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INTRODUCTION 

Swarm robotics deals with the design, construction and deployment of large groups of robots that 

coordinate and cooperatively solve a problem or perform a task. It takes inspiration from natural self-

organising systems such as social insects, fish schools or bird flocks, characterised by emergent 

collective behaviour based on simple local interaction rules (Camazine et al., 2001; Sumpter, 2010). 

Typically, swarm robotics extracts engineering principles from the study of those natural systems, in 

order to provide multi-robot systems with similar abilities. This way, it aims to build systems that are 

more robust, fault-tolerant and flexible than single robots, and that can better adapt their behaviour to 

changes in the environment.  

Swarm robotics started out as an application of swarm intelligence (Bonabeau et al., 1999), that is, the 

computational modelling of collective, self-organising behaviour that has resulted in several successful 

optimization algorithms now being used in fields ranging from telecommunications to simulation and 

prediction of crowd behaviour. However, it has quickly become evident that achieving swarm behaviour 

in robots demands much more than simply applying swarm intelligence algorithms to existing robotic 

platforms. In fact, it often requires to completely rethink traditional robotic activities such as perception, 

control, localisation, and the very design of the robotic platforms themselves.  

Over the last two decades, researchers working in swarm robotics have made significant progress, 

providing proofs-of-concept of robot swarms that paved the way to new and promising robotic 
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applications, as well as to a better understanding of how complex behaviours emerge in nature. 

However, as of today, no real-world application of swarm robotics exists, and only few published 

experiments have been able to control behaviour in a number of robots that can effectively be compared 

to the size of biological swarms or flocks. More research is needed to bring robot swarms out of the lab 

and into the real world.  

 

In order to significantly push forward the state of the art, make robot swarms robust, scalable and 

controllable, and move towards real-world applications, research in swarm robotics must focus on a 

number of open challenges such as: how to extract design principles from the study of biological 

systems; how to move from low-level behavioural rules to the desired high-level behaviour; how to 

manage the gap between simulations and real experiments, and between lab experiments and real-world 

domains; and how to develop hybrid design methodologies based on the right mix of centralised and 

decentralised approaches that can produce emergent behaviour in a computationally economic way, 

while keeping the system controllable. The way these challenges will be addressed will decide the future 

of swarm robotics and whether it can live up to its potential.  

 

In the following, after a brief history of the field, we summarise the main lessons learned during the 

pioneering phase of swarm robotics, we analyse the main open challenges and provide examples of 

innovative and promising approaches to tackle them. Finally, we suggest the most likely fields of 

application for swarm robotics and assess its potential impact in selected industries, by showing 

application scenarios that cannot be achieved by a single robot, or by a few robots controlled in a 

traditional, centralised way. 

 

A BRIEF HISTORY OF SWARM ROBOTICS  

In the last two decades, swarm robotics has grown from a small domain initiated by a few studies with a 

clear biological inspiration (Kube and Zhang, 1993; Beckers et al., 1994; Holland and Melhuish, 1999) 
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to a mature research field involving several labs and researchers worldwide. A search with Google 

Scholar shows that the phrase “swarm robotics” made its first appearance in 1991, but its usage remained 

very limited until 2003 when it started to grow considerably. Similarly, a search with SCOPUS returns a 

comparable increasing trend (see Figure 1). These data show that, even though the swarm robotics research 

field finds its roots in a few seminal works published in the 1990s, it is only with the year 2000 that it started 

to significantly grow.  

   
Figure 1: Citation count for the search “swarm robotics” in Google Scholar and in Scopus. Both show the 

same tendency, with an exponential growth from year 2000 on.  

 
 
Initially the study of swarm robotics was aimed at testing the concept of stigmergy (see Box 1 for the 

definition of this and other concepts used in the article) as a means of indirect communication and 

coordination among robots. Following a few initial attempts (Beckers et al., 1994; Kube and Zhang, 

1993; Holland and Melhuish, 1999), several studies appeared after 2000 focussed on tasks such as 

object retrieval (foraging, Krieger et al., 2000; stick pulling, Ijspeert et al., 2001), clustering 

(Agassunoun et al., 2004) and sorting of objects (Wilson et al., 2004). These studies started from known 

behaviours observed in social insects, and deployed robot swarms demonstrating similar behaviour. In a 

few cases, the robot swarm was exploited to closely replicate the dynamics observed in biological 

systems (e.g., aggregation in cockroaches, Garnier et al., 2008), leading to the first example of a mixed 

biological-robotic society (Halloy et al., 2007). Additionally, swarms of robots have been used as a tool 
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to address biological questions (e.g., the trail network geometry to find the shortest path between a food 

source and a nest, see Garnier et al., 2013).  

 

One of the first international projects to investigate cooperation in a swarm of robots was the Swarm-

bots project, funded by the European Union between 2001 and 2005. In this project a swarm of up to 20 

robots capable of self-assembly—i.e., physically connecting to each other to form a cooperating 

structure—were used to study a number of swarm behaviours such as collective transport, area 

coverage, and object search (Dorigo et al., 2004; Mondada et al., 2005). The main result of the project 

was to demonstrate what—at the present day—remains the only example of self-organised teams of 

robots that cooperate to solve a complex task, with the robots in the swarm taking different roles over 

time (Nouyan et al., 2009). The Swarmanoid project (2006-2010) extended the ideas and algorithms 

developed in Swarm-bots to heterogeneous robot swarms composed of three types of robots—flying, 

climbing and ground-based—that collaborated to carry out a search and retrieval task (Dorigo et al., 

2011, 2013).  

