
HAL Id: hal-03362874
https://hal.science/hal-03362874

Submitted on 2 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Swarm Robotics: Past, Present, and Future [Point of
View]

Marco Dorigo, Guy Theraulaz, Vito Trianni

To cite this version:
Marco Dorigo, Guy Theraulaz, Vito Trianni. Swarm Robotics: Past, Present, and Future [Point
of View]. Proceedings of the IEEE, 2021, 109 (7), pp.1152-1165. �10.1109/JPROC.2021.3072740�.
�hal-03362874�

https://hal.science/hal-03362874
https://hal.archives-ouvertes.fr


1

Swarm robotics: past, present and future
Marco Dorigo, Fellow, IEEE, Guy Theraulaz, Vito Trianni

Abstract—Swarm robotics takes inspiration from natural self-
organizing systems such as social insects, fish schools or bird
flocks, deriving rules to build robotic systems that are more
robust, fault-tolerant and flexible than single robots. Over the
last two decades, swarm robotics has made significant progress,
providing concrete demonstrations on how robot swarms could
address complex problems, and also contributing to a better
understanding of how complex behaviors emerge in nature.
However, as of today, only few published experiments have
been able to demonstrate collective behavior in a number of
robots that can effectively be compared to the size of biological
swarms, and further research is needed before swarm robotics
is mature enough to be employed in real world applications.
Here we summarize the main lessons learned during the first
two decades of research in the field and the main open problems
still to be solved, such as the lack of dedicated hardware and
software platforms, the need for reliable methodologies for swarm
design, or how to make the best out of biological inspiration.
We then present what we expect to be the main avenues of
research in the future, and discuss how application demands
may drive swarm robotics research, transitioning from abstract
studies towards an engineering practice. Specifically, we identify
precision agriculture, infrastructure inspection and maintenance,
defense, space missions, entertainment and precision medicine as
the application fields that will most likely drive the science and
technology of robot swarms in the next three decades.

Index Terms—Swarm Robotics, Swarm Intelligence.

I. INTRODUCTION

Swarm robotics deals with the design, construction and
deployment of large groups of robots that coordinate and
cooperatively solve a problem or perform a task. It takes
inspiration from natural self-organising systems such as social
insects, fish schools or bird flocks, characterised by emergent
collective behaviour based on simple local interaction rules
[19], [116]. Typically, swarm robotics extracts engineering
principles from the study of those natural systems, in order to
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provide multi-robot systems with comparable abilities. This
way, it aims to build systems that are more robust, fault-
tolerant and flexible than single robots, and that can better
adapt their behaviour to changes in the environment.

Swarm robotics started out as an application of swarm
intelligence [12], [30], that is, the computational modelling
of collective, self-organising behaviour that has resulted in
several successful optimization algorithms [29], [33] now
being used in fields ranging from telecommunications [26] to
simulation and prediction of crowd behaviour [86]. However, it
has quickly become evident that achieving swarm behaviour
in robots demands much more than simply applying swarm
intelligence algorithms to existing robotic platforms. In fact,
it often requires to completely rethink traditional robotic
activities such as perception, control, localisation, and the
very design of the robotic platforms themselves. Over the
last two decades, researchers working in swarm robotics have
made significant progress, providing proofs-of-concept that
demonstrated the potential of robot swarms, also contributing
to a better understanding of how complex behaviours emerge
in nature. Translating this research into practice represents a
challenge that still needs to be appropriately tackled. As a
matter of fact, as of today, only a few experiments managed
to demonstrate a large number of autonomous self-organising
robots, and no real-world application of swarm robotics exists.
More research is needed to establish the knowledge and
practice required to bring robot swarms out of the lab and
into the real world.

In order to significantly push forward the state of the
art, make robot swarms robust, scalable and controllable,
and move towards real-world applications, research in swarm
robotics must focus on a number of open challenges such as:
how to extract design principles from the study of biological
systems; how to move from low-level behavioural rules to the
desired high-level behaviour; how to manage the gap between
simulations and real experiments, and between lab experiments
and real-world domains; and how to develop hybrid design
methodologies based on the right mix of centralised and
decentralised approaches that can produce emergent behaviour
in a computationally economic way, while keeping the system
controllable. The way these challenges will be addressed will
decide the future of swarm robotics and whether it can live
up to its potential.

In the following, after a brief history of the field, we
summarise the main lessons learned during the pioneering
phase of swarm robotics, we analyse the main open challenges
and provide examples of innovative and promising approaches
to tackle them. Finally, we suggest the most likely fields of
application for swarm robotics and assess its potential impact
in selected industries, by showing application scenarios that
cannot be achieved by a single robot, or by a few robots
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controlled in a traditional, centralised way.

II. A BRIEF HISTORY OF SWARM ROBOTICS

In the last two decades, swarm robotics has grown from a
small domain initiated by a few studies with a clear biological
inspiration [10], [56], [71], [72] to a mature research field in-
volving several labs and researchers worldwide. A search with
Google Scholar shows that the phrase “swarm robotics” made
its first appearance in 1991, but its usage remained very limited
until 2003 when it started to grow considerably. Similarly, a
search with SCOPUS returns a comparable increasing trend
(see Figure 1). These data show that, even though the swarm
robotics research field finds its roots in a few seminal works
published in the 1990s, it is only with the year 2000 that it
started to significantly grow.

Figure 1. Citation count for the search “swarm robotics” in Google Scholar
and in Scopus.

