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RÉSUMÉ

Diverses recherches antérieures ont démontré qu’on
peut caractériser le vif développement du langage harmo-
nique à la fin du XVIIIe siècle par une diminution quan-
titative d’une grandeur appelée diatonicité. Celle-ci est
définie en appliquant la transformée de Fourier discrète à
une distribution des classes des hauteurs, c’est-à-dire un
vecteur qui assigne à chaque classe de note une valeur
liée à sa fréquence d’occurrence dans une passage mu-
sical. Cette technique de transformée de Fourier permet
de dériver de nombreuses qualités harmoniques. Le cin-
quième coefficient est particulièrement important dans un
contexte tonal, car il représente la diatonicité.

Cette recherche utilise la transformée de Fourier dis-
crète pour analyser les évolutions du langage harmonique
dans les quatuors à corde par Haydn, Mozart et Beethoven
de 1780 à 1810. Elle confirme la spécificité de la qualité
diatonique, qui permet de suivre les changements de style
harmonique au cours de cette période et de différencier les
sections de la forme sonate, mais on découvre aussi que la
qualité octatonique joue un rôle de plus en plus important
au fur et à mesure de cette période.

1. INTRODUCTION

The late eighteenth and early nineteenth century are
generally acknowledged to be a period of rapid develop-
ment of harmonic language in the classical style. Over
this period, composers use a wider range of keys and en-
harmonic techniques become increasingly important. In
this paper I propose a method of measuring enharmoni-
cism and other types of harmonic variability using on the
Fourier transform on pitch-class vectors, and apply it to
eleven string quartet movements by Haydn, Beethoven,
and Mozart, over the three decades from 1780 to 1810.

The term enharmonicism is most often associated with
techniques where a respelling of a note or chord is essen-
tial to show multiple harmonic functions it represents in
a particular musical passage, for instance the respelling
of a diminished seventh to function in two different keys.
Another distinct type of enharmonicism occurs when a se-
quence of chords or keys tours the circle of fifths, so that
a respelling is necessary somewhere in the sequence to re-
turn to the original key in its original spelling. Because

spelling is equivalent to orientation around the circle of
fifths (sharpward or flatward), both types of enharmoni-
cism can be generalized as spread on the circle of fifths,
which is operationalized here using the fifth Fourier coef-
ficient. We find, in fact, in the examples below, that meth-
ods and uses of enharmonicism do not always fit neatly
into these two categories, but all of them are captured by
the generalization using the fifth Fourier coefficient.

In addition to providing a convenient generalization of
enharmonicism, the discrete Fourier transform also iso-
lates a number of harmonic qualities of potential interest,
some of which, such as the third coefficient, have theoreti-
cal significance for tonality. The following study analyzes
the Fourier coefficients of a windowed analysis of string
quartet first movements, and how the range of values in-
teracts with formal section, composer, and date of com-
position. In addition to the fifth coefficient, the analysis
finds significant trends in the fourth coefficient, or octa-
tonic quality.

2. METHOD

2.1. Fourier analysis of pitch-class vectors

The main mathematical tool for this research is the dis-
crete Fourier transform on pitch-class vectors. A pitch-
class vector is a twelve-place vector, where the first en-
try gives a weighting to the pitch-class C, the second to
C], and so forth. A pitch-class set can be represented as
a pitch-class vector by assigning ones to each pitch class
present and zeros otherwise (the characteristic function).
While pitch-class vectors have a variety of applications,
they are used here to represent the frequency of occur-
rence of a pitch class in a musical passage. Applying the
discrete Fourier transform to a pitch-class vector reveals
the presence of periodic components.

For pitch-class vector A = (a0, a1, a2, . . . , a11), the
Fourier transform Â = (â0, â1, â2, . . . , â11) of A is given
by (∀k : 0 ≤ k ≤ 11),

âk =
11∑
j=0

aje
−i2πkj/12 (1)

=
11∑
j=0

aj (cos(2πkj/12) + i sin(2πkj/12)) (2)

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire



The use of this method for harmonic analysis is dis-
cussed at length by Amiot, Quinn, Yust, and others [2, 6,
16, 19, 20, 21], in music cognition research by Krumhansl
and Cuddy et al. [13, 9], and for algorithmic generation of
chord progressions by Bernardes et al. [5]. Each âk is a
complex number, where the distance from the origin, the
magnitude |âk|, gives the strength of that periodic com-
ponent, and the angle arg(âk) gives its phase. Of par-
ticular interest are â5 and â3. The fifth coefficient, â5,
gives the diatonicity of the pitch-class vector (see [3]). Its
magnitude is the strength of diatonicity, and its phase in-
dicates the nearest diatonic collection, or the best key sig-
nature for it. The third coefficient, â3, isolates triadic rela-
tionships, and distinguishes chords in a key by harmonic
function. These two components consistently account for
the majority of the power in pitch-class counts of whole
pieces, or long passages, of tonal music. [22, 23]

Because the pitch-class vector A is real-valued, coeffi-
cient â12−k is equal in magnitude and opposite in phase
to âk. Therefore, coefficients 7–11 can be ignored.