 

In the 2000s, in parallel with the successful demonstration of the swarm robotics paradigm, research on 

hardware miniaturisation promised the deployment of hundreds, possibly thousands of cooperating 

robots. Robots became smaller and ever-more minimalist, up to attempts of designs at the millimetre 

scale (see Figure 2). Several challenges related to hardware miniaturization and to the integration of a 

sufficient sensor suite, however, hindered progress in this direction. It was only a few years later that a 

hardware concept appeared supporting experimentation with a thousand robots: the Kilobot (Rubenstein 

et al., 2014a). The Kilobot was conceived to support the first demonstration of a large robot swarm 

designed for shape formation (Rubenstein et al., 2014b), and has been later used for several successful 

studies, allowing swarm robotics to be demonstrated in physical settings with hundreds of robots 

(Valentini et al., 2016; Slavkov et al., 2018; Talamali et al., 2020).  
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Swarm robotics is not limited to ground platforms: recent work has considered aquatic surface (Duarte 

et al., 2016) and underwater robots (Zahadat and Schmickl, 2016), as well as swarms of flying drones 

(Vásárhelyi et al., 2018; McGuire et al., 2019). While aquatic and underwater technologies still need 

substantial development efforts to become mature, drones are instead already commercialised and 

represent a very promising platform for remote sensing applications in different domains, being 

currently hindered only by the lack of a legal framework authorising autonomous and group flight. 

 

Beyond hardware platforms, controlling robot swarms has represented the main focus of research. An 

extensive report of the different approaches so far available in the literature is beyond the scope of this 

perspective (but see Brambilla et al., 2013; Trianni and Campo, 2015; Francesca and Birattari, 2016; 

Garattoni and Birattari, 2016; Valentini et al., 2017). The main directions taken so far include: the 

development of analytical models of swarm systems to guide the robotics implementation (Prorok et al., 

2011, Massink et al., 2013; Elamvazhuthi and Berman, 2019); the adoption of (evolutionary) 

optimisation approaches where robots are guided by minimalistic controllers (neural networks, Trianni, 

2008; controllers without computation, Gauci et al., 2014; finite-state machines, Francesca et al., 2015; 

grammar-based controllers, Ferrante et al., 2015) and the development of design and verification 

methodologies (Reina et al., 2015; Brambilla et al., 2015). The definition of a reliable and efficient 

engineering methodology for robot swarms is still on the fringes of current research, and will likely 

require substantial effort in the years to come.  

 

Box 1: Glossary of key terms used in the article  

Adaptivity  
 

The ability to learn/change behaviour to respond to new 
operating conditions 

Automatic design  
 

An approach to the development of control software for 
robot swarms in which the design problem is cast into an 
optimization problem. The different design choices define a 
search space that is explored using an optimization 
algorithm. 

Design pattern A formal description of a reusable solution to a problem 
commonly recurring in a certain domain. In swarm robotics, 
design patterns describe how to define the individual rules to 
obtain a desired self-organised macroscopic behaviour (e.g., 
collective decisions, see Reina et al., 2015) 
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Evolutionary algorithms  
 

Optimization algorithms in which an initial set of candidate 
solutions is generated and iteratively updated through 
mechanisms inspired by biological evolution. The 
population of solutions gradually evolves to maximise an 
objective function (fitness) through a process that mimics 
the natural processes of reproduction, mutation, 
recombination and selection. 

Fault tolerance The capacity of a system to withstand faults of some of it 
parts with a graceful degradation of performance. 

Flexibility  
 

The capacity to solve problems/perform tasks that depart 
from those chosen at design time. 

Model-free & model-based reinforcement learning Two different approaches to reinforcement learning, a subset 
of machine learning in which software agents learn to 
behave efficiently in a given environment by trying to 
maximise a reward function of their actions. In model-based 
approaches, the agent is given, or learns, a function that 
maps its current states and actions to its next states (a model 
of the environment) so that it knows in advance the outcome 
of its next move; in model-free approaches the agent finds a 
good policy through trial-and-error, without explicitly 
reference the model of the environment. 

Phase transition Phase transition is a physical process whereby a substance 
changes from one physical state to another such as the 
freezing of water into ice (liquid to solid) or the heating of 
water to generate water vapour (liquid to gas). There is a 
formal analogy between the existence of disordered and 
ordered states in biological systems and that of similar states 
or phases in the inert world of physics: disordered liquid, 
ordered crystal solid. These systems have phase transitions 
which are changes between the various states or phases. In 
particular, ordered states are characterised by a notion of 
order at the scale of the whole system which can be 
quantified by an order parameter (e.g. the quality of the 
alignment/polarisation of a school of fish) 

Robustness 
 

The capacity to continue to work efficiently in 
environmental conditions different from those considered at 
design time. 

Scalability 
 

The capacity of a system to continue functioning properly 
when the number of its components (or in general, the 
amount of its resources) substantially varies. 