Initially, the study of swarm robotics was aimed at testing
the concept of stigmergy (see Table I for the definition of
this and other concepts used in the article) as a means
of indirect communication and coordination among robots.
Following a few initial attempts [10], [56], [72], several studies
appeared after 2000 focussed on tasks such as object retrieval
(foraging [69]; stick pulling [61]), clustering [2] and sorting
of objects [130]. These studies started from known behaviours
observed in social insects, and deployed robot swarms demon-
strating similar behaviour. In a few cases, the robot swarm
was exploited to closely replicate the dynamics observed in
biological systems (e.g., aggregation in cockroaches [46]),
leading to the first example of a mixed biological-robotic
society [52]. Additionally, swarms of robots have been used as
a tool to address biological questions (e.g., the trail network
geometry to find the shortest path between a food source and
a nest [43]).

One of the first international projects to investigate coopera-
tion in a swarm of robots was the Swarm-bots project, funded
by the European Commission between 2001 and 2005. In this
project a swarm of up to 20 robots capable of self-assembly—
i.e., physically connecting to each other to form a cooperating
structure—were used to study a number of swarm behaviours
such as collective transport, area coverage, and object search
[36], [84]. The main result of the project was to demon-
strate what—at the present day—remains the only example
of self-organised teams of robots that cooperate to solve a
complex task, with the robots in the swarm taking different
roles over time [92]. The Swarmanoid project (2006-2010)
extended the ideas and algorithms developed in Swarm-bots

Figure 2. Some of the robots largely used in swarm robotics research:
(A) jasmine [67]; (B) alice [20]; (C) kilobots [109]; (D) e-pucks [83];
(E) swarm-bots [84]; (F) swarmanoid [32].

to heterogeneous robot swarms composed of three types of
robots—flying, climbing and ground-based—that collaborated
to carry out a search and retrieval task [31], [32].

In the 2000s, in parallel with the successful demonstra-
tion of the swarm robotics paradigm, research on hardware
miniaturisation promised the deployment of hundreds, possibly
thousands of cooperating robots. Robots became smaller and
ever-more minimalist, up to attempts of designs at the millime-
tre scale (see Figure 2). Several challenges related to hardware
miniaturization and to the integration of a sufficient sensor
suite, however, hindered progress in this direction. It was only
a few years later that a hardware concept appeared supporting
experimentation with a thousand robots: the kilobot [109].
Kilobots were conceived to support the first demonstration of
a large robot swarm designed for shape formation [110], and
have been later used for several successful studies, allowing
swarm robotics to be demonstrated in physical settings with
hundreds of robots [112], [117], [126].

Swarm robotics is not limited to ground platforms: recent
work has considered aquatic surface [37] and underwater
robots [133], as well as swarms of flying drones [80], [127].
While aquatic and underwater technologies still need sub-
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Table I
GLOSSARY OF KEY TERMS USED IN THE ARTICLE

Term Description

Adaptivity The ability to learn/change behaviour to respond to new operating conditions

Design pattern A formal description of a reusable solution to a problem commonly recurring in a certain domain. In swarm robotics,
design patterns describe how to define the individual rules to obtain a desired self-organised macroscopic behaviour
(e.g., collective decisions, see [106], [123])

Evolutionary algorithms Optimization algorithms in which an initial set of candidate solutions is generated and iteratively updated through
mechanisms inspired by biological evolution. The population of solutions gradually evolves to maximise an objective
function (fitness) through a process that mimics the natural processes of reproduction, mutation, recombination and
selection. Fault tolerance The capacity of a system to withstand faults of some of it parts with a graceful degradation
of performance.

Flexibility The capacity to solve problems/perform tasks that depart from those chosen at design time. Model-free & model-
based reinforcement learning Two different approaches to reinforcement learning, a subset of machine learning in
which software agents learn to behave efficiently in a given environment by trying to maximise a reward function
of their actions. In model-based approaches, the agent is given, or learns, a function that maps its current states
and actions to its next states (a model of the environment) so that it knows in advance the outcome of its next
move; in model-free approaches the agent finds a good policy through trial-and-error, without explicitly reference
the model of the environment.

Phase transition Phase transition is a physical process whereby a substance changes from one physical state to another such as the
freezing of water into ice (liquid to solid) or the heating of water to generate water vapour (liquid to gas). There is
a formal analogy between the existence of disordered and ordered states in biological systems and that of similar
states or phases in the inert world of physics: disordered liquid, ordered crystal solid. These systems have phase
transitions which are changes between the various states or phases. In particular, ordered states are characterised by
a notion of order at the scale of the whole system which can be quantified by an order parameter (e.g. the quality
of the alignment/polarisation of a school of fish)

Robustness The capacity to continue to work efficiently in environmental conditions different from those considered at design
time.

Scalability The capacity of a system to continue functioning properly when the number of its components (or in general, the
amount of its resources) substantially varies.

Self-organisation Self-organisation is a process whereby pattern at the global level of a system emerges solely from interactions among
the lower-level components of the system, The rules specifying the interactions among the system’s components
are executed using only local information, without any central authority determining their course of action [19].

Stigmergy A form of indirect communication between agents where the work performed by an agent leaves a trace in the
environment that stimulates the performance of subsequent work by the same or other agents. This mediation via
the environment ensures the coordination of actions performed by the agents. It was first described by Grassé [51]
and has played an important role in supporting self-organising mechanisms in swarm robotics [45], [119].

stantial development efforts to become mature, drones are
instead already commercialised and represent a very promising
platform for remote sensing applications in different domains,
being currently hindered only by the lack of a legal framework
authorising autonomous and group flight.

Beyond hardware platforms, controlling robot swarms has
represented the main focus of research. An extensive report
of the different approaches so far available in the literature is
beyond the scope of this perspective (but see [15], [40], [42],
[121], [125]). The main directions taken so far include: the
development of analytical models of swarm systems to guide
the robotics implementation [38], [78], [102]; the adoption
of (evolutionary) optimisation approaches where robots are
guided by minimalistic controllers (neural networks [120];
controllers without computation [47], [94]; finite-state ma-
chines [41]; grammar-based controllers [39]) and the devel-
opment of design and verification methodologies [14], [106].

