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6 Abstract

7 Aim: The majority of work done to gather information on Earth diversity has been
36 8 carried out by in-situ data, with known issues related to epistemology (e.g., species
38 9 determination and taxonomy), spatial uncertainty, logistics (time and costs), among
40 10 others. An alternative way to gather information about spatial ecosystem variability
11 is the use of satellite remote sensing. It works as a powerful tool for attaining rapid
45 12 and standardized information. Several metrics used to calculate remotely sensed
47 13 diversity of ecosystems are based on Shannon’s Information Theory, namely on the
49 14 differences in relative abundance of pixel reflectances in a certain area. Additional
15 metrics like the Rao’s quadratic entropy allow the use of spectral distance beside
54 16 abundance, but they are point descriptors of diversity, namely they can account
56 17 only for a part of the whole diversity continuum. The aim of this paper is thus to
58 18 generalize the Rao’s quadratic entropy by proposing its parameterization for the

19 first time.
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Innovation: The parametric Rao’s quadratic entropy, coded in R, i) allows to
represent the whole continuum of potential diversity indices in one formula, and ii)
starting from the Rao’s quadratic entropy, allows to explicitly make use of distances
among pixel reflectance values, together with relative abundances.

Main conclusions: The proposed unifying measure is an integration between
abundance- and distance-based algorithms to map the continuum of diversity given

a satellite image at any spatial scale.

Keywords: biodiversity; ecological informatics; modelling; remote sensing; satellite

imagery.
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1 Introduction

Since Alexander von Humboldt (1769-1859), the spatial component of nature has played
a relevant role in natural science. In the development of theoretical and empirical models
in ecology, spatial structure represents a key concept to allow scientists to link ecological
patterns to the generating processes and to the functional networking among organisms
(Borcard and Legendre, 2002).

The majority of the work done to gather information about Earth diversity has been
carried out by in-situ data, with known issues related to epistemology (e.g., species de-
termination and taxonomy), spatial uncertainty, logistics (time and costs), among others
(Rocchini et al., 2011).

Using satellite remote sensing can at least help attaining rapid and standardized
information about Earth diversity (Gillespie, 2005; Rocchini et al., 2005). Furthermore,
remote sensing can also be used to monitor some ecosystem functions and parameters
such as temperatures, photosynthesis, vegetation biomass production and precipitation
(Schimel et al., 2019; Zellweger et al., 2019) that can be useful to define the different niches
of in-situ species, following first Goodall (1970) ideas, who envisaged future diversity
measures as those based on niche theory (Hutchinson, 1959). The free access to remote
sensing data (see Zellweger et al., 2019) has opened new ways to study ecosystem diversity
and biodiversity issues (Rocchini et al., 2013). The spectral data related to pixels, as
operational geographical units, are descriptions of pieces of land that allow us to define a
new kind of Earth “diversity”, which may complement in-situ biodiversity measurement.

Diversity varies with area, thus investigating multiple spatial grains, until wide ex-
tents, is important to effectively monitor spatial diversity change in space and time

(MacArthur et al., 1966). This is especially true in macroecology, where the primary aim
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is to model large-scale spatial patterns to infer the ecological processes which generated
them, particularly considering the recent effect of global changes worldwide (Hobohm et
al., 2019). In order to determine the horizontal distribution of diversity within a satellite
image (i.e. which areas within the image are more diverse than others), diversity indices
are usually spatially referenced by calculating the index within a moving window.

Several metrics that measure diversity from satellites rely on the Shannon’s theory of
entropy (Shannon, 1948), with diversity being measured as H = — vazl p; log p;, where
pi is the proportion of the i-th pixel value (e.g., digital number, DN) found within a
moving window containing N pixels. Shannon’s H basically summarizes the partition of
abundances (sensu Whittaker, 1965) by taking into account both relative abundance and
richness of DNs (Figure 1).

