reaches the target,900

thanks to the Motion Control module. Then, when the robot successfully reaches901

the target, it returns to the COMPUTE state to determine a new target. While a902

robot is in the MOVE State, the green LED light is turned on.903

• Obstacle Avoidance Protocol: This procedure is triggered as soon as the target904

path of the focal robot i crosses the safety zone of another robot j. The safety905

zone is a circular area around a robot of diameter of 80 mm. In this case, the906

focal robot i first stops and computes whether it can continue moving or not,907

according to the information it has about the distance dij and relative angular908

position ψij of the neighboring robot. If the focal robot has the moving priority909

(determined by a large value of the angle of perception, |ψij | > 90◦, meaning that910

the robot is a temporary leader [14]), or if the distance is larger than the diameter911

of the circle of security (dij > 80 mm, meaning that the robot j is far enough),912

the moving condition is satisfied and the focal robot i successfully switches back913

into the MOVE state. If not, it repeatedly checks the values dij and ψij until the914

moving condition is satisfied. If the focal robot cannot go back into the MOVE915

state within 3 seconds, it toggles to the COMPUTE state to determine a new916

target.917

• No Valid Target Procedure: This procedure is triggered when the robot is in the918

COMPUTE state and cannot generate a valid target place within 3 seconds. In919

this situation, the robot scans the local environment from its front to the nearest920

neighbor located at one of its sides. If there exists a free space for generating a921

target place, the robot toggles to the MOVE state. If, after scanning, no free space922

is available for moving, the robot moves back over a predefined distance of 80 mm923

(approximately two robot body lengths) and then toggles to the COMPUTE state924

to determine a new target place.925
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In the robotic experiments, we performed one experiment for each combination of926

interactions with about 8000 kicks in average for all the 5 robots. The duration time of927

experiments performed for each condition was the following:928

• Interacting with k = 1, 2 and 3 nearest neighbors: 61, 62 and 63 min respectively.929

• Interacting with k = 1, 2 and 3 randomly chosen neighbors: 65, 128 and 48 min930

respectively.931

• Interacting with k = 1 and 2 most influential neighbors: 68 and 82 min respectively.932

• Interacting with k = 0 and k = 4 neighbors: 150 min in both cases.933

Data extraction and preprocessing934

Fish data were extracted from videos recorded during 11 sessions along 11 days in 2013,935

by means of idTracker software version 2.1 [43], producing 11 data files with the position936

(in pixels) of each fish in each frame, with a time step of ∆t = 0.04 s (corresponding937

to images taken with a frequency of 25 fps). Data were located in a rectangle of size938

[471.23, 1478.48]× [47.949, 1002.68] containing the circular tank of diameter 50 cm. The939

conversion factor from pixels to meters is 0.53× 10−3 m/pix. The origin of coordinates940

T (0, 0) is set to the center of the tank (Fig. 1).941

We found that trajectory tracking was satisfactorily accurate. However, fish were942

often misidentified, making impossible the direct use of the data provided by the tracking943

system. We thus implemented a procedure of identity reassignment that provided us944

with the proper individual trajectories. In short, the procedure is a sorting algorithm945

where fish identities are successively reassigned in such a way that the coordinates of946

each fish at the next time step are the closest ones to the coordinates they had at the947

previous time. That is, the fish i at time t is assigned the coordinates of fish j at time948

t+ ∆t that minimize the distance covered by the 5 fish.949

Data were then grouped in a single file, counting 1.077.300 times, i.e., almost 12 hours950

where the position of each fish is known. Then, times where at least one fish freezes951

were removed. Fish often remain stationary. We considered that a fish is at rest when952

the distance covered in 60 frames is smaller than 30 pixels, that is, when the mean speed953

is smaller than 6.6 mm/s during at least 2.4 seconds. We discarded more than half of954

the data using this procedure (around 5.5 hours of data remaining). We then extracted955

the continuous sequences lasting at least 20 seconds, obtaining 293 sequences for a total956

duration of around 3h 10mn.957

Fish trajectories were then segmented according to the burst-and-coast typical958

behavior of this species [14] (see Fig. 1C). We used a time window of 0.2 s to find the959

local minima of the velocity. These points are used to define the onset of a kick event.960

We detected 60312 kicks, which means that a fish makes in average around 1 kick/s.961

In [14], no statistically meaningful left/right asymmetry in the trajectories of single962

fish (∼300000 kicks recorded) or pairs of fish (∼200000 kicks recorded) was observed.963

Hence, for any observed trajectory, the mirror trajectory (that is the same one, but964

as observed from the bottom of the tank instead of from the top) would have exactly965

the same probability to be observed. Assuming the absence of left/right asymmetry for966

groups of 5 fish (as observed for 1 and 2 fish), leads to the same conclusion. Groups967

of 5 fish (as well as groups of 5 model fish or 5 robots) rotate clockwise (CW) or968

counter-clockwise (CCW) around the center of the tank for long periods (collective969

U-turns in groups of 2-20 fish have been studied in [36]). Therefore, for the much shorter970

present fish (and especially robots) experiments compared to [14] (60312 recorded kicks,971

instead of ∼500000), one would observe an artificial asymmetry (groups turning more972

often CW than CCW, or the opposite) only due to the lack of statistical sampling of the973
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rare collective direction changes. In order to avoid this artificial asymmetry, for each974

set of 5 trajectories (fish and robots), we have added the mirror set (the trajectories975

as seen from the bottom of the tank). Again, this procedure is perfectly sound once976

the absence of left/right asymmetry observed in very long 1- and 2-fish experiments is977

reasonably assumed to hold in our present 5-fish experiments (the model and its version978

implemented in robots have obviously no left/right asymmetry, per construction). Note979

that only the distribution of θBw is affected by this symmetrization procedure, and not980

the distributions of group cohesion, polarization, distance to the wall, counter-milling981

index (the latter being a relative quantity), which are invariant by the mirror symmetry.982

To calculate the heading angle of a fish at time t, we considered that the direction983

of motion is well approximated by the velocity vector of the fish at that time t. The984

heading angle φ(t) of a fish is thus given by the angle that its velocity ~v = (vx, vy) makes985

with the horizontal line, that is,986

φ(t) = ATAN2 (vy(t), vx(t)) . (1)

Positive angles are measured in counter-clockwise direction and ATAN2 returns a value in987

(−π, π]. The components of the velocity are estimated with backward finite differences,988

i.e., vx(t) = (x(t)− x(t−∆t))/∆t and vy(t) = (y(t)− y(t−∆t))/∆t.989

The robot trajectories were extracted with a custom-made tracking software based990

on Kalman filter and pattern recognition technology [44]. Data were recorded every991

∆t = 0.04 s, and trajectories were then subjected to the same treatment.992

Computational model993

We use the same model to describe the time evolution of agents in the simulations and to994

control the decisions of the robots in the experiments, albeit with different parameters to995

accommodate for the different spatial and temporal scales in the two cases (see Table 3).996