III. LESSONS LEARNED AND OPEN PROBLEMS

Even though the ultimate goal of swarm robotics is to pro-
duce methodologies and tools that make possible the deploy-
ment of robot swarms for the solution of real world problems,
currently the focus remains on the scientific understanding of
the mechanisms that would inform such methodologies and
tools. The first two decades of research have taught us a
number of important lessons, also raising a few open problems
that need to be addressed and solved.

First, we learned that the types of tasks that can currently
be performed by robot swarms are strongly constrained by the
still limited capabilities of autonomous robots. To work in a
swarm, the individual robots must be capable of interacting
and communicating with each other, as well as of recognizing
peers and the work done by them. This entails tailored
hardware designs as well as specific sensing, interpretation
and interaction abilities. Current limitations in robot hardware
and control have constrained the complexity of swarm robotics
research in two different ways. On the one hand, specific
robots have been developed to solve specific (toy) problems
(e.g., termes [129]; kilobot [109]). These examples have
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opened new research directions, but not always resulted in
reusable components to be borrowed in different contexts. On
the other hand, generic robots (alice [43], [44]; e-puck [83])
have been used to produce proofs of concept, often addressing
tasks that are a direct transposition in the artificial world of
analogous tasks performed by self-organised natural systems
(e.g., foraging, see [69], [117]). However, when the hardware
is not conceived for swarm robotics, daily work can become
very cumbersome due to the need to deal with dozens or
possibly hundreds of robots at the same time, making mundane
activities such as recharging batteries or uploading software
really tedious. This has often limited the number of robots in
the tested swarms, reducing the breadth and significance of the
demonstrations. Finally, it should be added that miniaturisation
of hardware will be a key element for experimentation in the
lab with large swarms as well as for many future applications.
Still, downscaling hardware poses extremely hard problems
that so far have not been solved [111].

To progress in swarm robotics research, we will need to
develop tools that will make it easier for swarm robotics
researchers to share results and replicate experiments. A few
general-purpose robotic platforms would constitute valuable
tools for the research community. The e-puck [83] is probably
the most used swarm robotics platform to date, but research
with more than 30 e-pucks remains complex and costly.
The kilobot, being conceived for swarm robotics research, is
becoming a de facto standard, but is severely limited in its
abilities, so much that virtualization environments have been
proposed to increase the research possibilities [105], [124].
Crazyflies [50] are also becoming very much used as flying
platforms for swarm robotics studies [80], even though they
were not conceived for swarm robotics research. Substantial
effort is still needed to deploy a swarm robotics hardware
that satisfies the needs of the research community. First of
all, a good compromise between cost, size, and on-board
features must be provided, ensuring a sufficiently rich set of
sensors and actuators while keeping size limited to favour
experimentation with hundreds of robots within a research lab.
In this sense, a size between the one of kilobots and e-pucks
(about 5 cm diameter) could be a good compromise. Modular
approaches allowing to plug in extensions with new sensors,
actuators or computational power proved successful with the
e-puck, but require a careful design. The possibility to program
and recharge many robots in parallel—as done with kilobots—
strongly simplifies the experimental activities when dealing
with large numbers, especially when manual interventions to
move robots around are not required (e.g., wireless recharging
stations integrated in the experimental environment, or even
electric floors for battery-less operation). A centralized system
to automatize experimental activities, capable of observing the
robots state, moving them around and logging data acquired
by the robots, would be of great help to speed-up research and
would greatly benefit the community worldwide.

Simulating hardware is also a fundamental aspect for swarm
robotics research, but raises similar problems as with physical
robots. Often, the simulation software is developed from
scratch for each new robot swarm demonstrator. A common
simulation tool shared by the research community would be a

significant step forward as it would simplify the sharing and
comparison of research results. However, to devise such a tool,
we need to better understand the relation between simulation
and the real world. The problem, known in robotics as the
simulation-reality gap [62], is that differences between the
models used in simulation and their real-world counterparts
cause a drop in performance when robot controllers developed
in simulation are used in the real world. This problem is par-
ticularly important in swarm robotics where it is exacerbated
by the fact that many robots have to interact with each other
[40]. The ideal robot swarm simulator should make sure that
such discrepancies are kept to a minimum, even though they
cannot be completely eliminated.

Among the many simulation software available, AR-
GoS [97] stands out for the native support to swarm robotics
research. ARGoS allows the real-time dynamical simulation
of up to 10,000 robots thanks to a clever modular design
and to the possibility to parallelize the simulation. Moreover,
it includes the models of some of the most used robots
in swarm robotics (e-pucks, kilobots). Another interesting
example is Flightmare [113], a (multi-)UAV simulator with
photo-realistic rendering of the environment, useful for studies
of visual navigation and remote sensing. To improve over
these experiences and provide a tool that responds to the
needs of the swarm robotics community—also addressing the
simulation-reality gap—several aspects need to be addressed
and improved. For example, we will need to find ways to im-
prove the simulation of perception and of physical (robot-robot
and robot-environment) and non-physical (communication)
interactions. Simulations should be deployed at different levels
of fidelity, allowing the user to choose a trade off between
speed and accuracy. In most cases, high-fidelity simulations
are not mandatory, but their availability would largely simplify
the transition from simulation to reality, supporting extensive
tests before going live on real robots. It will also be necessary
to improve the usability of the simulation by increasing the
simulation speed, and providing simpler means of handling
and controlling the simulated robots and the environment
in which they are deployed. Simulations should be highly
configurable to respond to the needs of a diverse research
community. At the same time, setting up a new simulation
configuration should not require expert knowledge of the
inner working of the software. Finally, it will be important
for the simulation framework to be integrated with standard
robotics tools and libraries (e.g., ROS), and to allow cross-
compilation with respect to the robotic platform, which would
make possible to test the code developed in simulation with
the real robots without the need for any change or adjustment.

