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Good decisions, in design or operation stages, positively impact system performances and can prevent it form

suffering undesired scenarios and their consequences, in a uncertain environment. Using Robust Optimization (RO),

a so-called chance-constraint, here denoted as risk-constraint as it embeds the preferences of the decision maker with

respect to risk tolerance, can be enforced to ensure that the obtained solution of the decision problem is acceptable

in this regard. Yet, this solution will only be as good as the knowledge of the uncertain environment that is used in

the decision-making process. In this paper, we study the possibility for the decision-maker to refine its knowledge

of the system in its operating environment, through information collection. The concept of Value of Information

(VoI) is used to quantify potential improvements in decisions outcomes that may be achieved through a modification

of the state of knowledge and a reduction in uncertainty. In particular, using decisions that are conditioned on an

environment with reduced uncertainty, it is often possible to lower the level of risk for a given total operating cost (or

Value-at-Risk) or vice versa. Hence, in a wide sense, knowledge acquisition may represent a step towards adopting

a more robust attitude, with respect to risk, when making decisions.

Keywords: Value of Information, Robust Optimization, decision-making under uncertainty, chance-constrained

optimization, model uncertainty, Value-at-Risk.

1. Introduction

Decision-making under uncertainty, whether in
design or operation stages and for a complex prod-
uct or system, is an inherently risky endeavor. It
may prove hard to build a stochastic description
that is representative of such uncertainty, see e.g.
Cox Jr (2012). This is especially true for systems
which behavior is becoming ever more difficult to
model because of the increase in structural com-
plexity or in the diversity of interactions between
its constituting elements and with the external en-
vironment. Yet, decisions that determine system
performances and either prevent it from suffering
undesired scenarios and their consequences, or
fail to do so, are only as good and relevant in
practice, as the knowledge of the uncertain en-
vironment that is built into the decision-making
process from which there are computed.

In the framework of Robust Optimization
(RO) Mulvey et al. (1995), a chance-constraint
Charnes and Cooper (1959) can be enforced dur-
ing the search for a solution of the decision
problem. This mathematical scheme is used to
ensure that despite “known variations” of non-
controllable (i.e. uncertain) parameters, the ob-
tained solution guarantees that the system oper-
ates within acceptable boundaries. The prefer-
ences of the decision-maker regarding its degree
of tolerance for the probabilities of experiencing
the consequences of undesired scenarios, i.e. its
attitude towards risk, see e.g. Kaplan and Garrick

(1981); Bedford et al. (2001); Aven (2012), can be
embedded in this chance-constraint. Hence, it is
described here as a “risk-constraint” and associ-
ated to a robust solution of the decision problem.

However this solution is, by construction, de-
pendent on the knowledge of the decision-maker
with respect to the uncertain parameters of the
problem. In particular, if the decision-maker
wishes to shield himself from undesired outcomes
on which there is little information or against a
wide range of uncertain scenarios, the solution
might prove quite costly.

In this paper, we study the possibility for the
decision-maker to refine its knowledge and un-
derstanding of the behavior of the system in its
operating environment, through information col-
lection, otherwise conceivable as knowledge ac-
quisition, before coming to a decision.

The concept of Value of Information (VoI)
Raiffa (1961); Howard (1966), built on core prin-
ciples from both decision theory and Bayesian
theory, is used here to quantify potential improve-
ments in decisions outcomes that may be achieved
through a modification of the state of knowledge
and a reduction in uncertainty, see also recent
applications in e.g. Pozzi and Der Kiureghian
(2011); Straub (2014); Zonta et al. (2014);
Memarzadeh and Pozzi (2016); Fauriat and Zio
(2018). In the context of this paper, it is proposed
to compute VoI by comparing chance-constrained
optimization results from both unconditional and
conditional (on the collected information) descrip-
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tions of the uncertain environment of the decision
problem.

The paper is organized as follows. In section 2,
the concept of RO is discussed, with the objective
of making risk-constrained decisions in an uncer-
tain environment. The notion of VoI is then intro-
duced in section 3 and its use for evaluating the
benefits of uncertainty reduction, or knowledge
acquisition, is considered in the context of RO
problems. A simple example made of a network
with a supply and demand planning problem is
presented in section 4 to illustrate the proposed
methodological framework employing VoI for ro-
bust decision-making. Using the previous exam-
ple, the interest of this methodological framework
is discussed with more details in section 5, along
with the difficulties that have to be addressed to
deploy it. Conclusions are summarized in section
6.