Hemigrammus rhodostomus displays a “burst-and-coast” swimming behavior char-997

acterized by sequences of sudden speed increases called “kicks”, each followed by a998

quasi-passive deceleration and gliding period along a near straight line until the next999

kick (Fig. 1C, S1 Video, S3 Video).1000

In our model, we consider that a fish makes the decision to change its heading and1001

to pick its new kick length and duration exactly at the onset of each kick [14]. The1002

behavior of an agent i is thus described by a sequence of kicking times tni at which1003

the agent i performs its n-th kick. An agent selects a new heading depending on the1004

instantaneous state of its environment (other fish; obstacles), as perceived exactly at1005

the onset of a new kick, although the results of [28] suggest that the integration of1006

the necessary information by an actual fish can take a few tenths of a second during1007

the previous gliding period. Hence, at each of its kicking times tni , the agent i collects1008

the information of its instantaneous relative position and heading with respect to the1009

obstacles and to the other agents, and selects the length and duration of its n-th kick, lni1010

and τni respectively, and its change of direction, δφni . Each agent has its own sequence1011

of kicking times, which are not necessarily equally spaced: tn+1
i − tni 6= tni − t

n−1
i . In1012

addition, the motion of the different agents is asynchronous and their respective kicking1013

times are in general different. As the environment changes from one kick to another (the1014

agent moves with respect to the obstacles, and the other agents move with respect to1015

the agent), the quantities lni , τni , and δφni are updated at each kicking time of agent i,1016

according to the number and identity of the agents taken into account in the evaluation1017

of the effect of social interactions. In the present work, the number of agents taken into1018

account in the social interactions remains constant, while the identity of the neighbors1019

considered to interact with an agent is updated at each kicking time of this focal agent.1020
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The behavior of agent i (fish or robot) is thus described by the following discrete-time1021

decision model:1022

~un+1
i = ~uni + lni ~e (φn+1

i ), (2)

φn+1
i = φni + δφni , (3)

where ~un+1
i and φn+1

i are the vector position and the heading of agent i at the end of its1023

n-th kick, and ~e (φn+1
i ) is the unitary vector pointing in the direction of angle φn+1

i . At1024

the end of the n-th kick of agent i, the time is tn+1
i = tni + τni , which is the next kicking1025

time of agent i. Note that one or more agents can perform one or more kicks between1026

two successive kicks of agent i. In that case, the kicking agent collects the information1027

about agent i (relative position and heading) to perform its own kick, while agent i is1028

simply in the gliding phase following its last kick.1029

The kick length lni is sampled at each kicking time of agent i from the bell-shaped1030

distribution of kick lengths obtained in our experiments of fish swimming in pairs [14],1031

whose mean value is l = 7 cm. When the new computed position of the agent would be1032

outside of the tank, a new kick length is sampled from the distribution. The typical1033

speed of fish right after a kick was found to be v0 ∼ 14 cm/s, and the speed was then1034

found to decay exponentially during the gliding phase, with a relaxation time τ0 = 0.8 s1035

(a feature implemented in the model in [14]). Thus, the duration of the time step τni ,1036

updated at each kicking time of agent i, is determined by the length of the kick and the1037

peak speed of the fish [14].1038

The variation of the heading angle of agent i between two of its kicks is given by the1039

sum of the variations induced by its environment, that is,1040

δφni = δφnw,i + δφnR,i +
∑
〈j,i〉

δφnij , (4)

where δφnw,i is the angular variation caused by static obstacles (the wall of the fish tank1041

or the border of the robot platform), δφnR,i is a random Gaussian white noise reflecting1042

the spontaneous fluctuations in the motion of the agent, and δφni,j is the angular variation1043

induced by the social interaction of the agent i with the agent j.1044

The notation 〈j, i〉 indicates that the sum is performed over all the agents j considered1045

to interact with agent i. The number k of agents considered to interact with an agent1046

is part of what constitutes a social interaction strategy, and remains constant along1047

the whole simulation. When k < N − 1, the identity of these agents depends on the1048

strategy, but also on the instantaneous state of the system, so that their identity must1049

be updated at each kicking time of the focal agent i. At each kicking time tni , the agents1050

are sorted according to the criterion used in the interaction strategy: the distance to the1051

focal agent dij(t
n
i ), a random selection of neighbors, or the influence on the focal agent1052

Iij(tni ). Once sorted, the k first agents are considered in the sum in Eq. (4).1053

Each contribution to the angle variation can be expressed in terms of decoupled1054

functions of the instantaneous state of the agents, that is, the distance and relative1055

orientation to the wall rw and θw, and the distance d, viewing angle ψ, and relative1056

alignment φ between the focal fish and its considered neighbor (see Fig. 2A). The1057

derivation of these functions is based on physical principles of symmetry of the angular1058

functions and a sophisticated reconstruction procedure detailed in Calovi et al. [14] for1059

the case of H. rhodostomus and in [15] for the general case of animal groups.1060

For completeness, we show these functions in S9 Fig and present here their analytical1061

expressions with the parameter values necessary to reproduce the simulations.1062

• The repulsive effect of the wall is a centripetal force that depends only on the1063

distance to the wall rw and the relative angle of the heading to the wall θw.1064
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Assuming that this dependence is decoupled, i.e., δφw(rw, θw) = Fw(rw)Ow(θw),1065

we have:1066

Fw(rw) = γw exp

[
−
(
rw
lw

)2
]
, Ow(θw) = βw sin(θw)

(
1 + 0.7 cos(2θw)

)
, (5)

where γw = 0.15 is the intensity of the force (Fw(0) = γw), lw = 0.06 m is the range1067

of the wall repulsion, and βw = 1.9157 is a normalization constant of the angular1068

function Ow(θw), so that the mean of the squared function in [−π, π] is equal to 1,1069

that is, (1/2π)
∫ π
−π O

2
w(θ)dθ = 1. All angular functions are normalized in this way,1070

in order to allow the direct comparison of their shape in the different interactions.1071

These parameter values are those used in the model simulations. They also appear1072

in Table 3, together with the values used in the experiments with robots.1073

• The intensity of the stochastic spontaneous variation of heading δφR depends on1074

the distance to the wall rw, and decreases as the fish gets closer to the wall and1075

becomes constrained by the boundary of the tank:1076

δφR(rw) = γR

(
1− α exp

[
−
(
rw
lw

)2
])

g, (6)

where γR = 0.45, α = 2/3, and g is a random number sampled from a standard1077

normal distribution (zero mean; unit variance). Random variations are minimal at1078

the border, where rw = 0, δφR = γR(1− α)g, and become larger as the individual1079

moves away from the border, i.e., as rw grows. Far from the border, the exponential1080

goes to zero and δφR = γRg.1081

• The interaction between agents can be decomposed into two terms of attraction1082

and alignment which depend only on the relative state of both interacting agents:1083

δφij(dij , ψij , φij) = δφijAtt + δφijAli, (7)

= δφAtt(dij , ψij , φij) + δφAli(dij , ψij , φij), (8)

where the relative state of fish j with respect to fish i is given by dij , the distance1084

between them; ψij , the viewing angle with which fish i perceives fish j; and1085