Having the right tools, the swarm robotics research commu-
nity will need to provide solutions to the design problem. In-
deed, the second lesson we have learned is that addressing the
micro-macro problem—how to design the swarm behaviour
(macro-level) given we can only directly program the individ-
ual robots (micro level) that compose the swarm—is probably
the most difficult aspect to be considered. In order to address
this problem, there have been several attempts to propose de-
sign methodologies—often guided by biological inspiration—
that are general-purpose and reusable in different application
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contexts, from design patterns [106], [123] to automatic design
methods [11], [41], [120]. However, all these approaches are
for the moment not powerful enough: they successfully address
relatively simple or constrained problems, but rapidly show
their limits as the problem complexity increases. A complex
task is made of several subtasks that might require cooperation,
and that have mutual dependencies and time constraints [49],
[93]. One might be tempted to apply available approaches
to each sub-task, obtaining building blocks to compose later.
However, such a divide-and-conquer approach is not sufficient
to deploy usable swarm robotics systems, because this over-
looks the many possible inter-relations between tasks and the
way in which these can be further partitioned and scheduled,
leading to sub-optimal solutions. We need design methodolo-
gies that address the complex inter-relations between subtasks
via continuous integration and refinement [14]. Additionally,
current practices need to scale up in the size of swarms,
seamlessly transitioning from small to large groups. We need
design methodologies that enable to program a robot swarm
without being concerned with the swarm/problem size, which
should instead be determined at configuration time. Finally,
providing performance guarantees is very much needed, but
current practices do not address this point sufficiently, being
limited to empirical assessments of performance statistics. We
need instead design methodologies that provide performance
bounds to meet verification and validation standards, and that
promote reliability of robot swarms especially for application
domains with hard constraints (e.g., space applications). To
concretely support the research community, benchmarks are
invaluable tools to measure the progress in a quantitative way,
and they can be used to challenge the researchers on tasks that
grow in complexity (e.g., as done in RoboCup [54]). To give
an idea of the type of benchmarks needed to progress in swarm
robotics research, consider a resource collection problem, as
done in the NASA Swarmathon [91] competition. To move
beyond current practices, one could set up the problem so
that its complexity can be adjusted along several dimensions:
environment size and topology, to test the capability of the
proposed solution to adapt to different problem instances and
to scale performance with group size; number and distribution
of items to be collected, to test abilities for coordinated
exploration and exploitation of resources; type and persistence
of items, to test the ability to collaborate for recognition and
retrieval, and to adapt to a dynamic environment. Informational
complexity should also be varied by allowing multiple alter-
native paths for task execution—this would require the swarm
to gather and aggregate information about the problem and its
dynamics, taking collective decisions when needed to optimise
the task performance. Possibly, multiple inter-related tasks
should be identified with variable constraints in their temporal
execution (e.g., giving precedence to some items type to enable
retrieval of other types). Clear performance metrics must be
assigned to track progress and support comparison between
different approaches. If a benchmark along these lines were
proposed and associated with standard tools—both hardware
and simulation, as discussed above—an open community
could gather and flourish, learning from best practices and
continuously improving over the achieved results.

The third lesson has been to understand that some of the
properties that are given for granted in a robot swarm—e.g.,
fault tolerance and scalability—are not automatically provided
by the swarm and require a careful design. The difficulties
are even larger if one wants to provide other properties not
intrinsically granted by self-organising robot swarms, such
as robustness (continue to work efficiently in environmental
conditions different from those considered at design time),
flexibility (capacity to solve problems/perform tasks that de-
part from those chosen at design time), or adaptivity (ability
to learn/change behaviour to respond to new operating con-
ditions). Similarly, there are key aspects that did not receive
sufficient attention so far, but that are required for deployment
in real-world applications. Security against external attacks is
needed to make swarms resilient to malicious users trying
to sneak into and seize the swarm. How to command and
control a swarm is also extremely important, in order to let
users interact with the robotic system in a meaningful and
effortless way. This also requires a high level of explainability,
which is necessary to foster acceptance and trust of swarms
by users and laypeople. Properly addressing these aspects will
largely strengthen swarm robotics—as we discuss in Section
IV-F and IV-G—and will promote its transition from research
to concrete applications.

The fourth lesson we have learned is that the “biologi-
cal inspiration tool” must be used with great care. Taking
inspiration from the behaviour of social insects or group-
living species has been very valuable in many cases because
these natural swarms have properties and display behaviours
that are fundamental for any robot swarm: they are “living
proofs” of the fact that self-organisation can work in general,
and they provide viable solutions for specific problems such
as how a robot swarm can move in a coordinated way
(flocking), allocate tasks, or make collective decisions. In
this respect, we foster further contributions from biology to
provide novel guiding principles, as fresh insights about the
mechanisms underlying swarm intelligence will continue to
inform swarm robotics practitioners. However, one should not
forget that the long-term goal of swarm robotics research is
to deploy in the real-world robot swarms that perform useful
tasks and that therefore robot swarms should be designed
with an engineering-minded approach if we want them to be
relevant for real-world applications. It is therefore unlikely
that biological inspiration will be able alone to guide us
when the behaviours required of the robot swarm become
very application specific. Researchers should therefore avoid
putting too much faith in the “biological inspiration tool” and
be ready to devise ad hoc solutions whenever necessary.