Self-organisation Self-organisation is a process whereby pattern at the global 
level of a system emerges solely from interactions among 
the lower-level components of the system, The rules 
specifying the interactions among the system's components 
are executed using only local information, without any 
central authority determining their course of action 
(Camazine et al., 2001). 

Stigmergy  
 

A form of indirect communication between agents where the 
work performed by an agent leaves a trace in the 
environment that stimulates the performance of subsequent 
work by the same or other agents. This mediation via the 
environment ensures the coordination of actions performed 
by the agents. It was first described by Grassé (1959) and 
has played an important role in supporting self-organising 
mechanisms in swarm robotics (Theraulaz and Bonabeau, 
1999; Garnier et al., 2007).  
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Figure 2: Some of the robots largely used in swarm robotics research: (A) jasmine (Kornienko et al., 

2005) (B) alice (Caprari and Siegwart, 2005); (C) kilobots (Rubenstein et al., 2014); (D) e-pucks 

(Mondada et al., 2009); (E) swarm-bots (Mondada et al., 2004); (F) swarmanoid (Dorigo et al., 2013). 
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Box 2: Timeline of the swarm robotics research domain - including projections of future developments 
 
1990-2000 A new paradigm is tested in which collaboration is emergent from simple (often bio-inspired) 

behaviours. First experiments with robots demonstrating self-organisation by means of indirect 
(stigmergy) and local interactions, with a clear inspiration from swarm intelligence. 

2000-2005 The possibility to design robots cooperating in a swarm is extended to several new tasks, 
entailing manipulation of objects, task allocation and tasks that strictly require collaboration to 
be solved. 

2002-2006 The Swarm-bots project demonstrates robot swarms capable of self-assembly, opening to 
physical forms of collaboration. Robots are capable of building pulling chains and large 
structures capable of dealing with terrain roughness. 

2004-2008 Initial demonstrations of the automatic design of robot swarms by means of evolutionary 
algorithms, leading to the establishment of the evolutionary swarm robotics approach. 

2005-2009 First attempts of developing standard swarm robotics platforms (e-pucks), as well as miniature 
robots for swarm robotics research (alice, jasmine).   

2006-2010 The Swarmanoid project demonstrated for the first time heterogeneous robot swarms composed 
of three groups of robots: flying, climbing and ground-based robots. 

2010-2015 Different approaches appear to the design of robot swarms: advanced methods for the automatic 
design (AutoMoDe, novelty search), design patterns, mean-field models and optimal stochastic 
approaches. 

2014-2019 The “control without computation” approach develops swarm robotics behaviours with direct 
sensor-actuator mapping and no computation whatsoever. 

2016-2020 Swarms of flying drones become available for research, and decentralised solutions are studied 
and deployed. 

2020-2025 First demonstration of robot swarms capable of autonomously learning the best collective 
behaviour for any given problem. 

2020-2030 First civil applications of robot swarms to precision agriculture and infrastructure inspection 
and maintenance. Military applications largely use non-offensive unmanned drones for mission 
support.   

2025-2040 First space exploration mission on the Moon and Mars with miniature rovers, expanding the 
explored area and demonstrating onsite construction abilities. 

2030-2050 Miniature robot swarms are demonstrated for target drug delivery inside the rat body, and 
experimentation with human subjects begins.  

 
 

LESSONS LEARNED 

The first two decades of research in swarm robotics yielded rich results. The extensive experimental 

work has taught us a number of important lessons. First, we learned that the types of tasks that can 

currently be performed by robot swarms is strongly constrained by the still limited capabilities of 

autonomous robots1. To work in a swarm, the individual robots must be capable of interacting and 
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communicating with each other, as well as of recognizing peers and the work done by others. This 

entails tailored hardware designs as well as specific sensing, interpretation and interaction abilities. 

Current limitations in robot hardware and control have constrained the complexity of swarm robotics 

research in a twofold way. On the one hand, specific robots have been developed to solve specific (toy) 

problems (e.g., termes, Werfel et al., 2014; kilobot, Rubenstein et al., 2014a). These examples have 

opened new avenues, but not always resulted in reusable components to be borrowed in different 

contexts. On the other hand, generic robots (alice, Garnier et al., 2009; 2013; e-puck, Mondada et al., 

2005, 2009) have been used to produce proofs of concept, often addressing tasks that are a direct 

transposition in the artificial world of analogous tasks performed by self-organised natural systems (e.g., 

foraging, see Krieger et al., 2000, Talamali et al., 2020). However, when the hardware is not conceived 

for swarm robotics, daily work can become very cumbersome due to the need to deal with dozens or 

possibly hundreds of robots at the same time, making mundane activities such as recharging batteries or 

uploading software really tedious. This has often constrained the breadth and significance of the 

demonstrations, for instance forcing to use only a handful of robots, without unleashing the full power 

of swarm robotics. Finally, it should be added that miniaturisation of hardware will be a key element for 

experimentation in the lab with large swarms as well as for many future applications. Still, downscaling 

hardware poses extremely hard problems that so far have not been solved. 

