
HAL Id: hal-03362759
https://hal.science/hal-03362759v2

Preprint submitted on 23 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

POISSON-ORLICZ NORM AND INFINITE ERGODIC
THEORY

Emmanuel Roy

To cite this version:
Emmanuel Roy. POISSON-ORLICZ NORM AND INFINITE ERGODIC THEORY. 2023. �hal-
03362759v2�

https://hal.science/hal-03362759v2
https://hal.archives-ouvertes.fr


POISSON-ORLICZ NORM AND INFINITE ERGODIC

THEORY

EMMANUEL ROY

Abstract. Urbanik’s theorem for a Poisson process on an infinite mea-
sure space (X,A, µ) relates integrability of stochastic integrals to a par-
ticular Orlicz function space LΦ (µ) on which the L1-norm of the Pois-
son process induces a norm (called Poisson-Orlicz in the sequel) that is
shown to be equivalent to the classical gauge and Orlicz norms.

We obtain a full characterization of stochastic integrals using differ-
ence operators that, together with a simple duality argument, allows to
derive Urbanik’s theorem as well as an optimal inequality between the
Orlicz and the Poisson-Orlicz norm.

In a second part, we show that the Poisson-Orlicz norm plays a role in
infinite Ergodic Theory where it is seen as an alternative to the L1-norm
to identify several dynamical invariants that the latter fails to identify.
We also show that, whereas the L1-norm fully characterizes exact en-
domorphisms (Lin’s theorem), Poisson-Orlicz norm fully characterizes
remotely infinite endomorphisms.

1. Introduction

1.1. The context: Integrability of stochastic integrals, Urbanik’s

theorem. Let (X,A, µ) be a non-atomic infinite measure Borel space. To
this space, we can always associate a probability space (X∗,A∗, µ∗) (Section
2.1) that naturally supports a Poisson point process with intensity µ. This
space can be considered as a companion space to (X,A, µ) that offers a
probabilistic point of view to this infinite measure object. Our starting
point is the observation that some elementary integrability properties on
(X,A, µ) are seen through integrability properties of the so-called stochastic
integrals (Section 2.3) with respect to the Poisson point process seen as
a random element of (X∗,A∗, µ∗), it can be formulated this way: Which
functions f ∈ L0 (µ) can be integrated against the Poisson point process ?
This question is well understood (see [12] for example): upon compensating
this point process, a stochastic integral I (f) is well defined if and only f
satisfies

∫
X f2 ∧ 1dµ < +∞. It happens that the set

Lχ (µ) :=

{
f ∈ L0 (µ) ,

∫

X
f2 ∧ 1dµ < +∞

}
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is a so-called generalized Orlicz linear space (see [15], page 400). It illus-
trates the following idea: some function spaces over (X,A, µ) have a very
natural interpretation in terms of Poisson space. This idea culminates when
looking at L2 (µ) (Section 3) since we have the equivalence

I (f) ∈ L2 (µ∗) ⇐⇒ f ∈ L2 (µ) ,

and, setting I1 (f) := I (f)− Eµ∗ [I (f)], we have

‖I1 (f)‖L2(µ∗) = ‖f‖L2(µ) .

This has tremendous consequences as it yields the decomposition of L2 (µ∗)
as the Fock space over L2 (µ) and this plays a great role in quantum physics,
stochastic geometry, Poisson-Malliavin calculus, etc... Less neglected and
our main focus in this paper is the integrable case (Section 4): Letting Φ be
defined on R+ by

x 7→

{
x2 if x ≤ 1

2x− 1 if x > 1
,

Φ is then a so-called Young function of the Orlicz space LΦ (µ)

LΦ (µ) :=

{
f ∈ L0 (µ) ,

∫

X
Φ (|f |) dµ < ∞

}

that turns to be a Banach space when endowed with one of the two natu-
rally defined equivalent norms, the gauge norm NΦ or the Orlicz norm ‖·‖Φ
associated to Φ. It can then be verified that

I (f) ∈ L1 (µ∗) ⇐⇒ f ∈ LΦ (µ) ,

and we have the remarkable result of Urbanik that we rephrase in our
context:

Theorem 1. (Urbanik, [18]) The formula

‖f‖∗ := ‖I1 (f)‖L1(µ∗)

defines a norm on LΦ (µ) that is equivalent to the gauge or Orlicz norm.
In particular

(
LΦ (µ) , ‖·‖∗

)
is a Banach space.