φij = φj − φi, the difference between their heading angle.1086

We then define the influence Iij(t) of a neighbor j on a focal individual i as the1087

absolute contribution of this neighbor to the instantaneous heading change of the1088

focal individual δφi(t) in Eq. (4), that is, for j = 1, . . . , N , j 6= i:1089

Iij(t) =
∣∣δφijAtt(t) + δφijAli(t)

∣∣. (9)

This precise definition is central to the implementation of the most influential1090

interaction strategy involving the k most influential neighbors of a given focal fish i1091

(i.e., the k neighbors with the largest influence Iij(t))1092

Following [14], we assume that both the attraction and the alignment functions1093

δφijAtt and δφijAli can be decomposed as the product of three functions that each1094

depend on only one of the three variables determining the relative state of the1095

two fish. Thus, for the attraction interaction, we have δφAtt(dij , ψij , φij) =1096

FAtt(dij)OAtt(ψij)EAtt(φij), where1097

FAtt(d) = γAtt

(
d

dAtt
− 1

)
1

1 + (d/lAtt)2
, (10)

OAtt(ψ) = βAtt sin(ψ)
(

1− 0.33 cos(ψ)
)
, (11)

EAtt(φ) = λAtt

(
1− 0.48 cos(φ)− 0.31 cos(2φ)

)
. (12)
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Here, dAtt = 3 cm is the distance at which the short-range repulsion of individual1098

collision avoidance balances the long-range repulsion, γAtt = 0.12 is the intensity1099

of the interaction, and lAtt = 20 cm characterizes the range where attraction is1100

maximum. The angular functions OAtt and EAtt are respectively normalized with1101

βAtt = 1.395 and λAtt = 0.9326. As already mentioned when describing the1102

interaction with the wall, the three functional forms defined in (10–12) and the1103

numerical values of the coefficients have been extracted from experimental data by1104

means of a sophisticated procedure based on physical principles of symmetry of1105

the angular functions [14, 15]. The names of the angular functions stand precisely1106

for their parity (Odd/Even).1107

In the alignment, we have δφAli(dij , ψij , φij) = FAli(dij)EAli(ψij)OAli(φij), where1108

FAli(d) = γAli

(
d

dAli
+ 1

)
exp

[
−
(
d

lAli

)2
]
, (13)

EAli(ψ) = βAli

(
1 + 0.6 cos(ψ)− 0.32 cos(2ψ)

)
, (14)

OAli(φ) = λAli sin(φ)
(

1 + 0.3 cos(2φ)
)
, (15)

with dAli = 6 cm, lAli = 20 cm, γAli = 0.09, βAli = 0.9012, λAli = 1.6385.1109

The parameter values are those derived in [14] for the simulation model when fish1110

swim in pairs and are summarized in Table 3 (fish model and robots). More details1111

regarding the model, including the extraction of the above interaction functions, can be1112

found in [14].1113

Computational model in an unbounded domain. Model simulations of agents1114

swimming in an unbounded domain were carried out by removing the interaction with1115

the wall (i.e., by setting γw = 0; the rest of parameter values being those given in1116

Table 3).1117

We have considered the most influential and nearest interaction strategies, that1118

is, paying respectively attention to the k most influential neighbors or to the k-nearest1119

neighbors, for k = 1, 2, 3, and 4, and the case where agents do not interact with each1120

other (k = 0). Group cohesion and polarization are averaged over a large number of1121

simulation runs n: 〈C(t)〉 = (1/n)
∑n
i=1 Ci(t), where Ci(t) is the group cohesion at time t1122

in the i-th run. We used n = 1000. The duration of each simulation was sufficiently1123

long to produce a total number of 104 kicks per run among the 5 agents (∼ 2.7 hours).1124

A second series of simulations was carried out to produce 5× 104 kicks (∼ 13.5 hours),1125

finding the same qualitative results. Initial conditions of each run were always different,1126

with all agents located at less than R = 25 cm (the radius of the arena) from the origin1127

of coordinates.1128

We first analyzed the impact on group cohesion and polarization (Fig. 9 and Fig. 10)1129

of reducing the attraction range in groups of N = 5 agents by truncating the attraction1130

intensity function FAtt when the neighbor is at a distance dij > dcut from the focal agent:1131

FAtt(dij) = 0, if dij > dcut. For each value of dcut, the mean cohesion was calculated as1132

the average over the last 10% of kicks over the 1000 runs carried out to obtain 〈C(t)〉, and1133

this, for both considered strategies and each value of k. When dcut is sufficiently large,1134

the attraction range is sufficiently long and 〈C(t)〉 is close to the value corresponding to1135

the mean cohesion of the group when FAtt is not truncated. When dcut is smaller than1136

a critical cut-off d∗cut, the attraction range is too short and the agents simply diffuse,1137

with 〈C(t)〉 ∼ t growing linearly in time Fig. 9.1138

We then analyzed the group cohesion and polarization (Fig. 10 and S7 Fig) i) in1139

large groups of N = 6, . . . , 70 agents for the most influential strategy with k = 1, ii)1140
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in a group of size N = 20, for different values of the number of nearest neighbors k with1141

which agents interact, and iii) in groups of size N = 5, . . . , 26, where agents interact with1142

their k nearest neighbors, for all the values of k between 1 and N − 1, except for N = 22,1143

24 and 26, where we limited the simulations to the interval of interest k = 8, . . . , 12. For1144

each combination of group size N and number of neighbors k considered, the number of1145

simulations, their duration, and the averaging procedure were the same as the ones used1146

in the analysis of the groups of size N = 5.1147

Quantification of the collective behavior1148

We characterize the collective behavioral patterns by means of five observables quantifying1149

the behavior of the group in the tank and the behavior of individuals inside the group. We1150

first write the coordinates of the position ~uB = (xB , yB) and the velocity ~vB = (vBx , v
B
y )1151

of the barycenter B (center of mass) of the group with respect to the reference system1152

of the tank:1153

xB(t) =
1

N

N∑
i=1

xi(t), vBx (t) =
1

N

N∑
i=1

vix(t), (16)

with similar expressions for yB(t) and vBy (t). The heading angle of the barycenter is1154

then given by φB = ATAN2(vBy , v
B
x ).1155

The barycenter defines a system of reference in which the relative position and velocity1156

of a fish, that we denote with a bar, are such that x̄i = xi − xB and v̄ix = vix − vBx1157

(same expressions for the y-components). In the reference system of the barycenter, the1158

angle of the position of a fish is given by θ̄i = ATAN2(ȳi, x̄i), so the relative heading in1159

this reference system is φ̄i = ATAN2(v̄iy, v̄
i
x) 6= φi − φB . We can thus define the angle of1160

incidence of a fish with respect to a circle centered at the barycenter as θ̄iw = φ̄i − θ̄i.1161

The angle θ̄iw is the equivalent to the angle of incidence to the wall θiw that we use in1162

the reference system of the tank, and serves to measure the angular velocity of a fish1163

with respect to the barycenter, in the reference system of the barycenter.1164

The five observables used to quantify the behavior of a group are defined as follows:1165

1. Group cohesion C(t) ∈ [0, R]:1166

C(t) =

√√√√ 1

N

N∑
i=1

‖~ui − ~uB‖2, (17)

where ‖~ui − ~uB‖ is the distance from fish i to the barycenter B of the N fish.1167