2.2. Windowing and pitch-class counting procedure

The present study uses a windowing procedure to de-
rive a series of pitch-class vectors from a musical score.
The windows vary from 2 to 32 quarter notes in length,
and are taken every quarter note. We begin with a list
of pitches (N.B. not pitch classes) occurring within each
quarter-note beat. Note repetitions and durations within
the beat are ignored, but doublings in multiple octaves are
retained. Then this is reduced to a pitch-class vector that
counts the number of occurrences of each pitch-class (i.e.
the number of octaves it occurs in). This gives a good
measure of the harmonic importance of each pitch-class
(see [1, 11]), while eliminating possible over-counting of
pitches due to rearticulation (e.g., a trill) or undercounting
of pitches due to, e.g., written out staccato. The pitch-
class vectors for each beat within the window are then
summed over the whole window.

After taking the DFT, each coefficient is normalized
by total power, which is the sum of the squared magni-
tudes of all the components (

∑
|âk|2). By one of the fun-

damental theorems of Fourier analysis (Parseval’s) this is
equivalent to 12 times the sum of the squared magnitudes
of the pitch-class weights of A (12

∑
a2k). Normalization

neutralizes the effect of large numbers of pitches in a pas-
sage (due, e.g., to an ornate melody), or especially heavy
emphasis on one or a few pitch-classes, both of which oth-
erwise could lead some data points to have much higher
magnitudes simply for textural rather than harmonic rea-
sons.

2.3. Data set

The data set comes from the first movements of eleven
string quartets by Haydn, Mozart, and Beethoven, com-
posed between 1781 and 1809. The quartets chosen are
all of those with sonata form first movements in 4/4 or
2/4 time available in the Yale Classical Archives corpus

(ycac.yale.edu). The time signature constraint is imposed
so that the match of window sizes to measure lengths is
consistent. I used five window sizes: 2, 4, 8, 16, and 32
quarter-notes.

Each piece was divided into three parts–exposition, de-
velopment, and recapitulation–before performing the data
analysis. In all but one case (Beethoven Op. 59 no. 1)
the end of the exposition is indicated in the score by a re-
peat sign. The recapitulation begins from the return of the
main theme material in the home key (unambiguous in all
cases) and runs through the end of the piece. Any codas
are therefore grouped with the recapitulation. Where al-
ternate endings exist (either at the end of the exposition or
coda) the second ending was used.

2.4. Analysis of convex hulls: Area and distance from
zero

For each DFT coefficient, the data consists of a point
in complex space for each window. To find the overall
range of activity for each formal section of each piece,
I collected the area and centroid of the convex hull for
all of the points in that section and whether the origin
falls within that convex hull. The area of the convex hull
and its distance from the origin together roughly deter-
mine the range of phase values that occur in the passage.
The range of phase values increases as the area becomes
larger, and as the distance from the origin gets smaller.
Figures 1 and 2 illustrate this with the â5 values for the
exposition and development sections of Haydn’s Op. 50/1
string quartet’s first movement. Each sixteen quarter-note
window, incremented by a quarter note, is a data point
(lines and numbering in the figure show the temporal evo-
lution), and the extreme data points determine the convex
hull. The range of activity in the exposition covers about
three key signatures of the total phase range of the space,
whereas the development almost includes the origin, cov-
ering not quite half of the full enharmonic cycle (from D[
major to C major / D minor). The difference between them
is primarily that the range of activity in the development
is closer to the origin.

Previous studies have averaged magnitudes (distance
from zero) and phase values of Fourier coefficients over
pieces or musical passages ([22, 23]). These quantities are
closely related to the distance of the convex hull centroid
from zero and the area of the convex hull respectively. The
difference of looking at the convex hull is that it prioritizes
the extrema of the passage, which may reflect moments
of particular musical significance. If these extrema are
isolated events, then this can be detected by the effect of
increasing window size, which averages nearby points and
will have the effect of neutralizing more isolated extreme
values.

