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Colloidal suspensions in one-phase mixed solvents under shear flow

Armand Barbota,b and Takeaki Araki∗ a,c

We numerically studied the behaviour of colloidal suspensions in one-phase binary liquid mixtures under shear flows. Far from

the phase-separation point, the colloidal particles are well dispersed and the suspension exhibits a Newtonian viscosity. When

the mixture is close to the coexistence curve, the colloidal particles aggregate by attractive interactions due to the concentration

heterogeneity caused by surface wetting, and the viscosity of the suspension increases. Near the phase-separation point, the

viscosity increases when the fraction of species favoured by the surface of a colloid particle is small. The mixture also exhibits

shear thinning behaviour, since the aggregated structure is rearranged into small clusters due to the shear flow. Our simulations

indicate that the concentration profile around each particle is not significantly disturbed by the shear flow at the onset of the

structural rearrangements. The effective interaction is independent of the shear flow and remains isotropic.

1 Introduction

Suspensions of attractive colloidal particles exhibit various

rheological properties, which depend on the particle concen-

tration, the inter-particle interactions and the resultant mi-

crostructures.1–18 When the particle concentration is dilute

and the inter-particle interactions are negligible, the suspen-

sion behaves as a viscous liquid obeying the Einstein viscos-

ity equation.1 If the particle concentration is increased and/or

the interactions are strengthened, the particles become aggre-

gated. They often form a fractal pattern, depending on the ki-

netic process of the aggregation.19 The expanded structure of

the fractal pattern may increase the suspension viscosity.4–12

Furthermore, if the particles percolate and/or are jammed, the

suspension exhibits a solid-like behaviour as a gel13–17 or a

glass.3,18

The aggregated pattern depends on the properties of the at-

tractive interaction, e.g., its strength, its range and whether the

contact is sticky. One of the well-established methods for con-

trolling inter-particle interaction is based on the DLVO the-

ory,20,21 which describes the interplay between the van der

Waals and electrostatic interactions. In a salt-free solvent,

a suspension of charged particles is stablised against the ag-

gregation because of the electrostatic repulsive interactions.

Adding a sufficiently large amount of salt screens the electro-

static interaction and causes the particles to aggregate. It is

also known that non-adsorbing polymers can induce attractive

interactions among colloidal particles.22,23 In the vicinity of

a particle surface, the polymer chains are expelled because of

steric interactions. The imbalance of the osmotic pressure be-

tween the polymer-depleted zone and the bulk liquid pushes

particles against each other. The strength and range of this

effect can be tuned by changing the concentration and the gy-

ration radii of the polymers.24
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Binary liquid mixtures also are useful for inducing attrac-

tive interactions among particles.20,25–53 In a phase-separated

mixture, the contact angle between the two phases on the par-

ticle surface is determined using the Young’s equation.20,27.

If one of the separated phases has a sufficiently higher affinity

for the surface than the other phase, the preferred phase wets

the particle surfaces completely. When the layers covering the

different particles overlap, an attractive interaction is induced

between the particles.20,25–28 This interaction is called a cap-

illary bridging force, and it is well known for particles in a

gas-liquid coexistence state of a one-component liquid.54,55.

The strength and range of the interaction are determined by

the relative fraction of the preferred phase. It has been re-

ported experimentally that the capillary forces can give rise to

elastic or gel-like rheological properties.29–31

On the other hand, when both phases have an equal or

nearly equal affinity for the particle surface, the particles tend

to gather at the interfaces between the separated phases.32,33

The particles play the role of surfactants and stabilise the

phase-separation pattern, as in emulsions. The stabilised mix-

ture is called a Pickering emulsion.34 When both phases have

nearly the same volume fractions, the emulsion forms bicon-

tinuous patterns. When the particles are jammed at the inter-

faces, the suspension behaves as a solid.35–37

Even for binary mixtures in a one-phase state, attractive in-

teractions are induced among particles when the particle sur-

face prefers one of the mixture components.26,28,38–42,56,57 Be-

cause of wetting between the particles and the binary solvent,

the concentration of the favoured species is enriched near the

surfaces. Near the phase-separation point, the wetting interac-

tion can induce the phase-separation at the surface.58,59 When

the heterogeneous profiles of the concentration field overlap,

an attractive interaction occurs between the particles, which

is so strong that it leads to aggregation of the colloidal parti-

cles.43–50,60 This interaction is called a critical Casimir effect

or adsorption-induced interaction. In this article, we use it

with the latter term.

Although the static properties of the adsorption-induced in-



teractions in colloidal systems have been studied well recently,

their dynamic behaviour is still not fully understood. In this

article, we numerically investigate the rheological properties

of colloidal suspensions in binary mixture solvents. In par-

ticular, we focus on those in one-phase mixed states, where

the adsorption-induced interaction occurs between the parti-

cles. This adsorption-induced interaction can be controlled

easily by changing the temperature, and it is reversible. Thus,

this interaction can be used to tune the rheological properties

of the colloidal suspension. Although one can easily change

the interactions among particles and the resultant aggregated

structures by adding salts or additives such as polymers, it is

not easy to tune the interaction reversibly. It is quite difficult

to remove such additives once they have been dissolved.

2 Numerical Model

2.1 Free energy functional

First, we consider the free energy of a binary liquid mixture

containing spherical particles. Several simulation methods for

studying such mixtures have been developed.36,44,62–66 The

simulation model in this article is basically the same as that

used in our previous studies.67,68

We denote the solvent species with higher affinity for the

particle surface as ‘A’, and the other one as ‘B’. The volume

fractions of the solvents A and B are given by φ and 1−φ , re-

spectively. We describe particles with a smooth shape function

as16,17,51,67–70

ψi(r) =
1

2

{

tanh

(

a−|r−Ri|

d

)

+ 1

}

. (1)

Here r is the coordinate in a three-dimensional lattice space,

and Ri is the position of the i-th particle in an off-lattice space.