The Young function defining LΦ (µ) is highly non-unique and so are the
gauge or Orlicz norms, that is, replacing Φ by another appropriately chosen
Young function would lead to another equivalent gauge or Orlicz norm on
the same space LΦ (µ). In contrast, ‖·‖∗ only depends on the measure µ, we
propose to call this norm the Poisson-Orlicz norm.

1.2. A characterization of stochastic integrals, a proof of Urbanik’s

theorem with an optimal bound. Our first result consists into giving a
complete characterization of stochastic integrals (Theorem 15) by means of
difference operators (which is a popular tool used in the quantum physics
usage of Poisson processes) that is the full generalization of a result in [8]
that was restricted to the L2-case and might have an interest on its own.
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As a nearly immediate consequence, we get the “Banach space part” of
Urbanik’s theorem. The equivalence of norms being derived by very simple
duality considerations, leading to an optimal inequality: for any f ∈ LΦ (µ),

‖f‖∗ ≤ ‖f‖Φ .

We observe also that from the general theory of Orlicz space ([15]), for
any f ∈ LΦ (µ),

‖f‖Φ ≤ 2NΦ (f)

that therefore yields
‖f‖∗ ≤ 2NΦ (f) ,

improving a result of Marcus and Rosinski ([11]) that obtained

‖f‖∗ ≤ (2.125)NΦ (f) .

1.3. Poisson-Orlicz norm and infinite Ergodic theory. We then turn
to Ergodic Theory, adding a measure preserving transformation T on (X,A, µ)
(and the corresponding T∗ on (X∗,A∗, µ∗)) to the picture (Section 2.2). Our
aim is to show the interest of the Poisson-Orlicz norm within infinite Ergodic
Theory allowing to characterize some of the main dynamical invariants.

1.3.1. L1-Birkhoff sums convergence in infinite measure. We recall this clas-
sical fact: if (X,A, µ, T ) is an ergodic dynamical system then, whereas the
Birkhoff sums, 1

n

∑n
k=1 f ◦ T k (x), associated to any f ∈ L1 (µ) converge

pointwise to 0 as n tends to +∞ for µ-a.e. x ∈ X (see [6]), the convergence
cannot hold for all f in L1 (µ) with respect to ‖·‖1. The same result occurs
when we replace the ergodicity requirement by the absence of absolutely con-
tinuous T -invariant probability measure. As such the

(
L1 (µ) , ‖·‖1

)
-isometry

T doesn’t belong to the class of “mean ergodic operators”:

Definition 2. (see Section 8.4, page 136 in [5]) Let ϕ be a continuous linear
operator defined on a Hausdorff topological vector space H. ϕ is said to be
mean ergodic if, for any h ∈ H, 1

n

∑n
k=1 ϕ

kh converges as n tends to +∞.

In contrast, replacing
(
L1 (µ) , ‖·‖1

)
by
(
Lp (µ) , ‖·‖p

)
, 1 < p < ∞, T

becomes a mean ergodic operator and one has:

Theorem. The dynamical system (X,A, µ, T ) has no absolutely continuous
T -invariant probability measure if and only if, for every f ∈ Lp (µ):

1

n

n∑

k=1

f ◦ T k →‖·‖p
0,

as n tends to +∞.

The fact that T is a mean ergodic operator on
(
Lp (µ) , ‖·‖p

)
, 1 < p < ∞,

follows, for example, by the fact that they are, unlike
(
L1 (µ) , ‖·‖1

)
, reflexive

spaces, by a result due to Lorch (1939).
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Let us illustrate another instance where ‖·‖1 can’t help in identifying an-
other invariant:

Definition. (X,A, µ, T ) is of zero type if for every sets A and B in Af :

µ
(
A ∩ T−nB

)
→ 0

as n tends to +∞,
We recall this classical result:

Theorem. (Blum-Hanson, [3]) Let (Ω,F ,P, S) be a probability measure-
preserving dynamical system and let 1 ≤ p < ∞. Then (Ω,F ,P, S) is mixing
if and only if, for every strictly increasing sequence {nk}k∈N of integers and
every F ∈ Lp (P):

1

n

n∑

k=1

F ◦ Snk →‖·‖p
EP [F ]

as n tends to +∞.