Four coefficients are considered here, â2, â3, â4, and
â5. The fifth coefficient, as a measure of diatonicity, is of
particular interest. The third has also been shown to be
important to tonality, relating to harmonic function. The
second also tends to be large in tonal distributions, but is
dependent on the third and fifth (and hence possibly a sort
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Figure 1. The exposition of Haydn’s Op. 50/1 (1st mvt.)
in â5-space, analyzed with a 16-beat window. Each ten
quarter-notes are numbered, and successive windows are
connected by a line. The convex hull is shown, as well as
the average value (orange X) and centroid (red X).
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Figure 2. Development of Haydn’s Op. 50/1 (1st mvt.)
in â5-space, analyzed with a 16-beat window.

of mathematical artifact). [22, 23] The fourth coefficient is
also large for triads and seventh chords, but tends to dis-
appear in multi-measure tonal distributions. Theoretically
it could play some role in harmonic function, although if
so, this has not yet been demonstrated empirically.

3. RESULTS

The first question of interest is how the window size
affects these values. The trends were consistent across
formal sections, so they are averaged over them here. As
the window gets larger, the area of the convex hull will
necessarily decrease, because the points will get closer to-
gether. However, the area can decrease at different rates
depending on how rapidly the values for that coefficient
fluctuate over time. If they tend to move large distances
over short periods of time, increasing window size will
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Figure 3. Change in area across coefficients for different
window sizes, with standard error
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Figure 4. Change in distance from the origin across coef-
ficients for different window sizes, with standard error

have a larger effect on the area. Figure 3 shows a ten-
dency for â4 to decrease area more rapidly with change of
window size than the other coefficients. Also, we see that
the range of activity is lowest for â2 and â5 (large window
sizes in development sections are an exception where â5
has a similar range of activity to â3 and â4). The range of
activity is higher for â3 and â4.

The data for the distance of the centroid from the ori-
gin, shown in figure 4 (also consistent across formal sec-
tions), clearly shows that â5, diatonicity, is special. Not
only is it consistently further from the origin, something
shown by previous studies [22, 23], but it also shows a
clear strong trend towards increasing distance from the
origin with larger window size. The greater distance of
â3 (and â2 at larger window sizes) compared to â4 is also
consistent with previous findings. What previous studies
do not show, because they deal mostly with larger window
sizes (in particular entire pieces) is that â2 only gets larger
as the window size increases to four or more measures.

The next question of interest is whether we can de-
tect stylistic changes over this 30-year period. A previous
study [23] found a very clear trend of decreasing diatonic-
ity (|â5|) in a large corpus for music from the sixteenth
through the nineteenth century. That analysis was based

Journées d’Informatique Musicale 2020 – Préactes

Postpublication – Version provisoire



on pitch-class distributions taken over entire pieces, and
also a single large window from the beginning and end of
each piece. The analysis here considers a windowing of
each formal section, and a range of â5 values (represented
by the convex hull).

To evaluate this question, I ran a series of multiple re-
gressions on the area and distance data for a single moder-
ate window size of 8 quarter notes, with factors of (i) co-
efficient number (2–5), (ii) date of composition, (iii) com-
poser, (iv) formal section, (v) mode, and (vi) length of the
passage in quarter notes 1 , and second and third order in-
teractions between these, and used a backward elimination
method to find an efficient model 2. The resulting models
are given in tables 1-3.

The distance model in table 1 includes factors of coef-
ficient number, date, formal section, and mode, and inter-
actions of all of these with coefficient number (adjusted
R2 = .827, p < .0001). Significant βs appear for all the
interactions and for the simple effect of coefficient num-
ber. Almost all of these involve â5, which is a) larger
(farther from 0) overall, b) decreases with date of com-
position, and c) is smaller for developments and minor
keys. Since distance of the centroid from the origin is
closely related to the magnitude of a coefficient for the
pitch-class distribution of the whole piece, these results
are largely consistent with results from [23], which found
overall consistently large diatonicity (|â5|) values com-
pared to other coefficients, decreases of diatonicity over
the eighteenth and nineteenth centuries, and greater dia-
tonicity in major than minor. The finding of lower dia-
tonicity in development sections is new, but unsurprising.
The other results from the distance data involve â4, which
is lower overall, and, interestingly and unexpectedly, gets
larger over the 1780–1810 period, as â5 gets smaller.

The model in table 1 is not actually the one that re-
sulted from the backward elimination procedure, which
instead gave a model with length and length×coefficient
rather than date and date×coefficient. However, because
length and date are highly correlated, and date provides
a better explanation for the observed effects (it is not ob-
vious why length alone would influence the distances),
I checked the model in table 1 and got almost identical
results, with a slight improvement in multiple R2 and
adjusted R2. Table 2 gives coefficients for the alternate
model with length and length×coefficient (the coefficients
not involving length or date do not meaningfully change).
The only difference in the model with length is that only
the interaction with â5 is significant (â5 gets smaller for
longer passages), whereas in the model with date, we ob-

1Thanks to an anonymous reviewer for pointing out that area would
be expected to vary with length of passage, which prompted me to add
this factor.