Low values of C(t) correspond to highly cohesive groups, while high values of C(t)1168

(in particular, comparable to the radius of the tank) imply that individuals are1169

spatially dispersed.1170

2. Group polarization P (t) ∈ [0, 1]:1171

P (t) =
1

N

∥∥∥∥∥
N∑
i=1

~ei(t)

∥∥∥∥∥ , (18)

where ~ei = ~vi/‖~vi‖ = (cos(φi), sin(φi)) is the unit vector in the direction of motion1172

of the individual fish, given by its velocity vector ~vi.1173

A value of P close to 1 would mean that the N individual headings are aligned1174

and point in the same direction, while a value of P close to 0 would mean that the1175

N vectors point in different directions, but can also mean that vectors are collinear1176

PLOS 25/51



and with opposite direction (e.g., for N even, half of the vectors point North, the1177

other half point South) so that they cancel each other. Similarly, when N = 5 and1178

two normalized velocity vectors cancel each other (e.g., when 4 fish swim in the1179

same direction ~e and one fish swims in the opposite direction −~e ) would give rise1180

to a resultant vector of norm P = (4× 1− 1)/5 = 3/5 = 0.6, and if two pairs of1181

fish cancel each other, then P = (3× 1− 2× (−1))/5 = 1/5 = 0.2.1182

Note that uncorrelated headings would lead to P ∼ 1/
√
N , which becomes small1183

only for large group size N , but which is markedly lower than 1 for any N ≥ 5.1184

3. Distance of the barycenter to the wall rBw (t) ∈ [0, R]:1185

rBw (t) = R−
√(

xB(t)
)2

+
(
yB(t)

)2
, (19)

Note that when the individuals move in a cohesive group, rBw is typically of the1186

same order as the mean distance of agents to the wall 〈rw〉 = (1/N)
∑N
i=1 r

i
w.1187

When the group is not cohesive, rBw is of order of the radius of the tank.1188

4. Relative angle of the barycenter heading to the wall θBw (t) ∈ [−π, π]:1189

θBw (t) = ATAN2
(
vBy (t), vBx (t)

)
. (20)

When the group swims along the wall θBw (t) ≈ ±π/2 (i.e., θBw (t) ≈ ±90◦).1190

5. Index of collective counter-milling and super-milling Q(t) ∈ [−1, 1]:1191

Q(t) =

(
1

N

N∑
i=1

sin(θ̄iw((t))

)
× SIGN

(
1

N

N∑
i=1

sin(θiw(t))

)
(21)

= ΓB(t)× SIGN
(
Γ(t)

)
. (22)

A group of fish rotating around the center of the tank with a rotation index Γ(t)1192

(defined in Eq. (22); similar to an angular momentum) would display a counter-1193

milling behavior if the individual fish also rotate around the barycenter of the group1194

and both directions of rotation are opposite. The first sum between parentheses1195

in Eq. (21) is the index of rotation of the fish with respect to the barycenter of1196

the group, denoted by ΓB(t) in Eq. (22). Multiplying by the sign of Γ(t) means1197

that when Q(t) < 0, both directions are opposite and the fish exhibit a collective1198

counter-milling behavior, while when Q(t) > 0, both rotations are in the same1199

direction and the fish exhibit a collective super-milling behavior.1200

Thus, a group of 5 individuals turning around the center of the tank in a rigid1201

formation that always points North, like the fingertips of the hand when cleaning1202

a window, would correspond to a perfect counter-milling behavior. On the other1203

hand, a situation where individuals rotate around the center of the tank as if they1204

were fixed to a vinyl record, so that trajectories are perfect circles and individuals1205

far from the center of the tank move faster than those close to the center, would1206

correspond to a zero-milling state. Actual groups of fish present an intermediate1207

behavior between these two situations, with a clear bias towards negative values of1208

Q(t) (see Fig. 3 for fish, S4 Video for robots, and Fig. 8 for fish, model fish, and1209

robots).1210

Collective behavior is thus quantified by means of the probability density functions1211

of these quantities. In addition, density maps are presented in order to illustrate the1212

correlations between the polarization P and the group cohesion C in fish experiments,1213
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model simulations, and robot experiments (S1 Fig–S4 Fig). We consider two normaliza-1214

tions: i) with the total number of data, to highlight the significant regions of the map1215

and neglect the regions where the data are scarce (S1 Fig for the fish model, and S31216

Fig for robot experiments); ii) with the total number of data in a given range of the1217

polarization, so that each row in the map is a PDF of C for a given P (S2 Fig for the1218

fish model, and S4 Fig for robot experiments). Spatial distances in the model and robot1219

experiments are rescaled with the respective scaling factor λM = 0.87 and λR = 0.35 to1220

allow for a direct comparison of our two spatial quantifiers (C and rBw ) with the results1221

of fish experiments (the three other quantifiers P , θBw , and Q are not affected by this1222

rescaling).1223

Quantifier for the similarity of probability distribution functions1224

In the Results section, we qualitatively compare the probability distribution functions1225

(PDF) of the group cohesion, polarization, distance to the wall, angle with respect to1226

the wall, and counter-milling index featured in Figs. 4–8, for the 3 interaction strategies1227

(nearest; random; most influential), and for k = 1, 2, 3 interacting neighbors (as1228

well as the cases k = 0 – no interaction – and k = 4).1229

Here, we consider the Hellinger distance D(F |G) [45, 46] to precisely quantify the1230

“similarity” of two PDF F (x) and G(x) for the same observable x (one of the 5 listed1231

above that we have considered):1232

D(F |G) =
1

2

∫ (√
F (x)−

√
G(x)

)2
dx = 1−

∫ √
F (x)

√
G(x) dx, (23)

where we have used the normalization of the PDF,
∫
F (x) dx =

∫
G(x) dx = 1, to1233

obtain the last equality. The first definition of D(F |G) makes clear that it measures the1234

overall difference between F (x) and G(x), while the second equivalent definition has a1235

nice interpretation in terms of the overlap of both PDF. Indeed, the second definition1236

measures the distance from unity of the scalar product of
√
F (x) and

√
G(x) seen as1237

vectors of unit Euclidean norm (a consequence of the normalization,
∫ √

F (x)
2
dx = 1).1238

The Hellinger distance is zero if and only if F (x) = G(x), and it always satisfies1239

D(F |G) ≤ 1. The upper bound D(F |G) = 1 is reached whenever the supports of the1240

two PDF are not intersecting, so that F (x)×G(x) = 0, for all values of x. In practice,1241

a value of D(F |G) ≥ 0.1 points to the two PDF being markedly dissimilar.1242

Of course, using the Hellinger distance is an arbitrary choice and other distances1243