The parameter a is the radius of the particle, and d represents

the width of the smooth interface. We respectively define the

particle and surface distribution functions as

ψ(r) = ∑
i

ψi(r) (2)

and

ψs(r) = d ∑
i

|∇ψi|. (3)

ψ(r) represents the particle distribution. In the limit d → 0,

position r is inside one of the particles when ψ(r) = 1, while r

is in the solvent when ψ(r) = 0. Its spatial average 〈ψ〉 gives

the particle volume fraction. Also, in the same limit, |∇ψi|
behaves as δ (|r−Ri| − a) in eqn (3). Finally, ψs gives the

particle surface distribution.

The free energy functional consists of three parts:

F = Fm +Fw +Fp. (4)

The first term is the mixing free energy given by71

Fm =
T

v0

∫

dr(1−ψ)

{

f (φ)+
C

2
|∇φ |2

}

, (5)

where T is the temperature and the Boltzmann constant is set

as unity. v0 is the molecular volume and C is the coefficient

of the gradient term, related to the interfacial tension; it is of

the order of v
2/3
0 . f (φ) is the bulk mixing free energy, which

is given by

f (φ) = φ lnφ +(1−φ) ln(1−φ)+ χφ(1−φ), (6)

where χ is the interaction parameter between the two fluid

components. Using mean-field approximation, the coexis-

tence curve is given by

χcx(〈φ〉) = {ln〈φ〉− ln(1−〈φ〉)}/(2〈φ〉− 1), (7)

where 〈φ〉 is the average concentration. χ = 2 and 〈φ〉 = 1/2

correspond to the critical point of the phase-separation. Also,

the distance from the phase boundary is given by χcx−χ . The

mean-field correlation length is ξ = d|1/〈φ〉+ 1/(1−〈φ〉)−
2χ |−1/2. It diverges at the spinodal point χsp = {1/〈φ〉+
1/(1−〈φ〉)}/2, which is larger than χcx for off-critical mix-

tures (〈φ〉 6= 1/2). Furthermore, the correlation length does

not diverge on the coexistence curve when 〈φ〉 6= 1/2. We

confirmed that the solvent is phase-separated when χ > χcx in

our simulation without the particles. However, we note that

χcx does not give the correct phase-separation point in mix-

tures containing particles. The wetting interaction promotes

the local phase-separation in the vicinity of the particles, and

the average concentration is effectively changed because of

the depletion effect. We will see these effects below.

The second term in eqn (4) describes the interplay be-

tween the concentration field and the particles.58,59 It is given

by67,68,70

Fw =−
T

v0

∫

dr
{

Wψs(φ −φp)+
χp

2
ψ(φ −φp)

2
}

, (8)

where the first term on the right hand side is the wetting in-

teraction between the particle surface and the mixture solvent,

and W is the strength of the wetting interaction. When the

value of W is positive, the particle surface favours the A-

species. We artificially introduced the second term to prevent

the liquid from penetrating into the particles, and χp and φp

are its control parameters. Without this term, the concentra-

tion field φ inside the particles influences the wetting behav-

ior. We confirmed that the choice of χp does not change our

results if χp is sufficiently large.

The third term in eqn (4) represents direct interaction

among the particles and is given by

Fp = ∑
i< j

U(Ri j), (9)



where Ri j = |Ri −R j| is the distance between the centres of

the mass of the i- and j-th particles, and U(R) is a pairwise

potential. In this study, we employ the repulsive part of the

Lennard-Jones potential. U(R) = 4U0{(σ/R)12 − (σ/R)6}+
U0 for R < 21/6σ and U(R) = 0 for r ≥ 21/6σ , where we set

σ = 2a+ d. Fp avoids overlaps between particles.

2.2 Time development equations

Next, we consider the hydrodynamic flow of a binary mixture

with colloidal particles under shear flow. Even in the absence

of particles, it is known that shear flow influences the critical

phenomena71,72 and the phase-separation pattern.73–75 Also,

the resultant interfacial structure changes the rheological prop-

erties of the binary mixture.76

In our geometry, the hydrodynamic flow is given by

v = u+ γ̇(z− z0)ex, (10)

where the x, y and z axes are the flow, the vorticity and the

shear directions respectively. γ̇ is the shear rate and z = z0

is the zero-shear plane. eα is a unit vector along the α-axis.

Hereafter, α and β represent x, y and z, and we sum over re-

peated indices. u represents the deviation of the flow field

from the applied shear flow. Neglecting non-linear terms, the

hydrodynamic equation for u is given by

ρ
∂uα

∂ t
=−γ̇(z− z0)∇xuα + fα −∇α p+∇β Σv

αβ , (11)

where ρ is the mass density, which we assume to be the same

for all the components. The first term on the right hand side

of eqn (11) corresponds to the convection due to the applied

shear flow. p is a part of pressure, which is determined by the

incompressible condition ∇ ·u = 0. Here, Σv
αβ is the viscous

stress expressed by

Σv
αβ = η(∇α uβ +∇β uα)+ηγ̇(δαzδβ z + δαxδβ x). (12)

In the spirit of the fluid particle dynamics method, we assume

that the viscosity η depends on the particle distribution as

η(r) =η0+(ηp−η0)ψ(r), where η0 is the fluid viscosity and

ηp is the viscosity inside a particle. In the limit ηp/η0 → ∞,

our particles behave as solid objects. The last term in eqn (12)

represents the shear stress due to the applied shear. With it,

the rotations of particles caused by the shear flow are auto-

matically incorporated. The second term in eqn (11) is the

force field acting on the binary fluid.71 It is given by

f(r) =−φ∇
δF

δφ
+∑

i

(

−
∂F

∂Ri

+Fr
i

)

ψi(r)

Ωi

, (13)

where Ωi =
∫

drψi(r) is the effective volume of the i-th par-

ticle. The first term on the right hand side of eqn (13) comes

from the inhomogeneity of the concentration field, or the in-

terfacial tension. Fr represents the thermal fluctuation acting

on the particles and leads to Brownian motion of the particles.

We note how to determine the amplitude of Fr in Appendix B.