As shown in [7], replacing (Ω,F ,P) by an infinite-measure space, “mixing”
by “zero type” and the limit by 0, then the theorem holds for 1 < p < ∞ but
fails of course again for p = 1.

1.3.2. ‖·‖∗ as an intrinsic alternative to ‖·‖1. Replacing ‖·‖1 by ‖·‖∗, we are
then able to prove (Theorem 26):

Theorem. The dynamical system (X,A, µ, T ) has no absolutely continuous
T -invariant probability measure if and only if, for every f ∈ L1 (µ) (or f ∈
LΦ (µ)):

1

n

n∑

k=1

f ◦ T k →‖·‖
∗
0

as n tends to +∞.

And (Theorem 28):

Theorem. The dynamical system (X,A, µ, T ) is of zero type if and only
if for every strictly increasing sequence {nk}k∈N of integers and every f ∈

L1 (µ) (or f ∈ LΦ (µ)):

1

n

n∑

k=1

f ◦ T nk →‖·‖
∗
0

as n tends to +∞.

Thus ‖·‖∗ helps to get the “correct rate” for the above convergence to
characterize these two dynamical invariants.

Then, mimicking the construction of the transfer operator T̂ on L1 (µ) ob-

tained as the predual operator of T acting on L∞ (µ), we get an operator T̂P

acting on LΦ (µ) (Definition 33) and we show that not only does it preserve

L1 (µ), but it coincides with T̂ on it (Proposition 34).
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We now need to recall these two other definitions (see [7]) to explain our

results involving the behavior of T̂ relatively to ‖·‖1 and ‖·‖∗.

Definition. (X,A, µ, T ) is said to be

• remotely infinite if ∩n≥0T
−nA contains only sets of zero or infinite

µ-measure.
• exact if ∩n≥0T

−nA = {∅,X} mod. µ.

In particular, as µ (X) = +∞, we have the chain of implications:

exact =⇒ remotely infinite =⇒ zero type =⇒ absence of a.c. T -invariant measure.

Set L1
0 (µ) :=

{
f ∈ L1 (µ) ,

∫
X fdµ = 0

}
. Lin showed the following char-

acterization of exactness:

Theorem. ([9]) The dynamical system (X,A, µ, T ) is exact if and only if
for every f ∈ L1

0 (µ): ∥∥∥T̂ nf
∥∥∥
1
→ 0

as n tends to +∞.

Then, adapting the rate with ‖·‖∗ we get (Theorem 39):

Theorem. The dynamical system (X,A, µ, T ) is remotely infinite if and
only if for every f ∈ LΦ (µ):

∥∥∥T̂ n
Pf
∥∥∥
∗
→ 0

or equivalently for every f ∈ L1
0 (µ) (or f ∈ L1 (µ))
∥∥∥T̂ nf

∥∥∥
∗
→ 0

as n tends to +∞.

2. Background on the Poisson space and stochastic integrals

2.1. Poisson space. Throughout this paper (X,A, µ) is a non-atomic in-
finite Borel space, that is, measurably isomorphic to the real line endowed
with Borel sets (for the usual topology) and Lebesgue measure.

We recall a possible definition of the Poisson space (also called Poisson
measure or Poisson point process) (X∗,A∗, µ∗) over (X,A, µ):

• X∗ is the collection of measures of the form ν :=
∑

i∈I δxi
, xi ∈ X,

I countable.
• A∗ := σ {N (A) , A ∈ A} where N (A) is the map ω ∈ X∗ 7→ ω (A).
• µ∗ is the only probability measure such that, for any k ∈ N, any col-

lection A1, . . . , Ak of pairwise disjoint sets in Af , the random vari-
ables N (A1) , . . . , N (Ak) are independent and Poisson distributed
with parameter µ (A1) , . . . , µ (Ak) respectively.
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It can be checked out that, once A∗ is completed with respect to µ∗, up to
a negligible set, the Poisson space becomes a Lebesgue probability space (a
standard Borel space with the completion of the Borel σ-algebra). In other
words, it is a “nice” probability space.