(like the Kolmogorov-Smirnov distance) could lead to slightly different relative dis-1244

tances/errors, but would not change our conclusions when the PDF are markedly1245

different. In particular, the fact that the most influential strategy is the strategy for1246

k = 1 leading to the best agreement with fish experiments would be recovered by any1247

meaningful quantifier.1248

We have computed the Hellinger distance between PDF measured in fish experiments1249

and the corresponding PDF measured in the fish model simulations (Table 1) and1250

in robots experiments (Table 2), hence providing a more precise, albeit not unique,1251

quantification of their similarity.1252
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Fig 1. Experimental setups and tracking. (A) Experiments with 5 fish swimming
in a tank of radius Rfish = 25 cm. (B) 5 robots running in a platform of radius
Rrobot = 42 cm. (C) Individual fish trajectories over 4 seconds. The circles represent the
onset of bursts, when speed is minimum. (D) Individual trajectories in one robotic
experiment over 24 seconds. The circles indicate the decisions of the robots to select a
new target place, when individual speed is minimum.
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Fig 2. Angles and reference systems. (A) Distances, angles, and velocity vectors
of agents i and j in the absolute reference system centered in T (0, 0). Positive values of
angles are fixed in the anticlockwise direction. θi is the position angle of agent i with
respect to T and the horizontal line; rw,i is the distance of agent i from the nearest wall;
φi is the heading angle of agent i, determined by its velocity vector ~vi; θw,i is the
relative angle of agent i with the wall; dij is the distance between agents i and j; ψij is
the viewing angle with which agent i perceives agent j, i.e., the angle between the
velocity of i and the vector ~ij (we show the angle ψji 6= ψij with which j perceives i, for
the sake of readability of the figure); φij = φj − φi is the difference of heading between
agents i and j, and δφi is the variation of heading of agent i. (B) Relative reference
system centered in the barycenter of the group B(xB , yB). Relative variables are
denoted with a bar. Angle θ̄w,i = φ̄i − θ̄i is the angle of incidence of the relative speed
of agent i with respect to a circle centered in B.
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Fig 3. Counter-milling in fish experiments. Individual fish (small red arrows)
turn counter-clockwise (CCW) around their barycenter, here located at B(0, 0), while
the fish group rotates clockwise (CW) around the center of the tank, located at
T (0,−14) in the reference system of the barycenter. Red arrows (of same length) denote
relative fish heading, gray lines denote relative trajectories, and large orange circle
denotes the average relative position of the border of the tank. The wide black arrow
shows the direction of rotation of individual fish with respect to B (CCW), opposite to
the wide gray arrow showing the direction of rotation of the group with respect to T
(CW).
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Fig 4. Group cohesion. Probability density functions (PDF) of the group cohesion
C for the experiments with 5 fish (red line in all panels), model simulations
(panels ABC), and experiments with 5 robots (panels DEF), compared to the
corresponding null models (k = 0, no interaction between individuals) in both
simulations and robots (gray line in all panels). Distances have been rescaled by
λM = 0.87 for the model simulations, and by λR = 0.35 for the robot experiments. The
intensity of blue is proportional to the number of neighbors interacting with a focal
individual (agent or robot), from k = 1 (light blue) to k = 4 (dark blue). Interaction
strategies involve the k nearest neighbors (panels AD), k random neighbors
(panels BE), and the k most influential neighbors (panels CF).
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Fig 5. Group polarization. PDF of the group polarization P for fish experiments
(red line in all panels), model simulations (panels ABC), and robot experiments
(panels DEF), compared to the corresponding null models (k = 0, no interaction
between individuals) in both simulations and robots (gray line in all panels). Curves for
agents (fish model and robots) are in blue and gray, depending on the value of k (see
legend in panel B). Interaction strategies involve the k nearest neighbors (panels AD),
k random neighbors (panels BE), and the k most influential neighbors (panels CF).
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Fig 6. Distance of the barycenter of the individuals to the wall. PDF of the
distance rBw of the barycenter of the individuals from the wall for fish experiments (red
line in all panels), model simulations (panels ABC), and robot experiments
(panels DEF), compared to the corresponding null models (k = 0, no interaction
between individuals) in both simulations and robots (gray line in all panels). Distances
have been rescaled by λM = 0.87 for the model simulations, and by λR = 0.35 for the
robot experiments. Curves for agents (fish model and robots) are in blue and gray,
depending on the value of k (see legend in panel B). Interaction strategies involve the k
nearest neighbors (panels AD), k random neighbors (panels BE), and the k most
influential neighbors (panels CF).
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Fig 7. Relative angle of the heading of the barycenter of the group with
the wall. PDF of the relative angle θBw of the heading of the barycenter of the group
with the wall for fish experiments (red line in all panels), model simulations
(panels ABC), and robot experiments (panels DEF), compared to the corresponding
null models (k = 0, no interaction between individuals) in both simulations and robots
(gray line in all panels). Curves for agents (fish model and robots) are in blue and gray,
depending on the value of k (see legend in panel B). Interaction strategies involve the k
nearest neighbors (panels AD), k random neighbors (panels BE), and the k most
influential neighbors (panels CF).
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Fig 8. Counter-milling index. PDF of the counter-milling index Q for fish
experiments (red line in all panels), model simulations (panels ABC), and robot
experiments (panels DEF), compared to the corresponding null models (k = 0, no
interaction between individuals) in both simulations and robots (gray line in all panels).
Curves for agents (fish model and robots) are in blue and gray, depending on the value
of k (see legend in panel B). Interaction strategies involve the k nearest neighbors
(panels AD), k random neighbors (panels BE), and the k most influential
neighbors (panels CF).
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Fig 9. Average cohesion of a group of 5 agents swimming in an unbounded
domain. Model simulations for the most influential strategy (AD) and the
nearest strategy (BCE), for k = 1, . . . , 4 (blue lines), together with the case with no
interaction (k = 0, gray lines) and the mean cohesion for fish experiments (red lines in
AB). For k = 0, cohesion is lost immediately, so that the gray line is not visible on the
scale of panels AB. (C): Squared mean cohesion in the diffusive cases for k = 1 nearest
neighbor and k = 0. (ABC): Average over 1000 runs with 10000 kicks (≈ 2.7 hours) per
run. (DE): Mean cohesion averaged over the last 10% of the 1000 runs for different
values of the cut-off distance dcut for the two strategies: (D) most influential, and
(E) nearest. Panel (F): We plot the attraction function FAtt (see Eq. 10), showing the
critical values d∗cut above which cohesion is preserved (vertical dashed lines):
d∗cut ∼ 0.8 m when the interacting neighbors are the k = 1, 2 or 3 most influential ones,
the k = 3 nearest ones, or all the neighbors (k = 4); d∗cut ≈ 3.5 m when interacting with
the k = 2 nearest neighbors (d∗cut does not exist when interacting only with the nearest
neighbor).
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Fig 10. Average polarization of groups of 5 agents, and mean cohesion and
polarization in larger groups (N = 5, . . . , 70), when agents are swimming in
an unbounded domain. For N = 5, model simulations for the most influential
strategy (AD) and the nearest strategy (BE), for k = 1, . . . , 4 (blue lines), together
with the case with no interaction (k = 0, gray lines) and the mean polarization for fish
experiments (red lines). Panel (C): Mean cohesion and polarization in large groups
(N = 5, . . . , 70) for the most influential strategy (k = 1). Panel (F): Mean cohesion
and polarization in a group of size N = 20 as a function of the number k of nearest
neighbors with which focal individuals interact. The minimum of the cohesion is
reached at k = 9, and the maximum of the polarization at k = 7.
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Fig 11. Cuboid robots. (A) Photograph of a Cuboid robot. Credits to David Villa
ScienceImage/CBI/CNRS, Toulouse, 2018. (B) Design structure of Cuboid robot; A-A
represents a cutaway view.
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Fig 12. Structure of Cuboids platform. Two main parts: the physical hardware
and the control software. The hardware consists of a square platform. A camera
mounted on the top of it monitors the movements of Cuboids robots, which are
controlled in a distributed way by a wireless router. The software processes the image
acquired by the camera, then computes the command of actions to be performed by
each robot, and finally sends the control signals to the robots via the WIFI channel.
Then, all the robots execute their commands at the same time to perform the collective
motion. The WIFI broadcasting is one-way communication for sending the command to
the robots every 20 ms. In this setup, no information acquired by robots sensors is sent
back to the computer though the WIFI channel. Credits to David Villa
ScienceImage/CBI/CNRS, Toulouse, 2018.
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Fig 13. Software simulation and Hardware in Loop (HIL) simulation
(from [42]). The structure of HIL is an extension of the software simulation, which
consists of two extra parts: 1) a computer software (Image Processing, Motion Control,
and Real Time Control modules) and 2) a physical hardware (Robot, camera and
wireless router). In the software simulation, the Environment & Neighbor Measurement
module converts the global position of a robot or a particle (xi, yi, φi) in the SPP
software into local information (rw,i, θw,i) and (dij , ψij , φij). Then the computational
model generates a new kick decision in the form of heading variation and kick length
(δφi, li). This new decision (δφi, li) is then directly sent to the SPP(i) software. Once
the state has been updated, a new global position is provided by the SPP(i) software
(brown box) or the Hardware in loop simulation (red box). By contrast, the HIL
simulation includes hardware, i.e., robots, camera and WIFI router (blue box).
Furthermore, each robot i is controlled in real time by three more software modules
running in the computer, which are the Image Processing, Motion Control, and Real
Time Control modules (red box). The Image Processing module computes the global
position of each robot (xc,i, yc,i, φc,i) from the information provided by the camera in
real time. Then, the Real Time Control module converts the model decision (δφi, li)
into a real time decision in the robot (δφc,i, lc,i), which are the heading variation and
kick length to perform the decision based on its real time position (xc,i, yc,i, φc,i).
Finally, the Motion Control software generates left and right wheel motors speed control
(VL,i, VR,i) for each robot to achieve its decision (δφc,i, lc,i). Each robot receives these
motor commands by WIFI signals, and performs the corresponding movements that are
monitored by the camera.
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Fig 14. Flow chart of robot states machine. At any time a robot can be in one of
the two following states: (1) the COMPUTE state for choosing a new target place, and
(2) the MOVE state to reach the target place. In the COMPUTE state, the robot first
selects influential neighbors, then it computes the pairwise influence of each neighbor,
and finally it adds all influences to generate a new target place. Then, this new target
place is validated to avoid collisions with the wall or another robot. If a valid target
place cannot be found, the robot scans all space around itself for a valid target place. If
the scanning method cannot find a valid target, the robot moves back over a distance of
80 mm and starts again the COMPUTE state. When a valid target place has been
found, the robot switches into the MOVE state. The robot first rotates toward the
target and then, moves straight to it. If another running neighbor blocks the path, the
robot uses a procedure to avoid the obstacles.
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strategy C P rBw θBw Q 〈All 〉