The particles are transported with the flow, and their kinet-

ics are described by

d

dt
Ri =

1

Ωi

∫

dru(r)ψi(r)+ γ̇(Riz − z0)ex. (14)

The second term represents the transportation caused by the

applied shear field.

The time development equation of the concentration field φ
is given by

∂φ

∂ t
=−∇ · (φu)− γ̇(z− z0)∇xφ +∇ ·L(ψ)∇

δF

δφ
, (15)

where L(ψ) is the kinetic coefficient. We set L(ψ) = L0(1−
ψ) to eliminate the flux inside the particles, where L0 is the

kinetic coefficient of the bulk mixture. Without particles,

the set of eqn (11) and (15) describes the critical phenomena

and phase-separation dynamics in fluid mixtures under shear

flow.71 The effect of the shear flow is characterized by the

Deborah number De = γ̇τd.71 τd is the characteristic time for

the concentration fluctuations. When particles are contained,

(−∂F/∂Ri)ψi/Ωi in eqn (13) plays the counterpart of the

first term of eqn (14).70

In the simulations, we set v0 = d3, C = d2, χp = 10 and φp =
0.5 in the free energy functional. The particle radius is a= 4d,

and the wetting parameter is W = 0.5, so that the component

with larger φ (the A-species) tends to wet the particle surface.

The strength of the soft-core potential is given by U0/T = 5.

The viscosity parameters are η0 = 0.5ρL0/T and ηp = 50η0.

The space is discretized in units of d, and the time incre-

ment is ∆t = 0.005t0, where t0 = d2v0/(L0T ) is a character-

istic time for our system. Our method is a hybrid simulation,

which treats φ and u in the lattice space, and Ri in the off-

lattice space. Then, the motions of the particles are free from

the discretization of the space. The choice of the lattice spac-

ing influences the resolution of our simulations. But, our pre-

vious studies and simulations with a similar shape function in-

dicated the usage of d as the lattice spacing is efficient for the

computations.16,17,51,67–70,77 The simulations are conducted in

a three dimensional space with Lees–Edwards boundary con-

ditions [see Appendix A]. The sizes of the simulation boxes

are (64d)3 for the one or two-particle systems, and (128d)3

for many-particle systems.

In many-particle systems, we impose random noise on the

particle motions to thermalize their distribution. In eqn (13),

the amplitude of Fr is determined to satisfy the fluctuation

and dissipation relation [Appendix B]. A shear rate of γ̇t0 =
0.01 corresponds to the Péclet number for the particles of



Pe(= γ̇τp) ∼= 1.05,1 where τd is the characteristic diffusion

time of the Brownian particles.

3 Results and discussions

3.1 Pairwise interactions

First, we consider a particle pair suspended in a binary mixture

to study the interactions between them in our model. After the

system is annealed at a fixed value of χ with no random noise

in Fr, the particles and the concentration field reach a final

state, in which the particles adhere to each other. Figures 1(a)

and (b) show the profiles of the concentration field along the

line connecting the particle centres. The average compositions

are 〈φ〉= 0.5 in (a) and 0.35 in (b). The interaction parameter

χ is changed. Here, the particle volume fraction is sufficiently

small, 〈ψ〉 ∼= 2.04× 10−3, so that we can assume the suspen-

sion to be in contact with a reservoir of solvent mixture with

concentration 〈φ〉. Because of the soft-core potential and the

interface with the finite thickness, the particles do not touch

completely and there remains the solvent in between them. In

both mixtures, the composition near the surface increases and

the wetting layers are formed at the surfaces. When the wet-

ting layers are bridged, the capillary force acts between the

particles. At χ = χcx, the adsorption amount for 〈φ〉= 0.35 is

larger than that for 〈φ〉= 0.5.

In Fig. 1(c), we plot cohesive force Fc against to the average

concentration 〈φ〉, for χ = 1.5 and 2.0. In the final state, the

cohesive force Fc due to the concentration inhomogeneity is

balanced against the repulsive force of the soft-core potential

U . Thus, we estimate the cohesive force as

Fc

[

≡−
∂

∂R
(Fm +Fw)

]

=
∂U

∂R

∣

∣

∣

∣

R=|R1−R2|

. (16)

We define the sign of Fc to be positive when the interaction due

to the concentration inhomogeneity is attractive. In Fig. 1(d),

we plot the cohesive force as a function of χ for 〈φ〉 = 0.2,

0.35 and 0.5. Here, only the cohesive forces for χ < χcx

are plotted. In the simulations with intermediate values of

the wetting parameter, the concentration of the A-species near

the surfaces is almost equal to that at the coexistence curve

when χ ≥ χcx. If both particles are contained in a droplet that

is much larger than the particle radius, the cohesive force is

weakened, and the particles then detach. Thus, the cohesive

force cannot be defined by our scheme when χ > χcx.

Our simulations reproduce the adsorption-induced interac-

tion occurring between particles. The strength of this inter-

action is larger for χ = 2.0 than that for χ = 1.5, as shown

in Fig. 1(c). For the fixed 〈φ〉, the strength increases with χ ,

as shown in Fig. 1(d). As χ increases, the susceptibility of the

concentration field to the adsorption interaction also increases.

Hence, the concentration field becomes more heterogeneous
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Fig. 1 (a) and (b) The profiles of the concentration field around a

particle pair along the line connecting their centres. The average

concentrations are 〈φ〉= 0.5 in (a) and 0.35 in (b). The interaction

parameter is changed. The hatched regions indicate the particles. (c)

Plot of the cohesive force between the particles Fc as a function of

〈φ〉. The interaction parameters are χ = χcx(〈φ〉), 2.0 and 1.5. (d)

Plot of the cohesive force as a function of χ . The average

concentrations are 〈φ〉= 0.5, 0.35 and 0.2.

near the surfaces as shown in Figs. 1(a) and (b); therefore, the

resultant force is strengthened.