2.2. Poisson suspension. If T is an endomorphism of (X,A, µ) then the
map T∗ defined by

ω ∈ X∗ 7→ ω ◦ T−1,

is an endomorphism of (X∗,A∗, µ∗).
The dynamical system (X∗,A∗, µ∗, T∗) is the Poisson suspension over the

base (X,A, µ, T ) and we can present the most basic ergodic results, obtained
by Marchat ([10]):

Theorem 3. Let T be an automorphism of (X,A, µ).

• (X∗,A∗, µ∗, T∗) is ergodic (and weakly mixing) if and only if (X,A, µ, T )
doesn’t possess any T -invariant set of positive and finite µ-measure,
or equivalently, if there is no absolutely continuous T -invariant prob-
ability measure.

• (X∗,A∗, µ∗, T∗) is mixing if and only if (X,A, µ, T ) is of zero type.

In particular, as we suppose µ infinite, (X∗,A∗, µ∗, T∗) is ergodic as soon
as (X,A, µ, T ) is.

Remark 4. Most references on Poisson suspensions deal with automorphisms
(see for example [16]) however Zweimüller ([19]) dealt with endomorphisms
and proved that the natural extension of the Poisson suspension over some
system is the Poisson suspension of the natural extension of this same system.
The above theorem is thus valid for endomorphisms as well.

2.3. Stochastic integrals. In the following, depending on the context,
when dealing with the integral of a function g with respect to a measure
ρ on the space X, we’ll use the following equivalent notation:

•
∫
X g (x) ρ (dx)

•
∫
X gdρ

• ρ (g)

However, we’ll stick to the probabilistic notation Eµ∗ [F ] for the expectation
of a random variable F on the probability space (X∗,A∗, µ∗).

We detail the notion of stochastic integral in the Poisson setting whose
complete construction can be found in ([12]).

The starting point is the following formula readily available from the def-
inition: for any A ∈ Af

Eµ∗ [N (A)] = µ (A) ,

This allows to safely define such quantity as N (f) on X∗ for an L1 (µ)-
function f on (X,A):

N (f) : ω 7→ ω (f) ,
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at least for µ∗-a.e. ω ∈ X∗.
Indeed, if f ∈ L1 (µ), using standard monotone approximation arguments,

N (|f |) is easily proven to be in L1 (µ∗) and satisfies:

Eµ∗ [N (|f |)] = µ (|f |) .

Therefore, for any f ∈ L1 (µ), N (|f |) is finite µ∗-a.e. and thus f is ω-
integrable for µ∗-a.e. ω ∈ X∗ and we have:

(2.1) Eµ∗ [N (f)] = µ (f) .

Observe that replacing f by some function f̃ such that f = f̃ µ-a.e. yields

two random variables N (f) and N
(
f̃
)

that are equal µ∗-a.e..

We define, for any f ∈ L1 (µ)

(2.2) I1 (f) := N (f)− µ (f) .

It is a centered and integrable random variable.
It is however possible to get further. Set χ (x) = x2∧1, x ≥ 0 and consider

the generalized Orlicz space (see [15], page 400):

Lχ (µ) :=

{
f ∈ L0 (µ) ,

∫

X
χ (|f |) dµ < +∞

}
.

Then the stochastic integral I (f), for f ∈ Lχ (µ), is defined as

I (f) := lim
ǫ→0

N
(
f1|f |>ǫ

)
− µ

(
f1|f |≤11|f |>ǫ

)

= lim
ǫ→0

I1

(
f1ǫ<|f |≤ 1

ǫ

)
+ µ

(
f11<|f |≤ 1

ǫ

)
,

the limit taking place in µ∗-measure.

Remark 5. Pay attention to the fact that I is not linear, nevertheless we
have:

I (αf + g) = αI (f) + I (g) + c

for some constant c depending on α, f and g.
In particular, we have

I (f) = I (Ref) + iI (Imf) + d

for some constant d depending on f .
However, the effect of an endomorphism doesn’t involve the addition of a

constant, thanks to the fact it preserves the measure:

I (f) ◦ T∗ = lim
ǫ→0

N
(
f1|f |>ǫ

)
◦ T∗ − µ

(
f1|f |≤11|f |>ǫ

)

= lim
ǫ→0

N
(
f ◦ T1|f◦T |>ǫ

)
− µ

(
f1|f |≤11|f |>ǫ

)

= lim
ǫ→0

N
(
f ◦ T1|f◦T |>ǫ

)
− µ

(
f ◦ T1|f◦T |≤11|f◦T |>ǫ

)

= I (f ◦ T )
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Lastly, I (f) is constant if and only if f vanishes µ-a.e..