However, Shannon’s entropy is a point descriptor of (remotely sensed) diversity. As
such, it shows only one part of the whole potential diversity spectrum at a glance. The
use of generalized entropies has been advocated to face such problem. In this case, one
single formula represents a parameterized version of a diversity index, thus providing a
continuum of potential diversity indices. In the context of the measurement of diversity,

the Rényi (1970) parametric entropy

l—«

1 N
H, = log > pf (1)
=1

with 0 < o < oo represents a powerful tool to account for the continuum of diversity
(Figure 1).
One particularly convenient property of H, is that by varying the parameter a there

is a continuum of possible diversity measures, which differ in their sensitivity to rare and
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abundant DNs, becoming increasingly dominated by the most common DNs for increasing
values of a. Note that for « — 1, H; equals the Shannon’s entropy. A similar formulation
was then proposed by Hill (1973) who expressed parametric diversity as the “numbers
equivalent” of Rényi generalized entropy. Appendix S1 provides the original formulation.

Rényi (and Hill) parametric functions summarize diversity by taking into account the
pixel values of a satellite image and their relative abundances. However, they do not allow
to explicitly consider the differences among these values. As an example, two arrays of
9 pixels with maximum richness and evenness (i.e. both containing 9 different DNs with
relative abundances p; = %) but differing in their values will attain the same Shannon
diversity irrespective of the values of the DNs in both arrays.

By introducing a distance parameter d;; among each pair of values ¢ and j, Rao’s

quadratic entropy (Rao , 1982)

N
Q= pipdy (2)

,j=1

explicitly considers the differences among the pixel values in the calculation of diversity
(Figure 1). Hence, two different pixels with values [2,3] will attain a lower diversity with
respect to two pixels with values [0,100]. For instance, to make an ecological parallel, this
is somewhat similar to the phylogenetic distance between two species: the values [2,3]
would be equivalent to two sister species closely related on the tree of life while [1,100]
would be equivalent to two very distant species on the tree of life.

The aim of this paper is thus to propose, for the first time, a parameterization of
Rao’s quadratic entropy in order to provide a generalized entropy which accounts for

both relative abundances and distances among pixel values. The proposed approach is



oONOUVL A WN=

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

1

=

6

117

Global Ecology and Biogeography

now part of the rasterdiv R package, a package dedicated to diversity measures of
spatial matrices, increasing its capability to discern among different diversity measures

by a single formula.

2 Spatio-parametric Rao’s quadratic entropy

Inter-pixel spectral distances are directly related to landscape heterogeneity and they
arc capable of describing species habitats, starting with a satellite image (Rocchini et al.,
2005). A satellite image can be viewed as a matrix of numbers describing Earth reflectance
in different dimensions stored as pixels. A sensor per each light wavelength records the
reflectance of a certain object in that wavelength which are stored into numbers in a
certain range (e.g., digital numbers in 8 bits, ranging from 0 to 255). In general, the
higher the variability in the spectral space defined by the pixel reflectance values, the
higher the diversity of the ecosystem under study.

Consider a window of N pixels moving across the whole image to calculate a diversity
index. Let ¢ and j be two pixels randomly chosen with repetition within the moving
window. Let d;; be a symmetric measure of the (multi)spectral distance between ¢ and j

such that d;; = d;; and d;; = 0. Rao’s @ (Rao , 1982) is defined as:

N Ny
Q= ppdi =) ~ < i (3)
ij=1 ij=1

Therefore, () measures the expected (i.e. mean) distance between two randomly
chosen pixels and % is the probability to extract each pixel. Note that, unlike H, or

K, the calculation of Rao’s quadratic entropy is not limited to single bands but can
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be extended to multispectral systems of any dimension. For the connection between
quadratic entropy and variance, see Rocchini et al., 2019.

Two parametric versions of quadratic entropy have been proposed by Ricotta and
Szeidl (2006) and Leinster and Cobbold (2012). These parametric formulas were aimed
at reconciling Rao’s ) with parametric entropies. However, they have only been rarely
used in practice.