Figure 1(c) also shows that the peak position shifts to lower

values of 〈φ〉 as χ increases. The curve of Fc has a broad peak

around 〈φ〉= 0.5 for χ = 1.5, while it peaks around 〈φ〉= 0.3
for χ = 2.0. The behaviour for χ = 2.0 is in accordance with

previous studies, which reported that attractive interaction be-

comes stronger when the component favoured by the parti-

cle surface has lower abundance.25,26,43,47,48,53,57 In Fig. 1(c),

we also plot Fc on the coexistence curve, χ = χcx(〈φ〉). The

cohesive force increases greatly as 〈φ〉 is decreased in our

model. In Fig. 1(d), the cohesive force is stronger in the crit-

ical mixture with 〈φ〉= 0.5 than those in off-critical mixtures

for which χ is low. In the A-poor mixtures, on the other hand,

the force increases more steeply with increasing χ . Thus, the

cohesive force for the A-poor mixtures can be stronger than

those for the critical mixture and A-rich mixtures [not shown

here]. Hereafter, we consider A-poor mixtures (〈φ〉 ≤ 0.5),

since the adsorption-induced interaction becomes strong for

them.

Our preliminary simulations also indicate that the cohesive

force is roughly proportional to the particle radius as Fc = Aa,

near the coexistence curve [not shown here]. The coefficient

A has the dimension of an interfacial tension and depends on

〈φ〉, χ and W . The details of A will be reported elsewhere.



3.2 Particles under shear flow

We next apply shear flow to the two-particle system. Figure 2

shows the snapshots of the particles under the shear flow with

γ̇t0 = 0.01 in the xz plane. The relative position between the

two particles is R1 −R2 = (−5a,0,a) in the initial condition.

The background colour represents the local concentration field

φ . We set the average concentration to 〈φ〉 = 0.2, for which

the cohesive force can be strengthened by a greater extent than

that in the critical mixture. For this concentration, the coexis-

tence point is χcx ≈ 2.31. The interaction parameter is set as

χ = 1.6 in (a) and 2.3 in (b). The particles are transported by

shear flow, and they approach each other. When the interac-

tion parameter is χ = 1.6, the particles pass each other without

adhering. Near the coexistence point, on the other hand, the

particles adhere to each other when they contact, as shown in

Fig. 2(b). After the adhesion, the particle pair exhibits a tum-

bling motion, the frequency of which depends on the shear

rate [see the supplementary movies]. In Fig. 2(b), formation

of the adsorption layers on the particle surfaces and bridging

between them are observed. In Fig. 2(a), on the other hand,

the concentration inhomogeneity is not sufficiently large to in-

duce an interaction that is strong enough to bond the particles

against the shear flow.

These behaviours depend on the shear rate. In Fig. 2(c), we

plot the threshold shear rate γ̇t, which separates the adhered

state [Fig. 2(b)] and the separated state [Fig. 2(a)], with re-

spect to χ . The threshold shear rate increases with χ and is

determined by the balance between the shear force and the co-

hesive force. This behaviour is reasonable, since the attractive

force between the particles increases with χ , as indicated in

Fig. 1(d). From dimensional analysis, we expect the threshold

shear rate to behave as γ̇t = cA/η0a, where c is a numerical

factor. This expected shear rate is shown by the broken curve

in Fig. 2(c), using the force values plotted in Fig. 1(d) and set-

ting c = 0.5. This relation indicates that the threshold shear

rate decreases when the particles are large.

3.3 Concentration field around a particle under shear

flow

In non-equilibrium conditions under external fields, the effec-

tive interaction may be different from that in an equilibrium

state, since the concentration field mediating the interactions

is disturbed by the external field.51 To determine the influ-

ence of shear flow on the concentration field, we show in

Fig. 3 the concentration profiles around a single particle un-

der the shear flow. The profiles along the (1,0,1)-, (1,0,−1)-
and (0,1,0)-directions from the particle centre are plotted.

The average concentration and the interaction parameter are

〈φ〉 = 0.2 and χ = 2.3, respectively. The shear rates are

γ̇t0 = 0.004 in (a) and 0.1 in (b), where the threshold shear

rate is estimated as γ̇t0 ∼= 0.035 from Fig. 2(c). When the shear
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(b)
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Fig. 2 Snapshot of two particles under a shear flow with γ̇t0 = 0.01.

The average concentration is 〈φ〉= 0.2, and the interaction

parameter is χ = 1.6 in (a), and χ = 2.3 in (b). (c) Plot of the

threshold shear rate γ̇t with respect to χ . The broken curve is given

by cFc/η0a2, using the values of Fc shown in Fig. 1(d).



rate is small, the concentration profiles do not depend signif-

icantly on the direction. This suggests that the interactions

among the particles are not influenced by the shear flow and

remain isotropic. As discussed below, aggregated structures

are considerably modified in many-particle systems, even un-

der small shear rates. On the other hand, when the shear rate

is large, Fig. 3(b) shows that the adsorption layer is elongated

along the (1,0,1)-direction, whereas it is compressed along

the (1,0,−1)-direction. The adsorption layer is almost free

from the shear flow in the (0,1,0)-direction. These differ-

ences suggest that the interaction becomes anisotropic under

high shear flow, but that the anisotropic part remains small

compared to the isotropic part, even for γ̇t0 = 0.1.

The concentration pattern in the steady state is determined

by the balance between the convective flow and the diffusion

flux. It is characterised by the Deborah number De = γ̇τd.71

From mean-field theory, the characteristic time τd for the

concentration diffusion is given by τd = (ξ/d)2t0. In off-

critical mixtures, the diffusion time does not diverge and re-

mains finite even on the coexistence curve. In the mixture of

〈φ〉 = 0.2, the diffusion time is estimated as τd
∼= 0.83t0 at

χ = 2.3, so that De is much smaller than unity in Fig. 3(a).

Also, since the applied shear rates are lower than 1/τd, the

concentration field can recover an equilibrated pattern via the

diffusion process. Since the threshold shear rate is expected

to be proportional to 1/a, the condition of γ̇tτd ≪ 1 is easily

satisfied for larger particles.