  

The second lesson we have learned is that addressing the micro-macro problem—how to design the 

swarm behaviour (macro-level) given we can only directly program the individual robots (micro level) 

that compose the swarm—is probably the most difficult aspect to be considered. In order to address this 

problem, there have been several attempts to propose design methodologies that are general-purpose and 

reusable in different application contexts—from design patterns (Reina et al., 2015) to automatic design 

methods (Trianni, 2008; Francesca et al., 2015). However, all these approaches are for the moment not 

powerful enough to address all the different aspects of the design of a robot swarm: they successfully 

address relatively simple or constrained problems, but rapidly show their limits as the problem 
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complexity increases. Multiple aspects are linked with the absence of a solid design methodology. One, 

as mentioned above, is the lack of a standard and robust hardware platform for swarm robotics, which 

should be accompanied with efficient and reliable simulation tools (ARGoS, Pinciroli et al., 2012). 

Another issue is the lack of benchmarks that can measure the progress in a quantitative way (e.g., recent 

competitions like NASA Swarmathon2), and that can challenge the researchers on tasks that grow in 

complexity (e.g., as done in RoboCup, Hedberg, 1997). 

  

The third lesson has been to understand that some of the properties that are given for granted in a robot 

swarm—e.g., fault tolerance and scalability—are not automatically provided by the swarm and require a 

careful design. The difficulties are even larger if one wants to provide other properties not intrinsically 

granted by self-organising robot swarms, such as robustness (continue to work efficiently in 

environmental conditions different from those considered at design time), flexibility (capacity to solve 

problems/perform tasks that depart from those chosen at design time), or adaptivity (ability to 

learn/change behaviour to respond to new operating conditions). Similarly, there are key aspects that did 

not receive sufficient attention so far, but that are required for deployment in real-world applications. 

Security against external attacks is needed to make swarms resilient to malicious users trying to sneak 

into and seize the swarm. Reliability is another requirement for concrete applications, as performance 

should be guaranteed at design time especially for domains with hard constraints. Finally, explainability 

is necessary to foster acceptance and trust of swarms by users and laypeople. 

  

The fourth lesson we have learned is that the “biological inspiration tool” must be used with great care. 

Taking inspiration from the behaviour of social insects or group-living species has been very valuable in 

many cases because these natural swarms have properties and display behaviours that are fundamental 

for any robot swarm: they are “living proofs” of the fact that self-organisation can work in general, and 

they provide viable solutions for specific problems such as how a robot swarm can move in a 

coordinated way (flocking), allocate tasks, or make collective decisions. However, one should not forget 
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that the long-term goal of swarm robotics research is to deploy in the real-world robot swarms that 

perform useful tasks. It is therefore unlikely that biological inspiration will be able to guide us when the 

behaviours required of the robot swarm becomes very application specific. Researchers should therefore 

avoid putting too much faith in the “biological inspiration tool” and be ready to devise ad hoc solutions 

whenever necessary. However, as discussed later, biology can still provide general guiding principles in 

the design of more complex, application-specific robot swarms. 

  

OPEN PROBLEMS IN SWARM ROBOTICS 

In order to push forward the state of the art and bring swarm robotics closer to real world deployment, a 

number of open problems needs to be addressed and solved. First, we will need to develop tools that 

will make it easier for swarm robotics researchers to share results and replicate experiments. As 

mentioned above, current research is fragmented and the used robots are often created in a very ad hoc 

fashion. This issue applies not only to hardware, but also to simulation software which is often 

developed from scratch for each new robot swarm demonstrator3. A common simulation tool shared by 

the research community would be a significant step forward as it would simplify the sharing and 

comparison of research results. However, to devise such a tool, we need to better understand the relation 

between simulation and the real world. The problem, known in robotics as the simulation-reality gap 

(Jakobi et al., 1995), is that differences between the models used in simulation and their real-world 

counterparts cause a drop in performance when robot controllers developed in simulation are used in the 

real world. This problem is particularly important in swarm robotics where it is exacerbated by the fact 

that many robots have to interact with each other (Francesca and Birattari, 2016). The ideal robot swarm 

simulator should make sure that such discrepancies are kept to a minimum, even though they cannot be 

completely eliminated. 

 

Beyond simulation, a few general-purpose robotic platforms would also constitute valuable tools for the 

research community. The e-puck (Mondada et al., 2009) is probably the most used platform to date, but 
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research with more than 30 e-pucks remains complex and costly. The kilobot, being conceived for 

swarm robotics research, is becoming a de facto standard, but is severely limited in its abilities, so much 

that virtualization environments have been proposed to increase the research possibilities (Valentini et 

al., 2018; Reina et al., 2017). Crazyflies (Giernacki et al., 2017) are also becoming very much used as 

flying platforms for swarm robotics studies (McGuire et al., 2019), but are not conceived for swarm 

robotics research. Substantial effort is still needed to deploy a swarm robotics hardware featuring the 

good compromise between cost, size, onboard features and support for experimentation: such an 

hardware would greatly benefit the community worldwide. 

  

Having the right tools, the swarm robotics research community will need to provide solutions to the 

design problem, allowing to seamlessly move from specifications to implementation, testing and 

maintenance of swarm-based services. To this end, current practices need to scale up in different ways. 

First of all, any solution to the design problem also needs to address the above-mentioned reality-gap 

problem—allowing the use of simulations in an extensive way for the design, without severe impact on 

the transposition of solutions to the real world. We need design methodologies that can guarantee such a 

smooth transition despite possible inaccuracies of the simulation. Scaling up in the size of swarms, 

transitioning from small to large groups, is also an important requirement that a design methodology 

must explicitly consider.  We need design methodologies that enable to program a robot swarm without 

being concerned with the swarm/problem size, which should instead be determined at configuration 

time. Providing performance guarantees is very much needed, but current practices do not address this 

point sufficiently, being limited to empirical assessments of performance statistics. We need instead 

design methodologies that provide performance bounds that can meet market verification and validation 

standards. 