It is also interesting to note that, although the collaboration
between biologists and roboticists has been very fruitful, it
has often been uni-directional, with robotics taking more than
what it gave back to biology. We believe that this situation can
be improved and that robot swarms could truly help biologists,
providing artificial, controllable models to study the effects of
embodiment, perception, action and the individual cognitive
requirements necessary to support collective behaviour [43].
Additionally, the possibility of integrating autonomous robots
into natural swarms offers unique opportunities of study that
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are just starting to be exploited [13], [52], [68], [82].

IV. NEW DIRECTIONS AND NEW PROBLEMS

In the near future, most swarm robotics research will
likely be devoted to finding solutions to the above mentioned
open problems. Such research will be very important for the
furthering of the field and for pushing forward the state of the
art. There are however some research directions that might
allow a larger jump forward as they would investigate either
completely new approaches or areas that, even though already
identified as open problems, have been understudied. We first
discuss how to design and control robot swarms when dealing
with novel and challenging situations, such as extreme con-
straints given by small sizes and large numbers of individuals
(IV-A), or the opportunities given by heterogeneous robot
swarms, either in hardware and behaviour (IV-B) or in their
organisational structure (IV-C). We then move to considering
new directions for designing robot swarms, either mimicking
biologically-inspired examples of responsiveness and adapt-
ability (IV-D), or mediating approaches from machine learning
to provide swarms the ability to learn and improve their
performance (IV-E). Finally, we discuss the need for further
research in robot swarm security (IV-F) and in human-swarm
interaction (IV-G), that will be of paramount importance for
real world deployments.

A. Hardware miniaturisation

One of the tenets of swarm robotics is the ability to design
and control thousands of simple robots, achieving swarm-level
complex tasks resulting from simple individual behaviours and
numerous interactions. An aspect that can maximise the impact
of the domain in the future is the exploitation of thousands
of miniature robots, with sizes scaling down to millimetres
and even micro- or nanometres. Such swarms could access
small confined spaces (e.g., microfluidic channels as well
as the human body), could manipulate microscopic objects
(e.g., microplastics or individual cells) and self-organise to
support localised treatments (e.g., targeted drug delivery). To
date, research has only scratched the surface of a domain
with a huge potential. However, downscaling the robot size
brings about new challenges that need to be addressed for
swarm robotics to be able to offer practicable solutions. Micro
and nano-robots are confronted with different physical laws
than at the macroscopic scale, requiring novel models of
collective behaviour. Current approaches to micro- and nano
robots are not exploiting conventional hardware, but are rather
made of active colloidal particles [131], soft-bodied (biolog-
ical) robots [70], bacteria-powered nano-machines [27], [95]
and even controllable genetically-engineered organisms [104].
Achieving and controlling collective behaviour in such sys-
tems will require novel paradigms, as the ability to precisely
governing the individual behaviour will be forcedly limited.
Also, integrating conventional ways of perception and action
is extremely challenging, demanding a rethink of the strategies
for designing and controlling such swarms. Overall, research
should focus on control methods that exploit few unreliable
sensors, minimal or completely absent computational abilities,

and unreliable actions [47], [94]. Solutions that design the
hardware to present self-organising properties are also plausi-
ble [7], [73], although in this case it may be difficult to obtain
flexible and adaptive behaviour. In all these cases, steering
self-organisation can be more rewarding than attempting a
direct control.

B. Heterogeneity

The homogeneity assumption still pervades research in
swarm robotics: all robots are identical and all run the same
control software, they are all replaceable and only the individ-
ual history of interactions with the (social) environment can
lead to the expression of a somewhat specialised behaviour.
This assumption stems from theoretical models of collective
behaviour, which often simplify a complex phenomenon to
gain in tractability. As a matter of fact, self-organisation in
homogeneous systems has been often sufficient to explain
experimental observations to a great degree [19]. However,
individuals within natural swarms can be very different from
each other, both physically and behaviourally, with individ-
ual personalities affecting the response to environmental and
social cues [63]. Heterogeneity is considered fundamental to
grant collectives with flexibility of behaviour, adaptivity to
new conditions, and resilience to external perturbations. All
these features would benefit robot swarms, but heterogeneity
is not exploited as much as it should. The already mentioned
Swarmanoid project demonstrated one possible direction, by
studying coordinated collective behaviours in physically het-
erogeneous groups of robots [32]. Other powerful forms of
collaboration allow initially-homogeneous robots to learn dif-
ferent behaviours, getting specialised to tasks when this leads
to group performance benefits [39]. Taming the complexity
of the self-organised behaviour displayed by heterogeneous
entities is however still very challenging, but promises great
advances for the domain as a whole.

C. Decentralisation vs hierarchy

From its very beginning, swarm robotics has adopted the
self-organisation paradigm, where the swarm control is ob-
tained via simple (stochastic) rules that define the way the
robots interact with each other and with the environment
without exploiting any form of centralised control or of global
knowledge. One could however argue that in many cases
centralised or hierarchical forms of control could make the
problem of designing and controlling a robot swarm easier.
The introduction of some form of hierarchical control might
also be justified by the fact that hierarchies are observed in
many animal societies where they often go side by side with
self-organisation [22]. Unfortunately, these approaches would
require the introduction of machinery that would make the
system vulnerable (single point of failure) and difficult to
scale.

The question of decentralisation vs hierarchy, or of how
to integrate these two aspects, is currently understudied. A
notable first step in this direction [79] proposes to create
hybrid systems where hierarchical control structures resulting
from self-organising processes can appear on the fly in an

theraulaz
Texte inséré 
add reference 118



7

ad hoc manner. This would be similar to what occurs in
some wasp colonies where self-organising processes lead to
the formation of a linear hierarchy and the emergence of a
single reproducing individual [118]. Mathews et al. [79] have
created the infrastructure—middleware—that allows a robot
swarm to autonomously switch from purely self-organised
control to hierarchical control and back. While experiments
have demonstrated the feasibility of the approach [79], [134],
much needs to be done to understand how the rules that allow
the creation of the hierarchical control structure should be
designed as a function of the task that the robot swarm has to
perform, and how the passage from purely self-organised to
hierarchical control and back can be activated as a function of
the task and of the environment in which the robot swarm is
acting.