k = 0 0.909 0.532 0.341 0.145 0.023 0.390
k = 1 0.369 0.178 0.034 0.041 0.003 0.125

nearest k = 2 0.065 0.049 0.032 0.033 0.020 0.040
k = 3 0.013 0.026 0.027 0.032 0.037 0.027
k = 1 0.310 0.223 0.095 0.068 0.009 0.141

random k = 2 0.061 0.103 0.037 0.059 0.037 0.059
k = 3 0.012 0.062 0.028 0.048 0.038 0.038

most k = 1 0.078 0.150 0.067 0.048 0.006 0.070
influ- k = 2 0.011 0.051 0.025 0.080 0.033 0.040
ential k = 3 0.016 0.038 0.027 0.042 0.036 0.032

k = 4 0.014 0.042 0.024 0.044 0.030 0.031

Table 1. Model simulations vs fish experiments. Distance D(Fish |Model)
between the probability distribution function (PDF) of the 5 observables used to
quantify the collective motion in the fish model and the corresponding PDF obtained in
fish experiments. We list the results for the 3 different interaction strategies
implemented in the fish model and the associated value of k for the number of
interacting neighbors. The last column 〈All 〉 corresponds to the average of the 5
corresponding distances, an arbitrary but reasonable global quantifier to assess the
overall agreement of a given condition with the results of fish experiments. For k = 1,
the most influential strategy gives significantly better results than the two other
strategies and already leads to a fair agreement with fish experiments.

strategy C P rBw θBw Q 〈All 〉

k = 0 0.604 0.561 0.238 0.114 0.170 0.337
k = 1 0.418 0.486 0.158 0.070 0.239 0.274

nearest k = 2 0.111 0.249 0.063 0.042 0.093 0.112
k = 3 0.066 0.039 0.083 0.036 0.026 0.05
k = 1 0.140 0.343 0.040 0.107 0.065 0.139

random k = 2 0.019 0.141 0.035 0.080 0.029 0.061
k = 3 0.056 0.063 0.095 0.042 0.025 0.056

most k = 1 0.045 0.089 0.050 0.042 0.011 0.047
influential k = 2 0.028 0.050 0.031 0.088 0.024 0.044

k = 4 0.078 0.080 0.040 0.053 0.038 0.058

Table 2. Collective robotics experiments vs fish experiments. Distance
D(Fish |Robots) between the probability distribution function (PDF) of the 5
observables used to quantify the collective motion of the robots and the corresponding
PDF obtained in fish experiments. We list the results for the 3 different interaction
strategies implemented in the fish model and the associated value of k for the number of
interacting neighbors. The last column 〈All 〉 corresponds to the average of the 5
corresponding distances, an arbitrary but reasonable global quantifier to assess the
overall agreement of a given condition with the results of fish experiments. For k = 1,
the most influential strategy gives significantly better results than the two other
strategies and already leads to a fair agreement with fish experiments.
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Parameter Symbol Model Robots

Intensity of heading random fluctuations γR 0.45 0.1
Fluctuations reduction factor when close to wall α 0.67 1

Intensity of wall repulsion γw 0.15 0.79
Range of wall repulsion (cm) lw 6 11

Intensity of attraction/repulsion γAtt 0.12 0.18
Range of attraction between individuals (cm) lAtt 20 37
Distance of balance of attraction/repulsion (cm) dAtt 3 18

Intensity of alignment γAli 0.09 0.04
Range of alignment between individuals (cm) lAli 20 37
Distance of alignment (cm) dAli 6 5

Average duration between successive kicks (s) τ 0.5 1.3
Mean length between two successive kicks (cm) l 7 7.4
Typical individual velocity in active period (cm/s) v0 14 3.75
Relaxation time (s) τ0 0.8 0.9