When De ≫ 1, on the other hand, one expects the con-

centration field to be homogenized, so that the resultant

adsorption-induced force becomes smeared out. However, be-

cause of numerical instability, we have not conducted simula-

tions with such high shear rates. Near the critical point, the

characteristic diffusion time τd diverges, which contrasts with

the case of an off-critical mixture. Thus, the resultant inter-

action is expected to be easily modulated by the shear flow in

the vicinity of the critical point.

It has been reported that the viscosity of a dilute suspension

in a binary mixture changes with the temperature.61 The shear

deformation of the concentration field increases the viscosity.

In our simulations, however, this effect is not so important.

3.4 Colloidal suspensions in equilibrium

Next, we consider colloidal suspensions constituting many

particles. No shear is applied. The system contains 103 parti-

cles, and the particle volume fraction is 〈ψ〉 ∼= 0.128. Herein,

a random force Fr has been included to thermalize the particle

distributions. [see Appendix B] In our simulations, the Pećlet

number Pe for the colloid Brownian motion is typically one

or two orders magnitude larger than the Deborah number De.

Figures 4(a) and (b) show the snapshots of the particles and

concentration of the binary mixture at t = 2000t0. The mix-
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Fig. 3 Profiles of the concentration field φ along the (1,1,0)-,
(1,−1,0)- and (0,0,1)-directions. The average concentration is

〈φ〉= 0.2 and the interaction parameter is χ = 2.3. The shear rate is

γ̇t0 = 0.004 in (a) and 0.1 in (b).

ture volume fraction is 〈φ〉 = 0.35, for which the viscosity of

the suspension is greatly increased as shown below. The in-

teraction parameter is χ = 1.5 in (a) and χ = χcx in (b). In

the upper panels, the blue spheres represent the particles and

the grey surfaces are the interfaces defined by isosurfaces of

φ = 0.5. The middle panels show the concentration fields at

the plane y = 0.

The particles are well dispersed at χ = 1.5. In the lower

panels, we show the radial distribution function g(r) of the

particles; it is similar to that of a fluid. A peak is observed

near r = 1.2σ . The peak position is determined by the bal-

ance between the adsorption-induced interaction and soft-

core potential. Thus, the peak position can be larger than

r = σ . For r > 2σ , g(r) is almost constant. It indicates

there is no long-range order in this suspension. In the case of

χ = χcx, on the other hand, the particles aggregate as shown

in Fig. 4(b).25,43,47,48,50,53 The height of the main peak in g(r)
increases and another peak is also formed around r ∼= 2.0σ .

These peaks reflect the particle clustering. In the middle pan-

els of Fig. 4(b), we can see domains of the A-rich phase ap-

pearing between the particles. These bridging domains bind

the particles against the random fluctuations.

Figure 5 shows the histograms of the concentration field

P(φ). To consider the concentration field only outside the par-

ticles; it is defined as

P(φ1) =
∑x,y,z{1−ψ(x,y,z)}Θ(∆φ −|φ(x,y,z)−φ1|)

∆φ ∑x,y,z{1−ψ(x,y,z)}
,

(17)

where Θ(x) is the Heaviside step function and ∆φ = 0.001.

The average concentrations are 〈φ〉= 0.35. The colloidal vol-

ume fraction is 〈ψ〉 = 0.128 in (a) and 0.033 in (b). Each

curve has a large peak on the left hand side and a small one on

the right hand side even though the systems are in a one-phase

state. The small right hand peak corresponds to the prefer-

ential adsorption onto the particle surface. We found that the

position of the large left hand peak, which corresponds to the
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Fig. 4 Snapshots of the particle distributions and the interface

structures (upper panels). The interaction parameter is χ = 1.5 in (a)

and χ = χcx in (b). The particle volume fraction is 〈ψ〉= 0.128.

The concentration fields are shown in the middle panels. The radial

distribution function of the particles for χ = 1.5 and χ = χcx in the

lower panels.
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Fig. 5 Histograms of the concentration distribution for 〈φ〉= 0.35.

The colloidal volume fraction is 〈ψ〉= 0.128 in (a) and 0.033 in (b).

The second peaks for χ = χcx in the hatched region is a numerical

artifact due to the phase field model.

solvent concentration, is shifted to lower values of φ from the

average 〈φ〉. In the mixture with 〈ψ〉 ∼= 0.128 at χ = χcx, the

peak position is φ ∼= 0.23. In our model, the system is not in

contact with a reservoir of the binary mixture with concentra-

tion 〈φ〉, so the total amount of the A-species is conserved.

Thus, this peak shift is due to depletion of the A-component

in the mixed solvent. The shift of the peak position increases

with χ , since the amount of the A-species adsorbed at the par-

ticle surface increases with χ . Because of the decrease of the

A-component in the solvent, the effective interactions are in-

creased in the many-particle suspensions, compared to few-

particle systems subject to a reservoir mixture with the same

concentration 〈φ〉.

As indicated in Fig. 5(b), the peak shift also depends on the

particle volume fraction. The total area of the particle surface

in the suspension is proportional to the particle volume frac-

tion, so that it is reasonable that the shift should increase with

〈ψ〉. This depletion effect depends on the particle radius. The

degree of the depletion is strongly related to the total area of

the particle surfaces in the unit volume. Assuming that the

thickness of the adsorption layer to be of the order of the cor-

relation length ξ , the total amount of the adsorption in the unit

volume can be roughly estimated as 4πa2ξ n, where n is the

particle number density, n = 〈ψ〉/(4πa3/3). Thus, the degree

of the depletion is of the order of ξ/a. If the particle size is

large enough, the depletion effect will be negligible.

3.5 Colloidal suspensions under shear flow

Next, we apply shear flow to the many-particle suspension at

χ = χcx [Fig. 4(b)]. Figures 6(a)-(c) show the snapshots of

the particle and the concentration field under shear flow. Un-

der the shear flow, the aggregated structure deforms along the

shear direction and is eventually broken into small clusters.