D. Phase transitions and adaptability

In a real-world environment, the main challenge faced by
a swarm of robots is to adapt to unexpected events such as
the presence of obstacles or changing atmospheric conditions
(brightness, wind, rain). All these events may prevent the
swarm moving forward or accomplishing some tasks. In these
conditions, the swarm must collectively adapt its behaviour
and automatically change its strategy. Such collective capa-
bilities are observed in some species of group-living animals
(swarms of midges, schools of fish, herds of sheep). In these
species, the interactions between individuals give rise to group
properties similar to those of a physical system close to a
“phase transition” between two macroscopic states, resulting
in an extreme sensitivity to changes in the behaviour of a
small number of individuals [6], [87]. In such conditions, the
reaction of a few individuals that have detected a change in the
environment can spread to all the other group members, allow-
ing them to react efficiently to such disturbances as a predator
attack. Such collective adaptive capabilities do not only result
from the particular form of interactions between individuals
but also from a modulation of the relative intensities of these
interactions [18]. The transposition of this type of properties
in swarms of robots could significantly increase their level of
autonomy and would be a promising line of research.

E. Machine learning for robot swarms

As of today, the only prominent use of machine learning
in swarm robotics has been the exploitation of evolutionary
computation techniques for the development of simple neural
controllers driving the behaviour of individual robots in the
swarm. However, recent advances in machine learning, in
particular the availability of new deep learning techniques,
could be leveraged both as a means to design the swarm
behaviour and to provide additional capabilities to individual
robots to be shared within the swarm. So far there has been
little appreciation of these studies within the swarm robotics
community. Machine learning as a design methodology suffers
from the problems associated with the automatic design of
robot swarms [40], with the additional constraints given by
online learning of behaviours by trial and error [17], with

episodic rewards and coordination problems. Model-free ap-
proaches may be very demanding in terms of computational
requirements, although they can be very powerful in handling
the complex, unpredictable contingencies that characterise
swarm behaviour. Model-based approaches could be valuable,
as learning a model of the (current) collective behaviour
could lead to an efficient design of the individual policies.
Combination of the two are currently sought for in several do-
mains, and could be relevant also for swarm robotics research.
Besides designing the swarm behaviour, machine learning and
especially deep learning approaches could find space in swarm
robotics research to provide advanced capabilities to individual
robots that sustain the individual and collective behaviour. In
this respect, it would be important to identify methods that can
leverage the information available to the collective to support
more efficient interpretation of the world. For instance, deep
networks represent the state-of-the-art for image classification,
a feature that is needed in many applications brought forth by
robot swarms. By leveraging the presence of multiple robots
observing the same scene, possibly from different perspectives
and at different times, more accurate and computationally
efficient solutions could be provided [77], [101]. Much work
is needed to define the network architectures and learning
paradigms to support swarm-level operations of this kind.

F. Security

The use of autonomous robots outside the lab will also
introduce security issues. Robots need to be safe while doing
their tasks [58], they should guarantee the privacy of the data
they collect, and should also be resilient to external attacks by
malicious users trying to get control. Such issues will be even
more serious in the case of robot swarms [55]. Issues such as
entity authentication, data confidentiality, data integrity, are
amplified by the mere presence of potentially hundreds of
robots interacting with each other. Additionally, disruption in
the working of the swarm might be caused by just a few
malicious robots sneaked into the group [55]. Research in
robot swarm security is still in its infancy. Initial work is
investigating how traditional (e.g., cryptographic Merkle trees,
[21]) and less traditional (blockchain, [115]) approaches to
security can be exploited either to add security layers or to be
fully integrated in the control architecture of robots swarms.
These initial works allow to address issues such as how to
keep information in a swarm private [21], [103], how to avoid
disruption due to the presence of malicious robots [114], and
how to counter Sybil attacks [115]. Much research will be
needed to extend these simple, proof-of-concept solutions so
that they can be ported to large swarms of robots acting in the
real world.

G. Human-swarm interaction

While the interaction with a single machine/robot is a very
well-studied problem [9], interaction with a robot swarm opens
completely new avenues. The main difficulty is given by the
fact that, the swarm being self-organised, there is no clear
entity with which a human could establish a communication
link. Human-swarm interaction (HSI) will be necessary to
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provide the swarm information about goals to be achieved or
tasks to be performed [16], [66]. A swarm could be controlled
indirectly by means of a few user-driven robots embedded
within the swarm. Recent research in several disciplines [8],
[18], [24], [48] has shown that a minority of committed
agents can determine the overall behaviour of a group. Similar
mechanisms represent interesting means for the control of
robot swarms, although they may introduce security challenges
that must be dealt with, to avoid a few malicious robots taking
control of the entire swarm. Alternatively, robot swarms could
be controlled or steered directly by the user, and different ways
have been proposed, such as through gestures [88], [100] or
EEG signals [85].

Direct control of a swarm by a user is complicated by the
fact that understanding what the swarm is doing might be very
challenging due to the multitude of interactions happening
within the swarm, which might be hard to ‘read’ for a human
observer. Explainability is therefore crucial. Possible solutions
might be built-in within the self-organising mechanisms of the
swarm, in a way to make the current state and goal of the
swarm visible to users. Interfaces to swarm behaviours, pos-
sibly enabled by augmented reality, may collect and visualise
information from the swarm, while models of the collective
behaviour could be integrated in order to provide predictions
that could support the user to take action (e.g., by issuing new
commands to the swarm). The design of any HSI solution
will also require an understanding of the psychological effects
induced on humans who interact with a robot swarm, in order
to favour interaction modalities that reduce stress [98], [99]
and improve usability and trust [89].