Table 3. Values and units of the parameters for model simulations and robot
experiments.
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Supporting Information1372

Supporting figures1373

S1 Fig. Density maps of the polarization vs cohesion for fish and model1374

simulations, normalized with the total number of data.1375

Density maps are shown for fish experiments (fish panel) and for the 11 strategies1376

considered in the model simulations. The color intensity corresponds to the number of1377

data in each box normalized with the total number of data in the grid (×1000). We1378

used 40× 50 boxes.1379

S2 Fig. Density maps of polarization vs cohesion for fish and model simu-1380

lations, normalized with the number of data per range of polarization.1381

Density maps are shown for fish experiments (fish panel) and for the 11 strategies1382

considered in the model simulations. The color intensity corresponds to the number of1383

data in each box normalized with the number of data per interval of polarization, i.e.,1384

each row is the PDF of the cohesion for a range of values of the polarization. We used1385

40× 50 boxes.1386

S3 Fig. Density maps of polarization vs cohesion for fish and robot groups,1387

normalized with the total number of data.1388

Density maps are shown for fish experiments (fish panel) and for the 10 strategies1389

considered in the robot experiments. The color intensity corresponds to the number of1390

data in each box normalized with the total number of data in the grid (×1000). We1391

used 40× 50 boxes.1392

S4 Fig. Density maps of polarization vs cohesion for fish and robot groups,1393

normalized with the number of data per range of polarization.1394

Density maps are shown for fish experiments (fish panel) and for the 10 strategies1395

considered in the robot experiments. The color intensity corresponds to the number of1396

data in each box normalized with the number of data per interval of polarization, i.e.,1397

each row is the PDF of the cohesion for a range of values of the polarization. We used1398

40× 50 boxes.1399

S5 Fig. Counter-milling in model simulations. Red arrows represent the velocity1400

field of agents in the reference system of the barycenter of the group, here located at1401

coordinates (0, 0). Orange circle denotes the average relative position of the border of1402

the arena with respect to the barycenter. The cases where agents interact with the k = 31403

most influential neighbors (statistically identical to the case where k = 4) and where1404

agents do not interact (k = 0) are not shown.1405

S6 Fig. Counter-milling in robotic experiments. Red arrows represent the1406

velocity field of robots in the reference system of the barycenter of the group, here1407

located at coordinates (0, 0). Orange circle denotes the average relative position of the1408

border of the arena with respect to the barycenter. The cases where robots interact with1409

the k = 3 most influential neighbors (statistically identical to the case where k = 4) and1410

where robots do not interact (k = 0) are not shown.1411
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S7 Fig. Average cohesion and polarization for group sizes N = 5, . . . , 201412

(N even) when each individual interacts with its k nearest neighbors, for1413

k = 1, . . . N − 1. Mean cohesion (A) and mean polarization (B) as a function of k.1414

Cohesion values are scaled with λM = 0.87. In panel (A), high values of the cohesion for1415

small values of k with respect to the group size N are not shown (vertical lines grow up1416

to 20 m in our simulations as the individuals diffuse independently of each other). In1417

(B), the values of k for N = 22, 24 and 26 (marked with an asterisk in the legend) are1418

limited to the interval of interest [8, 12].1419

S8 Fig. Finite state machine diagram of one robot. The decision-making1420

processes of the robot (COMPUTE state) are shown in blue. The movements of the1421

robot (MOVE state) are shown in brown. In the COMPUTE state, the model determines1422

a new target to reach by integrating the local information about the neighbors and the1423

environment. A target is valid when this one is not blocked by the wall or other robots.1424

If the target is invalid, the computer tries to find a new target by the scanning method.1425

If the scanning fails, the robot moves back 80 mm and starts again for model computing.1426

If the decision target is valid, the robot switches into MOVE state, which includes three1427

sub-states: Rotate, Move straight, and Avoid obstacle. The robot first rotates towards1428

to the target and then moves straight to it. If a running neighbor blocks the path, the1429

robot uses a procedure to avoid the obstacle.1430

S9 Fig. Interaction functions with the wall and between individuals, ex-1431

tracted from experiments of fish swimming in pairs [14]. (A) Intensity of the1432

repulsion from the wall Fw(rw,i) (green) as a function of the distance to the wall rw,i,1433

and intensity of the attraction FAtt(dij) (red) and the alignment FAli(dij) (blue) between1434

fish i and j as functions of the distance dij separating them. (B) Normalized odd angular1435

function Ow(θw,i) modulating the interaction with the wall as a function of the relative1436

angle to the wall θw,i. (C) Normalized angular functions OAtt(ψij) (odd, in red) and1437

EAtt(φij) (even, in orange) of the attraction interaction, and (D) OAli(φij) (odd, in blue)1438

and EAli(ψij) (even, in violet) of the alignment interaction between agents i and j, as1439

functions of the angle of perception ψij and the relative heading φij .1440

Supporting videos1441

S1 Video. Collective movements in rummy-nose tetra (Hemigrammus rhodos-1442

tomus). A typical experiment with a group of 5 fish swimming in a circular tank of1443

radius 250 mm.1444

S2 Video. Collective motion in a group of 5 robots. Each robot interacts with1445

its most influential neighbor. The video is accelerated 9 times. Total duration: 7.151446

minutes.1447

S3 Video. Tracking and analysis output. The small circles superimposed on1448

the trajectories represents the kicks performed by the fish when the speed reaches its1449

maximum value.1450
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S4 Video. Counter milling behavior in a group of 5 fish. Top: Typical experi-1451

ment with a group of 5 fish in a circular arena of radius 250 mm. The video is accelerated1452

6 times. Total duration 1.3 minutes. Bottom: Relative movement of fish with respect to1453

the barycenter of the group, represented by the black arrow on top video and a black1454

disk on the bottom video. Fish turn counter-clockwise around the tank and clockwise1455

with respect to the barycenter.1456

S5 Video. Collective robotics experiment without any social interaction1457

between the robots (k = 0) and only obstacle avoidance behavior is at play.1458

Top: Typical experiment with a group of 5 robots in a circular arena of radius 420 mm,1459

captured by the top camera. The border of the arena is represented by the red circle.1460

Purple circles represent the individual robot safety area, of diameter 8 cm. Small green1461

dots in front of robots indicate their next target place. The video is accelerated 6 times.1462

Total duration: 6 minutes. Bottom: Relative movement of the robots with respect to the1463

barycenter of the group. The barycenter is represented by the black disk and remains1464

oriented to the right. Robots are represented by colored disks with their identification1465

number in the center. The small circle at the front of a robot indicates its heading. The1466

arrows represent the interactions between robots. Arrow direction indicates the identity1467

(color) of the robot that exerts its influence on the robot to which the arrow points. The1468

small dots in front of the robots represent the next target places.1469

S6 Video. Collective robotics experiment where robots interact with the1470

k = 1 nearest neighbor. Top: Typical experiment with a group of 5 robots in a1471

circular arena of radius 420 mm, captured by the top camera. The border of the arena is1472

represented by the red circle. Purple circles represent the individual robot safety area, of1473

diameter 8 cm. Small green dots in front of robots indicate their next target place. The1474

video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement of1475

the robots with respect to the barycenter of the group. The barycenter is represented1476

by the black disk and remains oriented to the right. Robots are represented by colored1477

disks with their identification number in the center. The small circle at the front of1478

a robot indicates its heading. The arrows represent the interactions between robots.1479