We also observed that the clusters are ruptured by the flow and

new clusters are formed by coalescences. Under the balance

between the formation and breakup of clusters, the system

shows a non-equilibrium steady state. [see the supplementary
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Fig. 6 Snapshots of the particle distribution and the interface

structures for 〈φ〉= 0.35 and χ = χcx. The shear rate is

γ̇t0 = 0.0005 in (a), 0.002 in (b) and 0.01 in (c). (d) The shear rate

dependence of the average cluster size, Nc.

movies.] The clusters tend to be aligned along the shear direc-

tion. However, we have not observed a well aligned chain-like

aggregated. We considered that the thermal noise suppresses

the formation of long chain-like aggregates. Indeed, before

the aggregated cluster is enough stretched, it is broken up due

to the thermal noise.

The average particle number in the clusters, Nc, is plotted

in Fig. 6(d) against the shear rate. We regard the i-th and

j-th particles as belonging to the same cluster if their sepa-

ration is less than a threshold value of 2.5a, i.e., Ri j < 2.5a.

Nc is given by Np/N̄, where Np is the total particle number

and N̄ is the temporal average of the number of the clusters.

As the shear rate increases, the cluster size greatly decreases

in Fig. 6(d). Our simulations implies that the cluster size de-

creases exponentially with γ̇ . But we need to collect more data

to conclude the dependence of the cluster size on the parame-

ters. For reference, we also plot the average cluster size in the

case of χ = 1.5. The average size is about 1.7. The particles

are dispersed even when no shear flow is applied as shown in

Fig. 4(a), so that Nc for χ = 1.5 is much smaller than that for

χ = χcx. Also, Fig. 6(d) shows the cluster size is almost inde-

pendent of the shear rate for χ = 1.5. We have not observed

any long-lived clusters. Moreover, for χ = 1.5, the lifetime

of such transient clusters is roughly of the order of γ̇−1. On

the other hand, for χ = χcx, the clusters are long-lived and the

effect of the shear rate on the cluster size becomes significant.

We note that the shear flow of γ̇ = γ̇t does not correspond

to the onset of the rearrangement of the aggregated structure.

The threshold shear rate γ̇t in Fig. 2(c) corresponds to the

breakup of an adhered particle pair and not breakup of the

large aggregates. Even for γ̇ much smaller than γ̇t, the aggre-

gated structures show rearrangements under shear flow. When

large shear flow is applied (γ̇ > γ̇t), all the aggregates can be

fragmented into single particles. As indicated in Fig. 3, the

concentration field around the particles is not disturbed by the

shear flow for such small shear rates. At the onset of the rear-

rangement of the aggregated structure, the adsorption-induced

interaction can be regarded as isotropic.

3.6 Rheological properties

It is known that the rheological properties of colloidal suspen-

sions depend on the aggregated structures of the particles. The

effective viscosity ηeff of the colloidal suspensions in the bi-

nary mixtures is plotted in Fig. 7. The average concentration

and the particle volume fraction are the same as those in Fig. 6.

The numerical scheme for measuring ηeff is described in Ap-

pendix C. In Fig. 7(a), ηeff is plotted against the average con-

centration 〈φ〉. The shear rate is γ̇t0 = 0.002. Deep inside the

mixing region (χ = 1.5), the viscosity is small and has a broad

peak around 〈φ〉= 0.5. If χ is increased up to χ = 2.0, the ef-

fective viscosity increases and the peak position is shifted to a

lower value of 〈φ〉. We also plot the effective viscosity on the

coexistence curve (χ = χcx(〈φ〉)). There, the effective viscos-

ity is largest around 〈φ〉= 0.35, so we chose this concentration

in Fig. 4 and below. In Fig. 7(b), the dependences of ηeff on

χ in both A-poor (〈φ〉 = 0.35) and A-rich (〈φ〉 = 0.65) mix-

tures are shown. When χ is small, the effective viscosities are

almost the same. This is because the adsorption-induced in-

teractions are too weak to influence the aggregated structures

and the viscosity. The viscosities for both mixtures increase

as χ increases, but the rate of increase of ηeff with χ is larger

for the A-poor mixture than that for the A-rich mixture.

Figure 7(c) shows the shear rate dependence of the viscosity

for the mixtures with 〈φ〉= 0.35. At χ = 1.5, it is shown that

the suspension behaves as a Newtonian fluid; the viscosity is

independent of the shear rate in the simulated range of γ̇ . We

will call this the background viscosity ηb. This is consistent

with the observation that the dispersed structure is almost in-

dependent of the shear rate as shown in Fig. 6(d). In the one-

phase state, far from the coexistence curve, the interactions

among the particles are weak enough to make the suspension

behave like a suspension of Brownian particles. But, our back-

ground viscosity is slightly larger than the viscosity of a hard

core suspension, which is about η ≈ 1.4η0 for the same vol-
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Fig. 7 The effective viscosity as a function of 〈φ〉 in (a) and χ in

(b). (c) The shear rate dependence of the effective viscosity ηeff.

The average concentration is 〈φ〉= 0.35 and 〈ψ〉= 0.128. The

broken curve represents ηeff −η0 ∝ γ̇−1/2.

ume fraction.1 We consider that the weak, but finite attractive

interactions can form small clusters, as observed in Figs. 4(a)

and 6(d), and may increase the suspension viscosity even for

χ = 1.5. For the case with χ = χcx, the effective viscosity de-

creases drastically with the shear rate. This is shear-thinning

behaviour. At low shear rates, large clusters remain in the qui-

escent state and do not deform with the shear field. Under

high shear rates, the aggregates are fragmented into smaller

ones, and the viscosity decreases with γ̇ . Our simulations in-

dicate that the effective viscosity behaves as ηeff −ηb ∝ γ̇−α

with α ∼= 1/2. Similar power law behaviours of the viscos-

ity in suspensions of attractive colloids have been reported.12

However, its power is given by α ∼= 0.84, which is larger than

the value obtained in this study. The physical origin of our

power-law behaviour remains unexplained.