V. HOW FUTURE APPLICATIONS WILL GUIDE RESEARCH

The great interest in swarm robotics research recorded to
date [1], [34], [35], [132] is due to the expected forthcoming
ubiquity of autonomous robots for real-world applications, and
to the challenges of letting them cooperate with each other
and with their human users avoiding the pitfalls of centralized
control.

In this section, we first discuss what are the general criteria
that would justify the use of robot swarms to solve problems
or perform tasks in real-world applications and then we give
an overview of what we believe to be potential application
domains for swarm robotics. This overview is of a speculative
nature as—as we said—real-world applications are still to
come. We try however to motivate our choices by critically
evaluating the benefits that a swarm robotics approach could
concretely bring into play in the different application domains
considered.

A. General criteria for a robot swarm solution

In principle, the first question to ask when considering the
application of a robot swarm to the solution of a real world
problem is whether a robot swarm is indeed the best way to
go. However, this is a very difficult question, especially so
given that swarm robotics is a young discipline and that, as
discussed above, there are still many open research questions.
As a consequence, the current practice consists in evaluating

the suitability of swarm robotics solutions on the basis of the
expected advantages with respect to other solutions, factoring
in the constraints imposed by available technologies.1 Given
the lack of working methodologies to move from problem
specification to robot swarm implementation and deployment,
in the following we discuss a few general guidelines that
should direct the choice of swarm robotics solutions when
dealing with a concrete application problem.

The first very general guideline is that the use of a multi-
robot system—and by extension, of a robot swarm—should
be envisioned only if the problem considered cannot be
(efficiently) solved via a single-robot solution— because it is
either too complex or too demanding considering the available
technology and the application constraints. For instance, the
surveillance of a large area with a single robot might not be
feasible and the only option might be to use many robots at the
same time [107]. Another example is the exploration of a large
collapsed building by UAVs in a search & rescue scenario:
even though in this case a single UAV might perform the task,
this might not be efficient enough due to the limited flight time
and the need to fly back for recharging. In such conditions, a
multi-robot solution could be more efficient thanks to parallel
operation [80].

Once the suitability of a multi-robot system is established,
one should consider what type of control approach would be
most appropriate for the considered problem. For example,
when it is not possible or advisable to coordinate the robots in
a centralized way [60], the use of a robot swarm might be the
right way to go. In some cases, centralised replanning could
be feasible to deal with task uncertainty and environmental
unpredictability [59]. However, a strong demand for online
recognition of features and for adaptation to experienced
contingencies might be better approached through decentral-
ized, self-organized methods. Even in this case, however, one
should consider if other approaches, such as distributed model
predictive control [76], [90] could be used, which might not
be the case when it is impossible or too difficult to create
simple enough models of both the problem to be solved and
the environment in which the robots are going to operate.

Another aspect to consider is whether the given problem
is decomposable in a fixed number of well defined tasks that
can be addressed by a team of robots, each with a specific
role, as is the case for instance in an assembly line or in
robotic soccer [54]. Once again, if this is not the case, then
a swarm robotics approach might be conceivable. In other
words, even if a problem is better solved with a multi-robot
system, this does not necessarily imply the need for a robot
swarm. The latter is better justified by tasks that have no
predefined partitioning in sub-tasks, or that allow diverse
allocations of roles to the available robots [32], [92]. Last,
a swarm robotics approach might be the right choice if a
beneficial collaboration among the robots is expected. In fact,
thanks to collaboration, a swarm robotics system can aim

1A notable exception is the work of Kazadi [65], [75], who explicitly
addresses the question of whether a robot swarm is an appropriate technology
for a given problem; however, his methodology is still at the stage of proposal
and has not been applied on any real robot swarm implementation.
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for superlinear performance increase justifying the overhead
necessary to setup the collaboration [53].

B. Applications, needs and future research

With these considerations in mind, potential application
domains for swarm robotics should be critically evaluated for
the benefits that a swarm robotics approach can concretely
bring into play. For instance, service robots may not come
in a swarm, although coordination of activities and allocation
of tasks performed by each robot can be decentralised and
self-organised to some extent. Still, the specific task itself
may not require coordination or collaboration among robots.
Similarly, logistics (e.g., in large warehouses), autonomous
cars and smart mobility in general can surely benefit from
the decentralised coordination strategies studied in swarm
robotics. It is however unlikely that these applications can
guide future swarm robotics research. Conversely, applica-
tions like precision agriculture or infrastructure inspection
and maintenance require dealing with an unstructured, un-
predictable environment—often covering extensive areas—
and can benefit from parallelization and collaboration among
robots in a swarm. For instance, early identification of the
outbreak of diseases within a crop field requires information
sharing among robots to make global patterns emerge from
coupled local views, supporting suitable responses and better
strategic planning [3], [77]. Similarly, a reliable identification
of defects in a large infrastructure requires efficient search abil-
ities that could be best implemented by means of swarms [23].
Despite both precision agriculture and infrastructure inspection
feature a somewhat static environment (the crop field or the in-
frastructure to inspect), decentralization and self-organization
can be useful to gain in both efficiency, thanks to parallel
and coordinated operations, and accuracy, thanks to adaptive
strategies for collective perception that respond to the sensed
contingencies and determine the optimal mission plan to
maximize the likelihood that all relevant features are observed
with care. In this respect, future research should focus on
strategies to make sense of complex features by means of
information fusion among multiple, possibly heterogeneous,
robots. Additionally, tailored intervention and manipulation
abilities need to be devised (e.g., for harvesting fruits or for
maintenance), opening to new opportunities for distributed,
collaborative activities.