 

Swarm properties such as scalability, fault tolerance, robustness and flexibility have been a major 

concern of swarm robotics research from its very beginning. However, future design methodologies 
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should also address issues such as security and human swarm interaction. Both these issues are 

particularly challenging in robot swarms as the presence of many robots and the lack of a central 

controller make it difficult to know what is happening within the swarm. From one side, this fact could 

be exploited by malicious robots to disrupt the swarm functioning and, on the other side, it makes it 

difficult for a human user to exchange information with the swarm. 

 

Finally, an open problem is how to scale up in task complexity. A complex task is made of several 

subtasks that might require cooperation, and that have mutual dependencies and time constraints 

(Gerkey and Mataric, 2004; Nunes et al., 2017). A straight divide-and-conquer approach is not sufficient 

to deploy usable swarm robotics systems, and therefore design methodologies are needed that address 

the complex interrelations between subtasks via continuous integration and refinement. 

The breadth of problems that needs to be solved suggests that, more than a single engineering 

methodology, what is needed is a set of design methods—automatic or not—that can generate modules 

that can be easily configured and integrated with each other. 

  

To date, the design problem was mostly addressed by means of biological inspiration, where the study 

of biological systems provided guiding principles to be exploited for programming swarm robotics 

behaviours. The collaboration between biologists and roboticists has been very fruitful, but often uni-

directional, with robotics taking more than what it gave back to biology. During the first two decades, as 

swarm robotics developed and hit new grounds, it was usual to replicate natural swarm behaviours into 

swarm robotics systems, providing proofs of concept that swayed between being artificial models of 

biological systems and artefacts addressing real-world applications. We believe that a more fruitful 

collaboration can be set by disentangling these two aspects. Robot swarms can truly help biologists, 

providing artificial, controllable models to study the effects of embodiment, perception, action and the 

individual cognitive requirements necessary to support collective behaviour (Garnier et al., 2013). 

Additionally, the possibility of integrating autonomous robots into natural swarms offers unique 
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opportunities of study that are just starting to be exploited (Halloy et al., 2007; Krause et al., 2011; Mitri 

et al., 2013; Bonnet et al., 2019). On the other hand, robot swarms should be designed with an 

engineering-minded approach if we want them to be relevant for real-world applications. In this respect, 

we foster further contributions from biology to provide novel guiding principles, as fresh insights about 

the mechanisms underlying swarm intelligence will continue to fascinate and inspire swarm robotics 

practitioners. However, as mentioned above, biological inspiration should not be taken too literally, and 

applications should take centrality if we want robot swarms to get out of research labs. 

 

NEW DIRECTIONS AND NEW PROBLEMS  

In the near future, most swarm robotics research will likely be devoted to finding solutions to the above 

mentioned open problems. Such research will be very important for the furthering of the field and for 

pushing forward the state of the art. There are however some research directions that might allow a 

larger jump forward as they would investigate either completely new approaches or areas that, even 

though already identified as open problems, have been understudied. These research directions are 

discussed in the following. 

 

Nano-robots and biological robots 

One of the tenets of swarm robotics is the ability to design and control thousands of simple robots, 

achieving swarm-level complex tasks resulting from simple individual behaviours and numerous 

interactions. An aspect that can maximise the impact of the domain in the future is the exploitation of 

thousands of miniature robots, with sizes scaling down to millimetres and even micro- or nanometres. 

Such swarms could access small confined spaces (e.g., microfluidic channels as well as the human 

body), could manipulate microscopic objects (e.g., microplastics or individual cells) and self-organise to 

support localised treatments (e.g., targeted drug delivery). To date, research has only scratched the 

surface of a domain with a huge potential. However, downscaling the robot size brings about new 

challenges that need to be addressed for swarm robotics to be able to offer practicable solutions. Micro 
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and nano-robots are confronted with different physical laws than in the macroscopic scale, requiring 

novel models of collective behaviour. Also, integrating conventional ways of perception and action is 

extremely challenging, demanding a rethink of the strategies for designing and controlling such swarms. 

Indeed, current approaches to micro- and nano robots are not exploiting conventional hardware, but are 

rather made of active colloidal particles (Xie et al., 2019), soft-bodied (biological) robots (Kriegman et 

al., 2020), bacteria-powered nano-machines (Di Leonardo et al., 2010) and even controllable 

genetically-engineered organisms (Rabinowitch et al., 2014). Achieving and controlling collective 

behaviour in such systems will require novel paradigms, as the ability to precisely governing the 

individual behaviour will be forcedly limited. Hence, steering self-organisation can be more rewarding 

than attempting a direct control. 

 

Heterogeneity 

The homogeneity assumption still pervades research in swarm robotics: all robots are identical and all 

run the same control software, they are all replaceable and only the individual history of interactions 

with the (social) environment can lead to the expression of a somewhat specialised behaviour. This 

assumption stems from theoretical models of collective behaviour, which often simplify a complex 

phenomenon to gain in tractability. As a matter of fact, self-organisation in homogeneous systems has 

been often sufficient to explain experimental observations to a great degree (Camazine et al., 2001). 