2. Robust or ‘risk-constrained’

optimization

2.1. Problem solving and

decision-making

For most engineering or management applica-
tions, dealing with uncertainty, non-controllable
factors and risk, whether for the design or the
operation of a given product or system, is a crucial
part of the issue of determining an appropriate
course of action. Multiple perspectives can be
adopted in that regard, from operation research
Mulvey et al. (1995), to risk analysis and man-
agement Bedford et al. (2001); Aven (2012), to
statistical decision theory Raiffa (1961); Savage
(1972); Berger (2013). Under that last framework,
determining such a course of action, otherwise
known as making a decision, can be cast mathe-
matically as the resolution of a loss minimization
problem (or equivalently a utility maximization
problem), i.e. an optimization problem, generally
with both decision parameters a ∈ A (action
space) and random parameters θ ∈ Θ (parameter
space).

2.2. Risk and decision-making

As the definition of risk and robustness may not
be universally accepted, let us start by precising
the position adopted here.

In Kaplan and Garrick (1981), risk is defined as
the set of triplets R = {sj , pj , xj} composed of
j = 1, ..., N scenarios sj of probability pj and as-
sociated to a consequence quantified by a numeri-
cal damage xj . In Savage (1972), in decision ma-
trices, or so-called “small world representations”,
the decision-maker may choose between different
course of actions ai which will produce differ-
ent consequences, let us simplify by associating
them a numerical value through a loss function

L(θj , ai), for different possible realizations of the
state of the world θj . In this latter framework, one
may also think of risk description as the specifica-
tion of a set of associations between consequences
and their related probability of occurrence. Let us
note that this set of associations, or in mathemat-
ical terms, this lottery {pj , L(θj , ai)}j=1,...,N , is

fully determined once a course of action ai has
been fixed.

From that point on, there is no universal so-
lution regarding which course of action (which
lottery) is preferable. Using the example of fi-
nance terminology, some decision-makers, gen-
erally described as risk-adverse, may prefer de-
cisions (lotteries) that tradeoff a lower average
payoff for a lower possibility of experiencing sce-
narios with heavy losses, or vice versa for risk-
seekers. In simple terms, in the presence of un-
certainty, adopting a position towards risk means
selecting an acceptable lottery, among all possi-
ble choices (possibly uncountable), in regards of
one’s own preferences.

Two popular decisions rule are considered in
what follows. The Maximum Expected Utility
(MEU) rule consists in selecting the action cor-
responding to the highest expected payoff:

a∗ = argmax
a∈A

(−Eθ[L(θ, a)]) (1)

where U = −L, as loss can be seen as negative
utility and Eθ[.] is the mathematical expectation
over all possible states of the world. The minimax,
or worst-case rule (for a finite number of scenar-
ios) may yield a solution with a lower expected
payoff but which is generally better protected
against heavy losses:

a∗ = argmin
a∈A

(max
θ∈Θ

L(θ, a)) (2)

2.3. Risk-constrained or robust decisions

According to the perception of the notion of ro-
bustness that is discussed in Mulvey et al. (1995),
an intermediate rule between both alternatives
above is, for example, to control the probabil-
ity of occurrence, or risk level α, of scenarios
that are deemed unacceptable. To the this end,
a chance-constraint is enforced and the problem
is framed as a chance-constrained optimization
Charnes and Cooper (1959):







mina∈A (Eθ[L(θ, a)])
subject to

Pr[g(θ, a) < 0] < α

(3)

where g(θ, a) < 0 is a constraint that “should
not be violated” with a probability superior to α.
Thus, a “robust” solution may be conceived as a
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compromise between a search for a sufficiently
low average cost and a limitation of the occurrence
(or related probability), given the non-controllable
parameters of the problem, of constraint violations
that are often synonymous with penalties. One
may also speak of solutions that are “feasible most
of the time”.

Without dwelling too much into the mathemat-
ical details of RO, as it is not the core purpose
of this paper, a possible illustration of different
decision rules is given on Figure 1. In particular,
for the example of a RO problem based on a single
decision parameter a ∈ R and expressing the so-
called α − quantile of the loss distribution, or
Value-at-Risk α, qα(a) = VaRα(a) defined by:

Pr[L(θ, a) > VaRα(a)] = α (4)

results corresponding to α = 1% and α = 5% are
illustrated on Figure 1 (green dotted lines).