The application of robot swarms is sought for by defence
agencies worldwide, who find extremely appealing a system
that cannot be easily shut down [25]. A system that is fault-
tolerant to external attacks can support operations in adver-
sarial settings, especially when robots are replaceable and, to
some extent, disposable. Here, however, the human component
remains inevitably central. Hence, defence applications need
to consider the human in the loop, and advanced HSI strategies
will be crucial for effective deployment [89]. Also, safety and
security aspects need to be at the highest level to guarantee
that robot swarms do not get out of control or maliciously
seized [58]. Similar aspects are fundamental in other ap-
plication areas, such as civil protection, where the need to
face natural disasters or anthropogenic hazards requires agile

robots capable of dealing with emergency conditions, with
no external infrastructure or reliable maps. Such applications
set the bar very high, as robot swarms should be capable of
guaranteeing the highest possible performance and reliability,
because no victim should be left behind.

Space missions—both with rovers for planet explorations
and in-orbit satellites—introduce other constraints on robotics
applications that might be successfully addressed by swarm
robotics. In space, the computational power of computers has
to remain limited because of cosmic radiation burning modern
CPUs [81]. A swarm of robots of limited computational power
might therefore be a better design choice than a single more
powerful robot [91], [96], [108]. Robots that are sent out in
space cannot be easily repaired or substituted, which is well
addressed by the swarm robotics focus on redundant systems
where the failure of one of the robots does cause only a
graceful degradation of the swarm performance. Finally, in
space it might be extremely costly or even impossible to
build an external infrastructure to support the coordination
of robots, again a typical situation that robot swarm can
effectively deal with. Accordingly, space agencies such as
NASA and ESA have started to show interest in swarm
technologies, for example with activities such as the already
mentioned Swarmathon [91] competition and with research
directed at the control of swarms of pico-satellites [96]. The
great challenge brought forward by space applications is the
necessary autonomy of the swarm system, which cannot rely
on reliable and constant intervention from human operators.

The entertainment sector has also good potential for the em-
ployment of robot swarms. There are already several examples
of drone swarms light shows outdoor and indoor [128], which
however are generally based on centralised pre-orchestrated
trajectories for the drones. In a similar way, other attempts
to exploit multi-robot systems for entertainment have relied
on some centralised solution to finely control the system [5],
[74]. New avenues are possible if a decentralised approach
is considered, especially if users can actively participate in
the entertainment activity by engaging with the robot swarm,
changing its dynamics according to positions, movements and
even emotions [4]. In this context, research can experiment
radically new modalities for HSI that can be afterwards bor-
rowed by other application domains. For instance, all sort of
HSI interfaces can be imagined, from wearable devices [122]
augmented and virtual reality [57], and brain-computer inter-
action modalities [85].

Finally, swarms of nano-bots might in the future become
a new and powerful tool in precision medicine, making pos-
sible targeted interventions within the human body, such as
minimally-invasive surgery or polytherapy delivery directly to
cancerous cells [28], [64]. However, the coordination of huge
numbers of robots with extremely limited computational and
communication capabilities will stretch to the limits the swarm
robotics approach and will require the development of new
conceptual tools, let alone the development of microscopic
hardware or bio-robotics devices [111].

Overall, the relationship between the requirements from
potential application domains and future research challenges
for swarm robotics is indisputable. We therefore envisage
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a close collaboration between researchers and the relevant
stakeholders from the various application domains, who can
provide concrete examples to challenge novel developments,
and contribute to set the agenda of swarm robotics research
in the years to come.

VI. CONCLUSIONS

The design and implementation of effective robot swarms
is one of the greatest challenges that lie ahead for robotics,
as well as one of the most promising research avenues, as
acknowledged in [132]. In this perspective, we have briefly
summarised the state of the art, and identified what we believe
to be the most promising research directions and main open
problems. Yet our overview is inevitably incomplete, because
significant advances in swarm robotics will strongly depend on
research carried out outside the field; in fact, advancements
in many of the other grand challenges identified by [132]
will be decisive for the development of swarm robotics. For
example, new materials, biohybrid solutions, new ways of
storing and transmitting energy, could help address some of
the current issues related to the hardware of robot swarms.
The development of AI techniques, in particular of distributed
learning algorithms that require limited computation and can
work with the CPUs of small inexpensive robots, will allow
robot swarms to gradually increase their autonomy. Swarms
will have to ensure explainability, now a major issue for the
whole field of robotics and artificial intelligence. In other
words, the user will need to be able to understand the
decision making of the swarm without a detailed knowledge
of the underlying mechanisms—a paramount requirement to
ensure the acceptability of robot swarms and to foster trust
in them, hence creating the conditions for a massive real-
world deployment. Even though many of these issues are being
addressed more generally within the artificial intelligence field,
their complexity might be increased by the high number of
autonomous entities and by their numerous interactions with
each other that are typical of swarm robotics systems.

If these challenges are faced, we expect swarm robotics
to successfully transition from laboratories to real-world ap-
plications within the current decade, as suggested above.
Such transition will not be immediate, but the first successful
applications of swarm robotics in the real world will surely
spur additional interest, leading different application section
to proposing new challenges and creating a demand in new
technological solutions that will drive research and innovation
in the years to come.
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P. Kozierski. Crazyflie 2.0 quadrotor as a platform for research
and education in robotics and control engineering. In 2017 22nd
International Conference on Methods and Models in Automation and
Robotics (MMAR), pages 37–42, 2017.
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[114] V. Strobel, E. Castelló Ferrer, and M. Dorigo. Managing byzantine
robots via blockchain technology in a swarm robotics collective deci-
sion making scenario. In M. Dastani, G. Sukthankar, E. André, and
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