2To perform a backward elimination I began by running a multi-
ple regression on all factors, which included second order interactions
date×form, form×composer, date×length, and form×length, all factors
with coefficient number, and third order interactions adding coefficient
number to all of the second-order interactions just listed. I removed the
factor with the highest minimum p-value and no higher-order interac-
tions dependent upon it, until all remaining factors were significant at
p < .01 or part of some higher-order interaction.

Factor Coefficient Significance
Date −0.0002 —
Expo 0.0242 —
Recap 0.0282 —
â3 0.5824 —
â4 −5.050 p < .01
â5 4.766 p < .01

Minor 0.0114 —
Date×â3 −0.0003 —
Date×â4 0.0028 p < .01
Date×â5 −0.0026 p < .01
Expo×â3 −0.0008 —
Recap×â3 0.0214 —
Expo×â4 −0.0346 —
Recap×â4 −0.0243 —
Expo×â5 0.1080 p < .0001
Recap×â5 0.0677 p < .01
Minor×â3 0.0064 —
Minor×â4 −0.0212 —
Minor×â5 −0.0893 p < .001

Table 1. Regression model on distance data. (R2 = .852,
Adjusted R2 = .827)

Factor Coefficient Significance
Length 0.00002 —

Length×â3 −0.00005 —
Length×â4 0.00011 —
Length×â5 −0.00029 p < .001

Table 2. Coefficients for a model replacing date with
length in the model for distance data. (R2 = .849, Ad-
justed R2 = .824)

serve a significant increase in â4 as well as a decrease in
â5 over date of composition.

In the area model, the length factor has more explana-
tory value, since a longer passage results in more data
points, which is likely to increase the area of the con-
vex hulls. In fact, we find a statistically significant in-
crease with length only in â4. The other significant effects
found in the area model are a) an overall increase with
date, b) smaller areas overall for developments, c) smaller
areas for Beethoven, and d) larger areas in minor. See ta-
ble 3 (adjusted R2 = .737, p < .0001).

Figures 5 and 6 show the distance data and trendlines
by date for coefficients 4 and 5, separated by formal sec-
tion. They can be compared to the data for â3 in fig-
ure 7. We see that â5 is much larger overall and decreases
over time, while â4 increases over time. The lower â5 for
developments is clear, whereas there is no apparent dif-
ference between formal sections in the other coefficients.
What appears to be an interaction between formal section
and date in â5, with recapitulations decreasing much more
rapidly over time, did not result in a significant triple in-
teraction (coefficient×date×form) in the regression anal-
ysis. Nonetheless, this may reflect that codas, which were
included in the recapitulations for the data collection, be-
come longer and more tonally adventurous over the pe-
riod, especially in Beethoven’s works, where they often
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Factor Coefficient Significance
Date 0.0237 p < .0001
Expo −0.2901 p < .0001
Recap −0.3512 p < .0001
â3 0.3741 p < .01
â4 0.1424 —
â5 0.0850 —

Haydn 0.2738 p < .01
Mozart 0.3041 p < .01
Minor 0.1463 p < .01
Length 0.0005 —

Length×â3 0.0003 —
Length×â4 0.0017 p < .001
Length×â5 0.0002 —

Table 3. Regression model on area data. (R2 = .763,
Adjusted R2 = .737)

act as something like a secondary development.
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The results for the area data, table 3, mostly consist
of simple effects, with the exception of the length to co-
efficient interaction, which shows that area increases for
longer passages only in â4. Across all components there
is an increase in area by date, evident in figures 8-10, but
also lower areas for Beethoven, whose works are all later
in date. This means that the composer effect cancels out
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Figure 7. Distance of â3 from the origin by date with
trendlines for each formal section.

the date effect between composers, so that it only obtains
within each composer’s oeuvre. That is, the areas increase
across each composer’s range of dates, but not between
composers. Also evident from figures 8-10 is that devel-
opments have higher areas across all coefficients, which is
the simple effect of form identified by the regression. In
addition, the regression found larger areas overall for â3
(Fig. 10), and larger areas for minor-key pieces (Mozart
K.421 and Beethoven Op. 18 no. 4). The other effect
apparent in figures 8-10, the steeper trendline for reca-
pitulations, does show up as a weak effect (p < .05) if
form×date is added back into the regression model (with
a coefficient of 0.0112 for recap×date), but the model
of table 3 does not include it because I chose a stronger
α = .01 criterion in the backward elimination.