Fig. 1. Illustration of a RO problem. Solutions associated to

different decision rules (different lotteries) are given (vertical

lines), namely for MEU, Minimax, VaRα. The thick blue

line gives the expected loss. The thick red line represents a

worst-case scenario. The shaded area is where most of the

probability distribution of loss resides (for different values of

a, i.e. different lotteries).

If a closed-form expression can be obtained
for VaRα(a), as is the case for the simple exam-
ple presented in section 4, a decision rule may
be based on minimizing such quantity, thus giv-
ing some control about the maximal amount one
agrees to pay, with probability 1−α. In this paper,
the minimization of VaRα is considered as a risk-
constrained optimization process and this decision
rule is selected for the discussion on knowledge
improvement in what follows.

3. Uncertainty reduction and Value of

Information

3.1. Value of Information (VoI)

The concept of Value of Information (VoI) Raiffa
(1961); Howard (1966) is built on core principles
from both decision theory and Bayesian theory.
Simply put, the idea is to provide a rational ap-
proach to attach a value to a piece of informa-
tion, depending on its ability to “guide our deci-
sion” Pozzi and Der Kiureghian (2011) to achieve
“better outcomes”. VoI can be used to evaluate
the benefit of reducing uncertainty in a decision-
making context.

Formally, VoI is computed as the difference
between the outcomes, as valued by a utility mea-
sure, that are achieved with and without additional
information. If actions are selected using a MEU
rule, VoI may be computed using:

VoI = min
a

Eθ [L(θ, a)]−Ez

[

min
a

Eθ|z [L(θ, a)]
]

(5)
where Eθ|z[.] is the mathematical expectation on

the conditional distribution θ|z and z is a col-
lected piece of information, which, once known,
“restrains” the possible variation of θ and thus
reduces uncertainty. With explicit formulation of
all involved distribution functions, it reads:

VoI = min
a∈A

∫

L(θ, a)f(θ)dθ

−

∫
(

min
a∈A

∫

L(θ, a)f(θ|z)dθ

)

f(z)dz (6)

The first term of equation (5) is the average
outcome of the optimal unconditional decision, or
said differently, the average outcome associated to
the best decision in the MEU sense, given the prior
knowledge on the state of the world, expressed
through f(θ). The second term corresponds to
the average, over f(z), of all optimal conditional
decisions given one collected observation z. Of-
ten, a more “tailored” course of action can be se-
lected, provided it is available in the action space
A, for an environment with reduced uncertainty,
expressed through f(θ|z). If so, there is a po-
tential for gain, on average, in taking decisions
conditionally rather than based solely on the prior
knowledge. The VoI metric is an evaluation of that
potential for gain and improvement in decision
outcomes that is achievable through a reduction
of uncertainty. More details can be found in e.g.
Raiffa (1961).

On Figure 1, the two yellow lines illustrate con-
ditional expected losses for two possible realiza-
tions z1 and z2 of the collected observation. The
two vertical dotted yellow lines determine two
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conditional decisions MEUcond1 and MEUcond2
that, taken on average, i.e. for multiple possible
values of z ∼ f(z), may correspond to a lower
expected loss.

3.2. Use of VoI for robust

decision-making

Often, VoI is used as a decision-support met-
ric and compared against the cost of collect-
ing information, for example, through a struc-
tural health monitoring (SHM) device or proce-
dure, see e.g. Pozzi and Der Kiureghian (2011);
Zonta et al. (2014), or through planned inspec-
tions, see e.g. Fauriat and Zio (2018). Naturally,
information is only “worth collecting” if its col-
lection cost does not exceed its benefits.

In this paper, we propose to see VoI as a means
to question the robustness of our decision-making
process and inquire about the relevance of refining
our knowledge before making a decision. In par-
ticular, we compare the robust solutions, for any
given risk level α, that are both obtained with and
without the collection of additional information,
i.e. with or without a reduction of uncertainty.
If qαθ [.] = VaRα[.] is used to describe the α −
quantile of the loss distribution, where the sub-
script θ recalls the dependency on the uncertain
environment, one may compute VoI with:

VoI = min
a

qαθ [L(θ, a)]− Ez

[

min
a

qαθ|z [L(θ, a)]
]

(7)
If robustness is perceived as linked to the ability

of the decision-maker to control the risk level
associated to different possible courses of action,
undertaken in an uncertain environment, i.e. in
the presence of non-controllable parameters, then
making sure that the decision is based on the ap-
propriate body of knowledge is synonymous with
an increase in robustness, that is, an increase on
the control of risk. As a concrete illustration, note
that if optimal conditional outcomes correspond to
lower cost values than the optimal unconditional
outcome, it may be possible to trade such potential
for gain for a tightening of risk control (i.e. a gain
robustness in practice).