However, individuals within natural swarms can be very different from each other, both physically and 

behaviourally, with individual personalities affecting the response to environmental and social cues 

(Jeanson & Weidenmüller, 2013). Heterogeneity is considered fundamental to grant collectives with 

flexibility of behaviour, adaptivity to new conditions, and resilience to external perturbations. All these 

features would benefit robot swarms, but heterogeneity is not exploited as much as it should. The 

already mentioned Swarmanoid project demonstrated one possible direction, by studying coordinated 

collective behaviours in physically heterogeneous groups of robots (Dorigo et al., 2013). Other powerful 

forms of collaboration allow initially-homogeneous robots to learn different behaviours, getting 
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specialised to tasks when this leads to group performance benefits (Ferrante et al., 2015). Taming the 

complexity of the self-organised behaviour displayed by heterogeneous entities is however still very 

challenging, as well as finding viable approaches to multi-agent learning (Busoniu et al., 2008). 

 

Decentralisation vs hierarchy 

From its very beginning, swarm robotics has adopted the self-organisation paradigm, where the swarm 

control is obtained via simple (stochastic) rules that define the way the robots interact with each other 

and with the environment without exploiting any form of centralised control or of global knowledge. 

One could however argue that in many cases centralised or hierarchical forms of control could make the 

problem of designing and controlling a robot swarm easier. The introduction of some form of 

hierarchical control might also be justified by the fact that hierarchies are observed in many animal 

societies where they often go side by side with self-organisation (Chase, 1980). Unfortunately, these 

approaches would require the introduction of machinery that would make the system vulnerable (single 

point of failure) and difficult to scale.  

 

The question of decentralisation vs hierarchy, or of how to integrate these two aspects, is currently 

understudied. A notable first step in this direction (Mathews et al., 2017) proposes to create hybrid 

systems where hierarchical control structures resulting from self-organising processes can appear on the 

fly in an ad hoc manner. This would be similar to what occurs in some wasp colonies where self-

organising processes lead to the formation of a linear hierarchy and the emergence of a single 

reproducing individual (Theraulaz et al., 1995).   Mathews et al. (2017) have created the 

infrastructure—middleware—that allows a robot swarm to autonomously switch from purely self-

organised control to hierarchical control and back. While experiments have demonstrated the feasibility 

of the approach, much needs to be done to understand how the rules that allow the creation of the 

hierarchical control structure should be designed as a function of the task that the robot swarm has to 

perform, and how the passage from purely self-organised to hierarchical control and back can be 
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activated as a function of the task and of the environment in which the robot swarm is acting. 

 

 

Phase transition and adaptability  

In a real-world environment, the main challenge faced by a swarm of robots is to adapt to unexpected 

events such as the presence of obstacles or changing atmospheric conditions (brightness, wind, rain). All 

these events may prevent the swarm moving forward or accomplishing some tasks. In these conditions, 

the swarm must collectively adapt its behaviour and automatically change its strategy. Such collective 

capabilities are observed in some species of group-living animals (swarms of midges, schools of fish, 

herds of sheep). In these species, the interactions between individuals give rise to group properties 

similar to those of a physical system close to a “phase transition” between two macroscopic states, 

resulting in an extreme sensitivity to changes in the behaviour of a small number of individuals 

(Attanasi et al., 2014; Muñoz, 2018). The reaction of a few individuals that have detected a change in 

the environment can then spread to all the other group members, allowing them to react efficiently to 

such disturbances such as a predator attack. Such collective adaptive capabilities do not only result from 

the particular form of interactions between individuals but also from a modulation of the relative 

intensities of these interactions (Calovi et al., 2015). The transposition of this type of properties in 

swarms of robots could significantly increase their level of autonomy and would be a promising line of 

research. 

 

Security 

The use of autonomous robots outside the lab will also introduce security issues. Robots need to be safe 

while doing their tasks, they should guarantee the privacy of the data they collect, and should also be 

resilient to external attacks by malicious users trying to get control. Such issues will be even more 

serious in the case of robot swarms (Higgins et al., 2009). Issues such as entity authentication, data 

confidentiality, data integrity, are amplified by the mere presence of potentially hundreds of robots 
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interacting with each other. Additionally, disruption in the working of the swarm might be caused by 

just a few malicious robots sneaked into the group (Higgins at al., 2009). Research in robot swarm 

security is still in its infancy. Initial work is investigating how traditional (e.g., cryptographic Merkle 

trees, Castello et al., 2019) and less traditional (blockchain, Strobel et al., 2020) approaches to security 

can be exploited either to add security layers or to be fully integrated in the control architecture of 

robots swarms. These initial works allow to address issues such as how to keep information in a swarm 

private (Prorok and Kumar, 2018; Castello et al., 2019), how to avoid disruption due to the presence of 

malicious robots (Strobel et al., 2018), and how to counter Sybil attacks (Strobel et al., 2020). Much 

research will be needed to extend these simple, proof-of-concept solutions so that they can be ported to 

large swarms of robots acting in the real world.  