4. DISCUSSION

The results confirm and extend much of what we know
about diatonicity and enharmonicism, as represented by
â5, in the late eighteenth and early nineteenth century.
While the overall range of activity in â5 does not change
much from 1780 to 1810 in the repertoire examined, that
range shifts closer to the origin, which increases the range
of phase values, making enharmonicism, in the form of
patterns and relationships that cycle the â5 space, more
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available. For the other Fourier coefficients, whose ranges
of activity have similar or slightly higher areas but consid-
erably smaller distance from the origin, the full range of
phase values appear to be consistently available across all
of the repertoire examined.

The analysis above did not include data on whether the
origin is included within the convex hull, although it was
collected for the corpus, because this is largely directly
attributable to the area and distance from origin. How-
ever, it is a useful criterion in the sense that if the ori-
gin is excluded from the convex hull, then the range of
phase values does not exceed half of the full cycle. For
â5, that means that the piece is unlikely to include enhar-
monic techniques. For other coefficients, it is rare that the
origin is excluded from the convex hull, but for â5 all anal-
yses with 16- and/or 32-beat windows in the current data
pool exclude it except only in five instances. These are
development sections of Mozart K.421, Haydn Op. 64/6,
Beethoven Op. 18/4, and Op. 59/1 and the recapitulation
of Beethoven Op. 74. This list includes some notable ex-
amples of enharmonicism for the period. For example,
the Mozart K.421 development begins with a sudden shift
to E[ minor, followed by a reinterpretation of E[ as D]
in A minor. Haydn Op. 64 no. 6 has a false recapitula-
tion in G[ major, with the G[ ultimately reinterpreted as
an F] in C major. Beethoven’s Op. 59/1 has an unusu-

ally elaborate development section, which leads to a re-
markable climax, where a dramatic E[ major chord sud-
denly gives way to a series of enharmonically ambiguous
chords. Only the Beethoven example could be considered
a true enharmonic cycle, while only the Mozart can be
understood as an enharmonic reinterpretation of a chord.
In general, though, all of these expand the range of keys
enough to make various kinds of enharmonic play pos-
sible. The convex hull of â5 therefore generalizes across
enharmonic techniques, and is promising as a way to com-
putationally detect enharmonicism. It isolates those cases
where significant enharmonic distinctions become active,
without definitely specifying how the enharmonicism may
be compositionally deployed.

A new and interesting result here relating to diatonicity
is that as the window size increases (averaging over more
music), the range of diatonicity moves further away from
zero. This quantifies the musically intuitive idea that dia-
tonicity is a large-scale musical property. Greater musical
context typically results in a stronger sense of diatonic po-
sition and less diatonic ambiguity. Since diatonicity is es-
sential to the sense of key, this is consistent with the idea
that keys typically govern long stretches of music. This
is not true of other coefficients, whose ranges of activity
stay relatively close to zero regardless of window size.

The most surprising results here have to do not with
diatonicity but with â4. This coefficient has been asso-
ciated with octatonic harmony in twentieth-century mu-
sic [2, 20, 21] and seventh chords in tonal music [19]. It
may also relate to the use of diminished seventh chords
and describe a Riemannian concept of function (along the
lines, e.g., of De Jong and Noll [10]). This dimension of
harmony appears to play a greater role over the historical
time period examined. Its range of activity shifts away
from the center of the space, indicating that a particular
phase value of â4 begins to act as a reference point (much
as the central â5 phase value represents the basic scale
of the home key). This is particularly notable in that it
opposes the trend on all other coefficients (especially â5)
to decrease over time 3. At the same time, however, the
area of â4 gets larger, so that range of phase values re-
mains consistent. Taken together, we may say then that
larger |â4| values, caused probably by heavier use of di-
minished seventh chords, become more prevalent, and the
association of particular diminished sevenths (enharmoni-
cally) with particular functions becomes more established.
While octatonicism has often been recognized as an im-
portant aspect of the break with tonality on the part of
early twentieth-century composers like Stravinsky, Ravel,
Debussy, Bartòk and Scriabin [4, 7, 8, 12, 14, 15, 18, 20,
21], and Liszt is usually the earliest composer credited
with using an octatonic scale [17], the results here hint at
the possibility that the seeds of octatonicism are planted
much deeper in the history of tonality.

3Given that we are talking about power-normalized Fourier coeffi-
cients, and that the Fourier transform conserves total power (Parseval’s
theorem), an overall trend of decreasing coefficient values necessarily
indicates an increase in â0, corresponding to general chromaticism, or
the tendency to use all pitch-classes relatively equally.
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