4. Application example

4.1. Supply and demand network

planning

To illustrate the application of VoI to a simple RO
problem, let us consider the following example.
A simple transportation network is composed of
three lines connecting two end destinations. On
each line, there is a level of demand for trans-
portation that cannot be known exactly at planning
time. The operator of the network can affect

resources in the form of transportation units, e.g.
trains, on each one of the different lines.

For this simple problem, the decision pa-
rameters are the number of transportation units
a = (a1, a2, a3) to supply on each line, while the
uncertain parameters are the level of the demand
on each line θ = (d1, d2, d3). Each demand
value follows a Gaussian distribution with known
parameters di ∼ N(µi, σi) for i = 1, ..., 3.

In this simple case, a closed-form expression
can be obtained for the α − quantile or Value-at-
Risk qαθ = VaRα:

qαθ (a) = ct(a1 + a2 + a3) + cb
1− λa1+a2+a3

1− λ

+ νmin[−Φ−1(1− α1/3,
a1 − µ1

σ1

), 0]

+ νmin[−Φ−1(1− α1/3,
a2 − µ2

σ2

), 0]

+ νmin[−Φ−1(1− α1/3,
a3 − µ3

σ3

), 0] (8)

where ct is the cost of the affectation of one
transportation unit on any line, cb is the cost of
buying one transportation unit and λ is the expo-
nential increase in investment cost when buying
units, ν is a proportional penalty term for each
extra unsatisfied units of demand. Φ−1(u, v) is
the inverse cumulative density function of the
Gaussian distribution at quartile u and with v

as a normalized variable and Φ−1(1 − α1/3, v)
gives the number of unsatisfied units in excess of

quartile (1 − α1/3) for one of the three demand
distributions, taken independently, that if summed
for the three distributions then “cover” quartile α
for the total cost on all lines.

Details of the illustration example are not cru-
cial as many different applications cases could
be considered. Let us instead insist on the fact
that here, the problem is made computationally
friendly thanks to the closed-form expression of
the Value-at-Risk α in (8).

On Figure 2 we display an illustration of the
realization of random cost values L(θj , a) and
of VaRs corresponding to different α, for a pro-
portional penalty and for the cost parameters de-
scribed above. When varying a2, fixed values are
taken for a1 and a3, namely a01 and a03.

4.2. Application and computation of VoI

The computation of VoI, as defined in (7) can be
performed based on (8) and through the use of a
simple optimization scheme, as qαθ (a) and qαθ|z(a)

happen to be convex, see Figure 2.
In order to study the effect of knowledge acqui-

sition and uncertainty reduction on the outcome
of RO-based decisions, multiple conditional opti-
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Fig. 2. Illustration of resources and penalty costs along the

a2 axis. This figure is the equivalent of Figure 1 for the

example considered here.

mizations (linked to collected observations z) are
carried out.

For each line i = 1, ..., 3, assuming that VoI is
calculated in relation with information collected
on one line at a time, µz,i = zi is sampled directly

from zi = N(µi, σi) and σz,i = κσi, where κ de-
termines the uncertainty reduction factor. Those
conditional parameters (µz,i, σz,i) are then substi-
tuted in the VaR expression in (8), thus yielding
qαθ|z(a). Also, we may write:

di|zi ∼ N(zi, κσi) (9)

The lower κ is, the less uncertainty we have on
the true value of the demand di, prior to making a
decision. The value κ is an embodiment of the
quality of our information collection or knowl-
edge acquisition process.

Sampling-based numerical integration with
N = 1000 repetitions is carried out to simulate
information collection, conditional RO and even-
tually estimation of VoI. Results for the different
conditional optimizations are given on Figure 3.
As a general illustration, here for this simple prob-
lem, it is possible to save from 30 to 55 percent
on operation and investment costs, if uncertainty
on d2 is reduced by 90%, while conserving the
same level of risk control α. Simply put, one
may remain just as conservative but with a lower
operation cost by taking advantage of knowledge
acquisition (which cost will also have to be taken
into account).