A more direct approach for developing a parametric version of quadratic entropy

1 1 .
~¥ X % be the combined

stems from the work of Guiasu and Guiasu (2011). Let w;; =
probability of selecting pixels ¢ and j in this order. Guiasu and Guiasu (2011) noted that

Rao’s ) can be expressed as a linear function of the combined probabilities of all pairs

of pixels:

N N 1 1 N 1
Q=D wydiy =)  +*vdi=) 7zl (4)
ij=1 ij=1 Q=1

In practice, Rao’s @) is the arithmetic mean of the distances d;; between all pairs of
pixels 7 and j. Hence, in order to implement a parametric version of Rao’s @, it seems
natural to substitute the arithmetic mean in Equation 4 with a generalized mean (Hardy

et al., 1952):

Q=

Qo = (Z wz’ﬂ%) = (Z %d%) ()

1,j=1 1,j=1

This operation connects (), with other diversity metrics that are expressed as gener-

alized means, such as Hill’s (Hill, 1973) or Jost’s (Jost , 2006) numbers (Appendix S1)
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equivalents (see also Leinster and Cobbold, 2012).
The Rao’s @), viewed as an arithmetic mean, is one of all the possible means in its

generalized form @Q):

¢ geometric
_ N? N -
a— 0,00 = Hi,j:l dij

arithmetic
o= 17 Ql Q 21] 1 NQ
quadratic
= - |
Qa QZQ’QQZ Z,] 1]\}2d2

cubic

— 1 73
o= 37 QS Zzy 1 N2d
maxg

a — 00, Qoo = Maxd;;
\

The mathematical proof that i) for « — 0 Qg corresponds to the geometric mean,
and ii) for @« — 00 Q) corresponds to the maximum distance between pixel values pairs
is provided in Appendix S1.

Each generalized mean always lies between the smallest and largest of its values.

Increasing the parameter o will increase the weight of the highest values of d;;, thus

IR

providing a continuum of potential diversity indices (Figure 1).

3 The algorithm

Starting from a satellite image, a spatial moving window might be used to make the
calculation on predefined extents of analysis. The grain (sensu Dungan et al., 2002) will

be the resolution of the image while the extent of analysis will be the size of the moving
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window (Figure 2). The calculation is based on a distance matrix of type:

coONOUVL A~ WN=

Ay Ay, dang 0 Dy,

10 dx\z,)q d/\z,)\z d/\27/\3 d/\Qa)\n

12 M, = drgni drgng dagng o0 dag, (7)

17 Dang Da,ng da,ns 0 dya,

20 148

149 among all the potential pairs of pixels inside the moving window. The diagonal terms
25 150 of the matrix (which equal zero) will have no effect for o > 0 (Equation 6), since they
151 would enter the > term. On the contrary, for &« — 0, they would enter the ] term by

> nullifying Q.

al

30 1

32 153 We coded the proposed parameterization of Rao’s quadratic entropy as an R function,

o

35 15« implementing the previously developed rasterdiv package (Marcantonio et al. (2020),

37 155 https://CRAN.R-project.org/package=rasterdiv). The calculation of different @,

el

155 by automatically changing the range of potential « values is done by the function paRao,

42 157 aS:

153 > paRao(x, alpha=c(0:4,Inf), method="classic",
159 dist_m="euclidean", window=9, na.tolerance=0.5, simplify=3,

10 1np=8, cluster.type="SOCK", diag=TRUE)

5H 161 where x is the input dataset which can be a RasterLayer or a matrix class object,
54 12 alpha is the a parameter of Equation 5, which can be a single value or a vector of inte-

13 gers. In the example above, « is a vector of integers ranging from 0 to 4, plus Inf, which

=3

59 6« in the R language is a reserved word representing positive infinity (o — oc). The option
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method decides if paRao is calculated with 1 single layer (classic) or with more than
one layer (multidimension). With method="multidimension" then x must be a list of
objects. dist_m is the type of distance considered in the calculation of the index, and can
be set to any distance class implemented in the R package proxy, such as "euclidean",
"canberra" or "manhattan". Moreover, dist_m can also be an user-defined matrix of
distances. However, if method is set to "classic" (unidimensional paRao) all distance
types reduce to the Euclidean distance. The argument window is the side length in cells
of the moving window (in this case set to 9), whereas na.tolerance is the proportion
(0-1) of NA’s cell allowed in a moving window: if the proportion of NA’s cells in a moving
window exceeds na.tolerance then the value of the moving window central pixel will be
NA. The option simplify allows to reduce the number of decimal places to ease the cal-
culation by reducing the number of numerical categories, i.e., if simplify=3 only the first
three digits of data will be considered for the calculation of the index. np is the number
of parallel processes used in the calculation. If np>1 then the doParallel package will
be called for parallel calculation, and cluster.type will indicate the type of cluster to be
opened (default is "SOCK", "MPI" and "FORK" are the alternatives). The diag argument
refers to the diagonal term of Equation 7. It will have no effect on the function for a > 0,

while it will nullify the value of @, if set to TRUE, as previously explained in Equation 7.