In Fig. 8(a), the effective viscosity ηeff is divided into three

parts. ηvis is related to the viscous stress including the hydro-

dynamic interactions among the particles [eqn (12)]. ηpar orig-

inates from the direct particle interactions, and ηmix is related

to the mixed solvent. Detailed expressions for these terms are

described in Appendix C, and we plot them with respect to χ
in Fig. 8. The average concentration is 〈φ〉 = 0.35, and the

particle fraction is 〈ψ〉= 0.128. The shear rate is γ̇t0 = 0.002.

Far from the coexistence curve, the viscous stress dominates

over the other stress components. The viscous stress is almost

constant, although it shows a slight decrease with χ , which

may be due to non-linear dependence of the hydrodynamic in-

teraction on the particle concentration. The solvent can flow

more easily through channels in the aggregated structure than

through a well-dispersed suspension. As χ increases, the other
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Fig. 8 (a) The strength of each component of the effective viscosity

plotted against χ . The details of the viscous components are

described in Appendix C. The average concentration and the particle

fraction are 〈φ〉= 0.35 and 〈ψ〉= 0.128, respectively. The mixture

is at the coexistence curve and under a shear flow of γ̇t0 = 0.002. (b)

A schematic diagram showing the jamming forces in an aggregate of

colloidal particles under shear flow.

viscosity components increase. In particular, the stress contri-

bution due to the soft-core interactions ηpar, increases greatly

and exceeds the viscous part. Since the direct soft-core inter-

action is repulsive, its contribution is generated when an ad-

hered particle pair is compressed along the (1,0,−1)-direction

by the shear flow (if γ̇ > 0). Near the coexistence curve,

most of the particles are aggregated, so the particle stress is

enhanced. On the other hand, the cohesive force, which is

related to ηmix, is attractive. Thus, it is increased when the

aggregated particles are stretched along the (1,0,1)-direction

by the shear flow (if γ̇ > 0). Our simulations demonstrate that

ηpar dominates over ηmix in this off-critical mixture. As shown

schematically in Fig. 8(b), the jamming forces in the colloidal

aggregates play a key role in the rheological properties.

4 Summary

In this article, we considered the behaviour of colloidal sus-

pensions in binary mixtures under shear flow. When a sus-

pension is brought close to the phase-separation point of the

binary mixture, attractive interactions among the colloidal par-

ticles induce particle aggregation. Near a particle surface,

the component favoured by the surface is enriched. When

the heterogeneous concentration profiles overlap, the attrac-

tive interactions occur and they cause the particles to aggre-

gate against the thermal noise. In our simulations, this in-

teraction is strengthened in off-critical mixtures, in which the

favoured component has lower abundance.

Under shear flow, the shear force can break the cohesive

bonds between the particles and change the aggregated struc-

tures. The average size of the aggregated structure decreases

with the shear rate. Our simulations indicate that the viscos-

ity of the suspension increases as the suspension approaches

the phase-separation point. We also found that suspensions ex-



hibit a shear-thinning behaviour, where the viscosity decreases

with the shear rate.

For a particle pair, we obtained the threshold shear rate,

which increases as the mixture approaches the coexistence

point. At the threshold shear rate, our simulations indicate that

the concentration profile around a particle is not significantly

disturbed. Thus, the resultant interaction is almost the same

as that in quiescent states without shear flow. In the many-

particle systems with the random noise, the characteristic par-

ticle diffusion time τp is one or two order magnitude larger

than the diffusion time for the concentration field τd. The ap-

plied shear rate is comparable with τp, but is larger than τd.

This may indicate that the concentration field can be treated

quasistatically and the interaction is described by a potential.

But, we consider that solving the concentration field is impor-

tant even when it is not greatly disturbed by the shear flow.

The adsorption-induced interactions do not work among the

particles equally, but they depend on the environment around

the particles. In a large cluster, as indicated in Fig. 8(b) for ex-

ample, particles deep inside the large cluster are sometimes

surrounded by a sufficient amount of the preferred compo-

nent. The adsorption-induced interactions are weakened for

such particles. On the other hand, strong interactions would

work for particles near the boundary of the clusters. This dif-

ference may enable us to explain the different power law be-

haviour of our suspension viscosity from those obtained in the

previous simulations with an inter-particle potential. We need

to conduct more simulations to obtain the correct viscosity be-

haviour and clarify its physical mechanism.

The properties of colloidal suspensions are usually con-

trolled by using salt and/or non-adsorbed polymers to change

the particle interactions, but such additions are irreversible

processes in actual situations. Our studies indicate that rhe-

ological properties can be easily tuned by changing the tem-

perature and the fraction of the mixed solvent.

Here we consider a possibility for realizing our findings

in actual systems. Phase separation and critical phenomena

of mixtures of 2-6 lutidine and water have been intensively

studied in experiments. They show a phase diagram with a

lower critical point, which is at the 2-6 lutidine mass frac-

tion 0.286 and the temperature T = 307K.43,47,78 The mix-

ture diffusion constant D(= LT/v0) and the viscosity η near

the critical point were obtained as D = 1.0× 10−10 m2/s and

η = 2.1mPa · s, respectively.78 Beysens and coworkers stud-

ied the aggregation of silica spheres of the diameter 80nm in

these mixture.43,47 Hence, this mixed solvent is one of the can-

didate systems for verifying our results. However, our simula-

tions have treated only small particles and shear flow of large

shear rates, because of the computational costs. Assuming the

average molecular size is d = 0.6nm, the particle in our simu-

lations corresponds to a sphere of the diameter 4.8nm and the

wettability W T = 6mN/m. The time unit t0 is 3.6ns. Then,

the shear flow of γ̇t0 = 0.001 corresponds to 2.8× 105 s−1,

which sounds so large that it might be not easy to set up exper-

iments, which can be compared with our simulations. How-

ever, we consider our results can be applied to suspensions of

much larger particles, although they will not coincide with ex-

perimental observations quantitatively. With larger particles,

the shear rate for the rearrangement of the aggregation struc-

ture will decrease greatly. We hope that our findings will in-

spire future experimental studies.