 

Machine Learning and swarm robotics 

As of today, the only prominent use of machine learning in swarm robotics has been the exploitation of 

evolutionary computation techniques for the development of simple neural controllers driving the 

behaviour of individual robots in the swarm. However, recent advances in machine learning and in 

particular the availability of new deep learning techniques could be leveraged both as a means to design 

the swarm behaviour and to provide additional capabilities to individual robots to be shared within the 

swarm. So far there has been little appreciation of these studies within the swarm robotics community. 

Machine learning as a design methodology suffers from the problems associated with the automatic 

design of robot swarms (Francesca and Birattari, 2016), with the additional constraints given by online 

learning of behaviours by trial and error (Busoniu et al., 2008), with episodic rewards and coordination 

problems. Model-free approaches may be very demanding in terms of computational requirements, 

although they can be very powerful in handling the complex, unpredictable contingencies that 

characterise swarm behaviour. Model-based approaches could be valuable, as learning a model of the 

(current) collective behaviour could lead to an efficient design of the individual policies. Combination 

of the two are currently sought for in several domains, and could be relevant also for swarm robotics 
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research. Besides designing the swarm behaviour, machine learning and especially deep learning 

approaches could find space in swarm robotics research to provide advanced capabilities to individual 

robots that sustain the individual and collective behaviour. In this respect, it would be important to 

identify methods that can leverage the information available to the collective to support more efficient 

interpretation of the world. For instance, deep networks represent the state-of-the-art for image 

classification, a feature that is needed in many applications brought forth by robot swarms. By 

leveraging the presence of multiple robots observing the same scene, possibly from different 

perspectives and at different times, more accurate and computationally efficient solutions could be 

provided (Price et al., 2018; Magistri et al., 2019). Much work is needed to define the network 

architectures and learning paradigms to support swarm-level operations of this kind. 

Human-swarm interaction 

While the interaction with a single machine/robot is a very well-studied problem (Bartneck et al. 2020), 

interaction with a robot swarm opens completely new avenues. The main difficulty is given by the fact 

that, the swarm being self-organised, there is no clear entity with which a human could establish a 

communication link4. Human-swarm interaction will be necessary to provide the swarm information 

about goals to be achieved or tasks to be performed (Kolling et al., 2016, Brown et al., 2016). A swarm 

could be controlled indirectly by means of few user-driven robots embedded within the swarm. Recent 

research in several disciplines (Gautrais et al., 2004; Couzin et al., 2005; Calovi et al., 2015; 

Baronchelli, 2018) has shown that a minority of committed agents can determine the overall behaviour 

of a group. Similar mechanisms represent interesting means for the control of robot swarms, although 

they may introduce security challenges that must be dealt with, to avoid a few malicious robots taking 

control of the entire swarm. Alternatively, robot swarms could be controlled or steered directly by the 

user, and different ways have been proposed, such as through gestures (Podevijn et al., 2013; Nagi et al., 

2014) or EEG signals (Mondada et al., 2016). 
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Direct control of a swarm by a user is complicated by the fact that understanding what the swarm is 

doing might be very challenging due to the multitude of interactions happening within the swarm, which 

might be hard to ‘read’ for a human observer. Possible solutions might be built-in within the self-

organising mechanisms of the swarm, in a way to make the current state and goal of the swarm visible 

to users. Interfaces to swarm behaviours, possibly enabled by augmented reality, may collect and 

visualise information from the swarm, while models of the collective behaviour could be integrated in 

order to provide predictions that could support the user to take action (e.g., by issuing new commands to 

the swarm). The design of any human-swarm interaction solution will also require an understanding of 

the psychological effects induced on humans who interact with a robot swarm, in order to favour 

interaction modalities that reduce stress (Podevijn et al., 2016) and improve usability and trust (Nam et 

al., 2019).    

 

How future applications will guide research  

We are rapidly moving towards a society in which human beings will be more and more supported in 

their daily activities by robots. Soon robots will be everywhere and they will need to cooperate not only 

with humans but also with each other. It will therefore become of paramount importance to be able to 

program such robotic systems in a way that is secure, robust and flexible.  

 

With these considerations in mind, potential application domains for swarm robotics should be critically 

evaluated for the benefits that a swarm robotics approach can concretely bring into play. For instance, 

service robots may not come in a swarm, although coordination of activities and allocation of tasks 

performed by each robot can be decentralised and self-organised to some extent. Still, the specific task 

itself may not require coordination or collaboration among robots. Similarly, logistics (e.g., in large 

warehouses, see D’Andrea 2012), autonomous cars and smart mobility in general can surely benefit 

from the decentralised coordination strategies studied in swarm robotics. It is however unlikely that 

these applications can guide future swarm robotics research. Conversely, applications like precision 
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agriculture or infrastructure inspection and maintenance require dealing with an unstructured, 

unpredictable environment—often covering extensive areas—and can benefit from collaboration among 

robots in a swarm. For instance, early identification of the outbreak of diseases within a crop field 

requires information sharing among robots to make global patterns emerge from coupled local views, 

supporting suitable responses and better strategic planning. Similarly, a reliable identification of defects 

in a large infrastructure requires active search abilities that could be best implemented by means of 

swarms, both in terms of efficiency and accuracy. In this respect, future research should focus on 

collective perception strategies to make sense of complex features by means of information fusion 

among multiple, possibly heterogeneous, robots. At the same time, tailored intervention and 

manipulation abilities need to be devised (e.g., for harvesting fruits or for maintenance), opening to new 

opportunities for collaborative activities. 