3.1 Global test of the parametric Rao’s () variation over the
planet

We applied the algorithm to a Copernicus Proba-V NDVI (Normalized Difference Vege-

tation Index) long term average image (June 21st 1999-2017) at 5km grain, also provided

10
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in the rasterdiv package as a free Rasterlayer dataset which can be loaded by the
function data() (Figure 2). The parametric Rao algorithm can also be applied to mul-
tispectral data; in such a case distances are calculated in the multisystem created by
the values of the pixels in each axis/band. The moving window passing throughout the
whole image will return M, matrices/layers where « is the value chosen in the R function
paRao.

With a — 0 the [] in Equation 6 leads to zeroes throughout the whole map (Figure
3). Increasing v will increase the weight of higher distances among different values until
reaching the maximum distance value for & — co. In this case the maximum turnover is
reached and areas with maximum [S-diversity will be apparent. In this case, a multitem-
poral set is used (long term average NDVI from June 21st 1999-2017). Hence, areas with
the highest spatial and temporal turnover are enhanced, namely major mountain ridges.
We expect that using single frame images would lead to the enhancement of the spatial
component of diversity.

Since the whole process is based on distances in a spectral space between pairs of pixels
in terms of their “spectral characters” or in the “spectral space”, it is important to notice
some cornerstone aspects on the use of distances from satellite images, especially when
comparing different images or the same image in different times. In satellite images, the
measure of distances could be impacted by: ii) the use of different sensors with different
radiometric resolutions, as an example an 8-bit (2% = 256 values) with respect to a 16-bit
(2! = 65536 values) image, or ii) the radiometric calibration which has been performed,
e.g. with a non-linear transform. Therefore, care should be taken when making use
of distances in remote sensing data, explicitly taking into account how the vector of

proportions between pixels belonging to some defined classes (e.g., digital numbers, DNs)

11
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was obtained.
The complete code of the function can be directly seen in R by typing the paRao
function name. Moreover, a complete R coding session, to perform the above described

analysis is provided in Appendix S2.

3.2 Local case study: the diversity of vegetation greenness and
the ecoregions of California

A comparison between in-situ and remotely sensed diversity at worldwide scale might
be difficult due to known biases in e.g. sampling effort, taxonomies, spatial uncertainty
(Rocchini et al., 2017). Hence, we decided to calculate the Rao’s () index on a NDVI
raster layer of California (USA) to be compared with data in the field on native plant
species diversity provided in Thornhill et al. (2017) from Baldwin et al. (2017). We chose
California as a case study due to its high ecological diversity as well as to the availability
of plant species field-data for this region.

In practice, we aimed at visualizing and describing differences in both diversity and
structure of vegetation for the state of California, USA. First, an NDVI raster layer
was derived from Copernicus Sentinel-2 data (European Space Agency, reference period:
January 2017 to July 2018) and processed through Google Earth Engine to filter out
cloud cover, select the greenest pixel of the time series and resample at 100 m pixel
resolution. Then, the paRao R function was used to derive Rao’s Q index, considering
both the original formulation of the Rao’s Q (o = 1, Equation 6) and the formulation
with o — oo maximuzing [-diversity (Figure 3), with a moving window of 9x9 pixels.

A map of plant species richness was derived using the potential distribution range of

5,222 native California vascular plants modelled by Thornhill et al. (2017). Moreover,

12
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a vector map reporting the ecoregions of California (level I1I) was downloaded from the
United States Environmental Protection Agency. In Figure 4, we showed NDVI, the Rao’s
Q indices with @ = 1 and o« — oo and plant species richness, reporting the boundaries
of the different ecoregions for California. This comparison revealed macro-ecological and
bio-geographical patterns which can be better interpreted considering the information
condensed in the Rao’s Q) index.