5. Further analysis and discussion

5.1. Variaton of VoI with risk coverage

and uncertainty reduction

The computation of VoI is repeated for varying
level of risk (with fixed κ = 0.1), i.e. associated
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Fig. 3. Computation of unconditional and conditional opti-

mal VaRα for different risk levels α and computation of VoI.

Results are given here for information collected on line 2, i.e.

on d2, with a reduction of uncertainty of 90%, i.e. κ = 0.1

to more or less conservatives or risk-adverse atti-
tudes, and displayed on Figure 4.
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gains, as measured by relative VoI, for a varying level of risk

coverage (top figure). For example, a 0.5 value on the top

figure corresponds to a 50% reduction of the cost (VaR), with

respect to the unconditional reference.

It is seen that, the more one wants to be con-
servative, the more interest their is in reducing un-
certainty before making the decision. Evidently,
to shield oneself against more scenarios (higher
risk coverage), planning and investment costs are
naturally higher, see bottom part of Figure 4.

The computation of VoI is also repeated for
varying level of uncertainty reduction (with fixed
α = 0.95), i.e. associated to more or less effective
information collection or knowledge acquisition
processes, and displayed on Figure 5.

As can be expected, the more one manages to
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reduce uncertainty before coming to a decision,
the more conditional decisions will be preferable,
as they are generally more “tailored” to the true
situation, to unconditional one, thus driving VoI
upward.

5.2. General remarks on VoI and robust

attitudes

VoI, as the computed expected difference between
the outcomes of unconditional and conditional
decisions, is a decision-support metric to guide
information collection. Seen from a purely mathe-
matical perspective, it may be viewed as a heuris-
tic in the context of a large scale optimization
problem where collecting information before de-
ciding, rather than acting directly, may yield better
outcomes. As information collection may itself
generate a cost, this large scale problem involves
a tradeoff between information collection and ac-
tion, a so-called exploration versus exploitation
tradeoff, see e.g. Russell and Norvig (2016).

Seen from the perspective of statistical deci-
sion theory, one may also call it a stopping prob-
lem. No matter how the body of knowledge on
which any engineering decision may be based is
obtained, enriching it through testing, modeling,
learning, has to be considered and the final quality
of that body of knowledge has to be questioned,
up to a certain point, which is hard to determine.
VoI is a possible tool for that purpose.

Generally speaking, improved knowledge on
the uncertain environment, insofar as its acquisi-
tion cost does not exceed its benefit or if such
added cost may be traded off for a less risky
lottery, is a crucial ingredient for increased robust-
ness, that is, better control on risk or diminished
sensitivity to non-controlled parameters.

6. Conclusion

In this paper, it has been proposed to use the
concept of Value of Information (VoI) to evaluate,

based on the comparison of unconditional and
conditional outcomes (more precisely Value-at-
Risk) of Robust or risk-constrained Optimization
(RO), possible gains, either in terms of cost or
in terms of risk control, that may be achieved if
a reduction of uncertainty is performed before a
decision is made.

In refining knowledge and deciding condition-
ally, provided it is possible for the considered
application, the decision-maker may increase ro-
bustness in the sense of increasing its control on
risk. In particular, it has been seen that the more
conservative (risk-adverse) one wants to be, the
more valuable it is to reduce uncertainty before
deciding.

VoI represents a helpful decision-support met-
ric to elaborate a tradeoff between costly knowl-
edge improvement and lowered operation cost or
increased control on risk. The question on when
to stop questioning and trying to improve the qual-
ity of the body of knowledge on which complex
decisions may be based, whether it implies more
testing, more modeling efforts or more domain
specific understanding, is assuredly a very difficult
mathematical one. The objective of the proposed
framework is to help addressing it. Then and
necessarily, any particular answer, involving the
aforementioned tradeoffs, namely exploration ver-
sus exploitation, risk versus expected reward, will
be dependent on the considered application.

In practice and in continuation of the concep-
tual discussion proposed in this paper, computa-
tion of VoI in the context of RO, as an imbrication
of stochastic optimization and numerical integra-
tion schemes (double-loop problem), is a serious
computational challenge. Additionally the resolu-
tion of the RO problem itself is a serious difficulty
for many applications, e.g. for complex systems
with decision vectors of large dimension, or for
time-varying problems with sequential decision-
making involved. Such difficulties constitute per-
spectives of the present work.
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