 

The application of robot swarms is sought for by defence agencies worldwide, who find extremely 

appealing a system that cannot be easily shut down. A system that is fault-tolerant to external attacks 

can support operations in adversarial settings, especially when robots are replaceable and, to some 

extent, disposable. Here, however, the human component remains inevitably central. Hence, defence 

applications need to consider the human in the loop, and advanced human-swarm interaction strategies 

will be crucial for effective deployment. Also, security aspects need to be at the highest level to 

guarantee that robot swarms do not get out of control or maliciously seized. Similar aspects are 

fundamental in other application areas, such as civil protection, where the need to face natural disasters 

or anthropogenic hazards requires agile robots capable of dealing with emergency conditions, with no 

external infrastructure or reliable maps. Such applications set the bar very high, as robot swarms should 

be capable of guaranteeing the highest possible performance and reliability, because no victim should be 

left behind. 

 

Space missions—both with rovers for planet explorations and in-orbit satellites—introduce other 
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constraints on robotics applications that might be successfully addressed by swarm robotics. In space, 

the computational power of computers has to remain limited because of cosmic radiation burning 

modern CPUs. A swarm of robots of limited computational power might therefore be a better design 

choice than a single more powerful robot. Robots that are sent out in space cannot be easily repaired or 

substituted, which is well addressed by the swarm robotics focus on redundant systems where the failure 

of one of the robots does cause only a graceful degradation of the swarm performance. Finally, in space 

it might be extremely costly or even impossible to build an external infrastructure to support the 

coordination of robots, again a typical situation that robot swarm can effectively deal with. The great 

challenge brought forward by space applications is the necessary autonomy of the swarm system, which 

cannot rely on reliable and constant intervention from human operators.  

 

Finally, swarms of nano-bots might in the future become a new and powerful tool in precision 

medicine, making possible targeted interventions within the human body, such as minimally-invasive 

surgery or polytherapy delivery directly to cancerous cells. However, the coordination of huge numbers 

of robots with extremely limited computational and communication capabilities will stretch to the limits 

the swarm robotics approach and will require the development of new conceptual tools, let alone the 

development of microscopic hardware or bio-robotics devices (Sitti, 2017).  

 

Overall, the relationship between the requirements from potential application domains and future 

research challenges for swarm robotics is indisputable. We therefore envisage a close collaboration 

between researchers and the relevant stakeholders from the various application domains, who can 

provide concrete examples to challenge novel developments, and contribute to set the agenda of swarm 

robotics research in the years to come. 
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CONCLUSIONS 

The design and implementation of effective robot swarms is one of the greatest challenges that lie ahead 

for robotics, as well as one of the most promising research avenues, as acknowledged by Yang et al. 

(2018). In this perspective, we have briefly summarised the state of the art, and identified what we 

believe to be the most promising research directions and main open problems. Yet our overview is 

inevitably incomplete, because significant advances in swarm robotics will strongly depend on research 

carried out outside the field; in fact, advancements in many of the other grand challenges identified by 

Yang et al. (2018) will be decisive for the development of swarm robotics. For example, new materials, 

biohybrid solutions, new ways of storing and transmitting energy, could help address some of the 

current issues related to the hardware of robot swarms. The development of AI techniques, in particular 

of distributed learning algorithms that require limited computation and can work with the CPUs of small 

inexpensive robots, will allow robot swarms to gradually increase their autonomy. Swarms will have to 

ensure explainability, now a major issue for the whole field of robotics and artificial intelligence. In 

other words, the user will need to be able to understand the decision making of the swarm without a 

detailed knowledge of the underlying mechanisms—a paramount requirement to ensure the 

acceptability of robot swarms and to foster trust in them, hence creating the conditions for a massive 

real-world deployment. Even though many of these issues are being addressed more generally within 

the artificial intelligence field, their complexity might be increased by the high number of autonomous 

entities and by their numerous interactions with each other that are typical of swarm robotics systems.   

 

If these challenges are faced, we expect swarm robotics could successfully transition from laboratories 

to real-world applications within the current decade (see box 2: “Timeline of the swarm robotics 

research domain”), with the first deployments taking place in agriculture, infrastructure inspection and 

maintenance, and non-offensive military applications. The use of robot swarms as part of space missions 

could come next, and play a key role in the exploration of the Moon and Mars by 2040. The last—and 

more challenging—frontier would be medical applications such as drug delivery inside the body, that 
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require miniaturisation and advanced biocompatibility and where the first demonstrations could arrive 

by the mid- 21st century.  The successful deployment of robot swarms in these and other applications 

could pave the way for collective, bioinspired robotics to become a mainstay of engineering in the 

second half of the century, possibly establishing itself as the standard way of designing complex robotic 

systems. 

 

NOTES 

(1) As a matter of fact, there is practically no application domain—apart from vacuum cleaners—that 

provides fully autonomous solutions. 

(2) http://www.nasaswarmathon.com/  

(3) A notable exception is the ARGoS simulator (Pinciroli 2012), which has not however been adopted 

by the whole community yet.  

(4) It is interesting to note that research discussed above about introducing components of hierarchical 

control in a self-organised swarm can help provide a solution to this problem. 
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