For example, the ecoregion “Coast range” (labelled with 1 in Figure 4) is composed
by low mountains covered by highly productive, rain-drenched evergreen forests. As a
result, this region showed very high NDVI values but a low Rao’s Q index (low vegetation
structural diversity) and low to medium plant species richness. The adjacent “Klamath
Mountain” ecoregion (2) is instead characterized by highly dissected ridges, foothills,
and valleys. This region still showed high NDVI values but higher Rao’s values with
respect to region 1, which resulted in a high plant species richness. The diverse flora of
this region, a mosaic of both northern Californian and Pacific Northwestern conifers and
hardwoods, is rich in endemic and relic species. A similar pattern, although caused by
opposite factors, was recognizable for the “Central Valley” region of California (3), which
is composed of flat, urbanized and intensively farmed plains. The extensive presence of
irrigated crops intersected with urbanized areas caused medium to high NDVI values and
a very high apparent structural diversity. However, the same factors caused a low native
species richness, especially in the drier southern portion of the valley. Finally, very dry
and warm broad basins and scattered mountains characterize the “Mohave and Sonora
ranges” ecoregions (4) which showed very low NDVI and Rao’s QQ values (with scattered
higher values associated with local topographical variability) and low native plant species

richness.

13
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Passing from the pure Rao’s Q index (a=1) to its parameterization with « — oo
helped to increase the discrimination among areas, due to the fact that when a@ — oo
the Rao’s Q corresponds to the maximum distance ([-diversity) among pixel values in a
site. Very similar gradients of the spatial heterogeneity of California (including BIOMOD
variables, NDVI, elevation) as well as environmental DNA (eDNA) data are found in Lin

et al. (2020).

4 Discussion

In this paper, we provided a straightforward solution to: i) account for distances in an
Information Theory based metric, and ii) provide a generalized formula in order to avoid
point description and account for the continuum of diversity. Diversity can be represented
by different dimensions (Nakamura et al., 2020). Considering one single metric to account
for the whole continuum of diversity metrics might be a powerful addition to the main
framework. On the contrary, fragmenting the concept of diversity when trying to capture
single aspects of the whole spectrum could be counterproductive.

The proposed unifying measure succeeded to integrate abundance- and distance-based
algorithms over a wide variety of diversity metrics. We demonstrated that such integra-
tion is not only theoretical but also applicable to real spatial data, considering several
dimensions of diversity at the same time. Being part of the rasterdiv R package, the
proposed method is expected to ensure high robustness and reproducibility.

Remote sensing is obviously not a panacea for all the organismic based diversities like
taxonomic-, functional-, genetic-diversity but it can represent an important exploratory
tool to detect diversity hotspots and their changes in space and time at the ecosystem

level. First of all, it measures heterogeneity of the environment with indirect links to

14
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the biodiversity of both plant and animal taxa, but also with potential discrepancies
with species diversity, as in the presented case study of the native plant species diversity
of California. This said, depending on the complexity and the resolution at which the
proposed parameterized Rao’s () is applied, it might allow finding new insights on the
ecological processes acting in a certain ecosystem to shape its diversity. In this paper,
the examples provided were based on a single NDVT layer since i) it is a valuable index
of vegetation health and ii) it is freely available in the rasterdiv package to reproduce
the code proposed in this paper. We are aware that NDVI has very limited capacity
to track diversity in some habitats like dense forests, because it is saturated at dense
vegetation. From this point of view, imaging spectroscopy offers higher information
content, also enabling plant functional trait retrievals (Jetz et al., 2016; Schneider et al.,
2019) as well as structural traits by LIDAR data (Schneider et al., 2020). The application
of the proposed algorithm to future spaceborne imaging spectroscopy is promising. In
other words, the algorithm has been thought to be used with multiple layers, like a
whole multispectral image or the most meaningful Principal Components (Peres-Neto et
al., 2005), or land use classes probabilities derived from fuzzy set theory (Rocchini and
Ricotta, 2007; Feoli, 2018). This is even one of the major advantages of the Rao’s Q
metric which allows considering both abundance and distance among pixel values, thus
being applicable to any continuous raster layer, or to any matrix combination, even in a
multiple spectral system.