Our simulation method contains several parameters; for

simplicity, we fixed most of them In particular, the adsorption-

induced interactions and the resultant flow behaviours depend

upon the particle radius. Simulations with other particle radii

are also thus desired. The wetting parameter W is also im-

portant. When we set W = 0, our simulation method can be

applied to Pickering emulsions, in which we also are inter-

ested.

In this article, we considered only the one-phase state of a

binary mixture. The rheological properties of phase-separated

solvents are also fascinating. In a two-phase state, the phase-

separated domains are deformed more easily by shear flow.

The deformation of the domains is characterised by hydrody-

namic flow induced by the interface tension. In the absence

of particles, it is known that phase-separated mixtures show a

steady string-like patterns.73 It will be interesting to see how

particles influence the steady state domain patterns and their

rheological properties. We hope to report on a series of such

studies in the near future.
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A Numerical scheme

We solve the concentration φ and flow field u in a three-

dimensional lattice space (m,n, ℓ), while the particle posi-

tions are defined in off-lattice space. In this study, the lattice

space is discretized in units of d. The simulation box size is

Lx ×Ly ×Lz, where Lα = dNα and Nα is an integer. To treat

the applied shear flow γ̇zex, we employed the Lees-Edwards

boundary condition. For instance, the boundary condition for

φ is given by

φ(r±Lzez, t) = φ(r∓ γLzex, t), (18)



where γ =
∫ t

dt ′γ̇(t ′) is the shear strain. If γLz is not an integer,

we do not have φ(r ∓ γLzez) in the lattice space. Then, we

approximate it as

φ(m,n, ℓ) = φ(m− γLz,n, ℓ−Nz)

≈ (1− γLz+[γLz])φ(m− [γLz],n, ℓ−Nz)

+ (γLz − [γLz])φ(m− [γLz]− 1,n, ℓ−Nz).

(19)

Here [X ] means the largest integer number smaller than X .

The hydrodynamic flow u is solved with the Maker and

Cell method. The time increment is ∆t = 5 × 10−3t0 with

t0 = d2T/L0. The Reynolds number in the colloidal systems

is very small. In order to weaken the effect of inertia, we de-

velop the hydrodynamic flow without updating φ and {Ri} un-

til
∫

dr|ρ∂u/∂ t|2/
∫

dr|f|2 becomes smaller than some small

value h. In this study, we use h = 10−2. The time evolution

of the concentration field and the particle positions are solved

using an explicit Euler scheme.

B Random noise

In order to thermalize the many-particle systems, we impose

random forces for the particles. Here we describe how to de-

termine the amplitude of the random force.

First, we impose a constant force F0 to each particle. The

particles move along the force on average and the average par-

ticle velocity 〈V〉 is obtained. We confirmed that the average

velocity is almost proportional to the force magnitude, so that

we obtain a frictional constant as ζ = |F0|/|〈V〉|. The fric-

tional constant increases as the particle volume fraction 〈ψ〉
increases.

Then, we impose random forces with an arbitrary magni-

tude F̃r
i to the particles with no constant force. The parti-

cles show the Brownian motions and a diffusion constant D̃

is obtained. The diffusion constant is proportional to the mean

square of the random force as D̃ = k〈|F̃r
i |

2〉, then we obtain the

coefficient k. The fluctuation and dissipation theorem gives

the diffusion constant as D = 6T/ζ . Thus, we can determine

the strength of the random force for a target temperature T as

〈|Fr
i |

2〉= 6T/(kζ ).

C Mechanical stress

In order to study the rheological properties of binary fluids

under shear flow, we must measure the shear stress. In our

system, the shear stress constitutes four parts.

Σαβ = Σm
αβ +Σw

αβ +Σp

αβ
−Σv

αβ , (20)

where Σv
αβ is the viscous stress defined by eqn (12).

Σ
p

αβ is the stress due to the direct interactions among the

particles. Its spatial average is given by

〈Σ
p

αβ 〉=
1

V

∫

drΣ
p

αβ =
1

V
∑
i< j

(Ri −R j)α Fi jβ (21)

when Usp = 0. Here Fi j = −∂U(|Ri −R j|)/∂R j is the force

acting the i-th particle from the j-th one, and V is the system

volume. We note that

∑
i

∫

drrα
ψi(r)

Ωi

Fiβ = ∑
i< j

(Riα −R jβ )Fi jβ , (22)

where Fi = ∑ j Fi j. 〈X〉 indicates the spatial average of a vari-

able X .

Σm
αβ and Σw

αβ are the stresses stemming from Fm and Fw,

respectively. If the particles are not included, Σm is calculated

as71

v0Σm
αβ

T
= δαβ

(

φ
∂ f

∂φ
− f −

C

2
|∇φ |2 −Cφ∇2φ

)

+C∇α φ∇β φ . (23)

Note that this form cannot be directly employed when the mix-

ture contains the particles.

Assuming a small affine transformation r′ = r + ∆γzex,

therefore, we estimate the mechanical stresses as

Σk
zx =

Fk{φ ′,R′
i;∆γ}−Fk{φ ,Ri;∆γ = 0}

∆γV
, (24)

where k = m or w. Its spatial average is denoted by 〈Σk
zx〉. φ ′

and R′
i are given in the affine transformation as

φ ′(r) = φ(r)− (∇xφ)∆γz, (25)

R′
i = Ri +∆γRizex. (26)

In calculating these parameters in the main text, we employ

∆γ = 0.01.

In Fig. 8, we plot the viscosity due to the concentra-

tion ηmix = 〈Σm
zx +Σw

zx〉/γ̇ , the hydrodynamic viscosity ηvis =
〈Σv

zx〉/γ̇ , and that due to direct particle interactions ηpar =
〈Σ

p
zx〉/γ̇ , with ηeff = ηmix +ηpar +ηvis. In the main text, the

viscosities are averaged over the time period of 2× 103t0.
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