Arrow direction indicates the identity (color) of the robot that exerts its influence on1480

the robot to which the arrow points. The small dots in front of the robots represent the1481

next target places.1482

S7 Video. Collective robotics experiment where robots interact with the1483

k = 1 most influential neighbor. Top: Typical experiment with a group of 5 robots1484

in a circular arena of radius 420 mm, captured by the top camera. The border of the1485

arena is represented by the red circle. Purple circles represent the individual robot safety1486

area, of diameter 8 cm. Small green dots in front of robots indicate their next target1487

place. The video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative1488

movement of the robots with respect to the barycenter of the group. The barycenter is1489

represented by the black disk and remains oriented to the right. Robots are represented1490

by colored disks with their identification number in the center. The small circle at the1491

front of a robot indicates its heading. The arrows represent the interactions between1492

robots. Arrow direction indicates the identity (color) of the robot that exerts its influence1493

on the robot to which the arrow points. The small dots in front of the robots represent1494

the next target places.1495

PLOS 49/51



S8 Video. Collective robotics experiment where robots interact with k = 11496

randomly selected neighbor. Top: Typical experiment with a group of 5 robots in a1497

circular arena of radius 420 mm, captured by the top camera. The border of the arena is1498

represented by the red circle. Purple circles represent the individual robot safety area, of1499

diameter 8 cm. Small green dots in front of robots indicate their next target place. The1500

video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement of1501

the robots with respect to the barycenter of the group. The barycenter is represented1502

by the black disk and remains oriented to the right. Robots are represented by colored1503

disks with their identification number in the center. The small circle at the front of1504

a robot indicates its heading. The arrows represent the interactions between robots.1505

Arrow direction indicates the identity (color) of the robot that exerts its influence on1506

the robot to which the arrow points. The small dots in front of the robots represent the1507

next target places.1508

S9 Video. Collective robotics experiment where robots interact with the1509

k = 2 nearest neighbors. Top: Typical experiment with a group of 5 robots in a1510

circular arena of radius 420 mm, captured by the top camera. The border of the arena is1511

represented by the red circle. Purple circles represent the individual robot safety area, of1512

diameter 8 cm. Small green dots in front of robots indicate their next target place. The1513

video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement of1514

the robots with respect to the barycenter of the group. The barycenter is represented1515

by the black disk and remains oriented to the right. Robots are represented by colored1516

disks with their identification number in the center. The small circle at the front of1517

a robot indicates its heading. The arrows represent the interactions between robots.1518

Arrow direction indicates the identity (color) of the robot that exerts its influence on1519

the robot to which the arrow points. The small dots in front of the robots represent the1520

next target places.1521

S10 Video. Collective robotics experiment where robots interact with the1522

k = 2 most influential neighbors. Top: Typical experiment with a group of 5 robots1523

in a circular arena of radius 420 mm, captured by the top camera. The border of the1524

arena is represented by the red circle. Purple circles represent the individual robot safety1525

area, of diameter 8 cm. Small green dots in front of robots indicate their next target1526

place. The video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative1527

movement of the robots with respect to the barycenter of the group. The barycenter is1528

represented by the black disk and remains oriented to the right. Robots are represented1529

by colored disks with their identification number in the center. The small circle at the1530

front of a robot indicates its heading. The arrows represent the interactions between1531

robots. Arrow direction indicates the identity (color) of the robot that exerts its influence1532

on the robot to which the arrow points. The small dots in front of the robots represent1533

the next target places.1534

S11 Video. Collective robotics experiment where robots interact with k = 21535

randomly selected neighbors. Top: Typical experiment with a group of 5 robots in1536

a circular arena of radius 420 mm, captured by the top camera. The border of the arena1537

is represented by the red circle. Purple circles represent the individual robot safety area,1538

of diameter 8 cm. Small green dots in front of robots indicate their next target place.1539

The video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement1540

of the robots with respect to the barycenter of the group. The barycenter is represented1541
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by the black disk and remains oriented to the right. Robots are represented by colored1542

disks with their identification number in the center. The small circle at the front of1543

a robot indicates its heading. The arrows represent the interactions between robots.1544

Arrow direction indicates the identity (color) of the robot that exerts its influence on1545

the robot to which the arrow points. The small dots in front of the robots represent the1546

next target places.1547

S12 Video. Collective robotics experiment where robots interact with the1548

k = 3 nearest neighbors. Top: Typical experiment with a group of 5 robots in a1549

circular arena of radius 420 mm, captured by the top camera. The border of the arena is1550

represented by the red circle. Purple circles represent the individual robot safety area, of1551

diameter 8 cm. Small green dots in front of robots indicate their next target place. The1552

video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement of1553

the robots with respect to the barycenter of the group. The barycenter is represented1554

by the black disk and remains oriented to the right. Robots are represented by colored1555

disks with their identification number in the center. The small circle at the front of1556

a robot indicates its heading. The arrows represent the interactions between robots.1557

Arrow direction indicates the identity (color) of the robot that exerts its influence on1558

the robot to which the arrow points. The small dots in front of the robots represent the1559

next target places.1560

S13 Video. Collective robotics experiment where robots interact with k = 31561

randomly selected neighbors. Top: Typical experiment with a group of 5 robots in1562

a circular arena of radius 420 mm, captured by the top camera. The border of the arena1563

is represented by the red circle. Purple circles represent the individual robot safety area,1564

of diameter 8 cm. Small green dots in front of robots indicate their next target place.1565

The video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement1566

of the robots with respect to the barycenter of the group. The barycenter is represented1567

by the black disk and remains oriented to the right. Robots are represented by colored1568

disks with their identification number in the center. The small circle at the front of1569

a robot indicates its heading. The arrows represent the interactions between robots.1570

Arrow direction indicates the identity (color) of the robot that exerts its influence on1571

the robot to which the arrow points. The small dots in front of the robots represent the1572

next target places.1573

S14 Video. Collective robotics experiment where robots interact with all1574

their neighbors (k = 4). Top: Typical experiment with a group of 5 robots in a1575

circular arena of radius 420 mm, captured by the top camera. The border of the arena is1576

represented by the red circle. Purple circles represent the individual robot safety area, of1577

diameter 8 cm. Small green dots in front of robots indicate their next target place. The1578

video is accelerated 6 times. Total duration: 6 minutes. Bottom: Relative movement of1579

the robots with respect to the barycenter of the group. The barycenter is represented1580

by the black disk and remains oriented to the right. Robots are represented by colored1581

disks with their identification number in the center. The small circle at the front of1582

a robot indicates its heading. The arrows represent the interactions between robots.1583

Arrow direction indicates the identity (color) of the robot that exerts its influence on1584

the robot to which the arrow points. The small dots in front of the robots represent the1585

next target places.1586
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