Creating a unique “umbrella” under which all of the potential metrics of diversity can
be used is highly beneficial for e.g. monitoring the variation in time of biological systems
considering two major axes: i) the a parameter in Equation 5 providing information

about the type of diversity at time t, ii) the temporal dimension from time ¢, to time ¢,

15



oONOUVL A WN=

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

Global Ecology and Biogeography

given the same « parameter. For the future, exploring such temporal dimension would
allow gathering information of ecosystem changes in different diversity types at a glance.

Morcover, generalized entropy allows us to characterize the dimensionality of diversity
(sensu Stevens and Tello, 2014) of different habitats/ecosystems. Those areas with a
higher diversity dimensionality, namely a higher variability into the diversity spectrum
would need a generalized measure to be fully undertaken. On the contrary, ecosystems
with a lower dimensionality would have a lower difference among the different diversity
measures with a flat curve of the diversity spectrum (Nakamura et al., 2020).

From a functional point of view, when all indices of diversity are highly correlated to
each other (low dimensionality), it is expected that the ecological processes underlying
diversity are just a few. On the contrary, with a lower correlation among indices (higher
dimensionality) there might be a higher number of axes of variation coming out from
different processes shaping ecological heterogeneity in space (Stevens and Tello, 2014).

There might be the possibility that a completely random matrix produces a pattern
of diversity (Type I error). On the other side, a structured matrix could produce a very
low diversity pattern (Type II error, Gotelli (2000)). In both cases, the parametric Rao’s
@ could allow to determine, thanks to the use of a continuum of diversities, i) why a
diversity pattern is still produced even in case of a random matrix, and ii) why a certain
landscape shows a very low diversity in a certain point of the whole diversity spectrum.
With point descriptors of diversity such inference cannot be done since the investigation
is limited to a small window of the entire diversity spectrum, by basically relying on a
single final number. In other words, the commonly asked question about what is the
index which best describes diversity has no certain answer (Gorelick, 2011). Hence, the

use of a trend of diversities will lead to the comprehension of hidden parts of the whole

16

Page 22 of 52



Page 23 of 52

330

331

coONOUVL A~ WN=

332

11 333

13 334

335

18 336

337

2 3 338

25 339

340

30 341

342

343

41 344

345

46 346

48 347

348

53 349

350

58 351

60 352

Global Ecology and Biogeography

diversity dimensionality:.

Furthermore, it is expected that the ecological processes shaping diversity should act
at defined spatial scales (Borcard and Legendre, 2002). Hence, different diversity types of
the whole dimensionality spectrum are expected to show scale dependent patterns, being
apparent only at certain scales and not at some others. The use of a continuum allows
measuring the different diversity types altogether in a single step. Changing the extent
of analysis by different moving windows would then allow to encompass different spatial
structures at different scales.

While geographic gradients of diversity over space are complex to catch in their very
nature, biodiversity measurement has mainly relied in the past on few formulas which
represented an hegemony (Stevens et al., 2013). In this paper, we demonstrated that
diversity is actually multifaceted and should be necessarily approached through a gener-

alized approach.

5 Conclusion

In order to unfold the dimensionality of diversity methods to directly account for several
aspects of diversity at a time are needed. From this point of view, generalized entropy
undoubtedly represents a powerful approach for mapping the diversity continuum.

Furthermore, it might be profitably used to plot multitemporal trends (see e.g. Dor-
nelas et al., 2014) of diversity metrics and discover previously imperceptible differences
when making use of single metrics (Figure 5).

Metrics grounded in Information Theory ensure to make use of relative abundance of
pixel values given the same richness in the moving window of analysis. However, distance

metrics allow to also account for the relative dispersion in the spectral space of the cloud
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of pixels in a certain area (Laliberté et al., 2020). The proposed parameterization of the
Rao’s @ explicitly considers the dispersion of pixel values in a spectral space (and their

relative abundance) by allowing catching the whole dimensionality of diversity.

6 Data availability

The code and the data used in this paper are based on completely Free and Open Source
Software, and they are available at the CRAN repository of the R package rasterdiv:

https://CRAN.R-project.org/package=rasterdiv.
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