Definition 6. A stochastic integral defined on (X∗,A∗, µ∗) is a random
variable of the form

I (f) + c,

with f in Lχ (µ) and c ∈ C.

In particular, when f ∈ L1 (µ), I1 (f) is a stochastic integral since I1 (f) =
I (f)− µ

(
f1|f |>1

)
.

Remark 7. It is worth mentioning that a stochastic integral I (f) + c is
always an infinitely divisible random variable (on C ≃ R

2) variable without
Gaussian part (see [12] together with Theorem 8.1, page 37 in [17]) whose
Lévy measure is the image measure of µ by f , restricted to C \ {0}. Up to
the addition of a constant, the Lévy measure completely characterizes the
distribution of a stochastic integral.

2.3.1. Campbell measure and difference operators. To derive useful proper-
ties of stochastic integrals, it is convenient to consider a representation of
them in the product space (X ×X∗,A⊗A∗, µ⊗ µ∗) as it is done in [8] for
the L2-case. We need however to go beyond L2 and we have been unable
to find all the results we want in the existing literature, we thereafter give
proofs of what is, as far as we know, new material.

Definition 8. (see for example [4], page 269) The Campbell measure Q of
(X∗,A∗, µ∗) is defined on (X ×X∗,A⊗A∗), for any positive measurable ϕ
by

∫

X×X∗

ϕ (x, ω)Q (d (x, ω)) :=

∫

X∗

(∫

X
ϕ (x, ω)ω (dx)

)
µ∗ (dω) .

The important formula is the following:

Theorem 9. (Mecke Formula, [13]) For any positive measurable function ϕ
on (X ×X∗,A⊗A∗):∫

X×X∗

ϕ (x, ω)Q (d (x, ω)) =

∫

X×X∗

ϕ (x, ω + δx)µ⊗ µ∗ (d (x, ω)) .

This formula simply says that Q is the image measure of µ⊗µ∗ under the
mapping:

(x, ω) 7→ (x, ω + δx) .

Remark 10. It is worth noting that, when µ is infinite, the projection of Q
along the second coordinate is equivalent to µ∗ (of course, the same applies
to µ⊗µ∗). To see that, take f > 0 in L1 (µ), then, as µ is an infinite measure,
for µ∗-almost all ω ∈ X∗, ω 6= 0 and thus

∫
X f (x)ω (dx) > 0 for µ∗-almost

all ω ∈ X∗. We now consider the measure Q̃ on (X ×X∗,A⊗A∗) defined

by dQ̃
dQ (x, ω) := f(x)∫

X
f(s)ω(ds)

so that Q̃ ∼ Q. Now consider its projection Q on

X∗:
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Q (A) =

∫

X×X∗

1A (ω)
f (x)∫

X f (s)ω (ds)
Q (d (x, ω))

=

∫

X∗

1A (ω)
1∫

X f (s)ω (ds)

(∫

X
f (t)ω (dt)

)
µ∗ (dω)

= µ∗ (A) .

Thus Q = µ∗.

For any measurable F on (X,A∗), define Fδ on (X ×X∗,A⊗A∗) by

(x, ω) 7→ F (ω + δx)

Definition 11. (See [8]) The difference operator D associates a measurable
F on (X∗,A∗) to a measurable DF on (X ×X∗,A⊗A∗) by

(x, ω) 7→ (DxF ) (ω) := Fδ (x, ω)− F (ω) .

It has to be noted that, taking F = F̃ µ∗-a.e. implies that DF = DF̃
µ⊗ µ∗-a.e., indeed, consider

(DxF ) (ω)−
(
DxF̃

)
(ω) =

(
F − F̃

)
δ
(x, ω)−

(
F − F̃

)
(ω)

But F = F̃ µ⊗µ∗-a.e. and, thanks to Remark 10,
(
F − F̃

)
δ
is distributed,

under Q̃ ∼ µ⊗ µ∗, as F − F̃ under µ∗ and therefore vanishes µ⊗ µ∗-a.e.

This proves DF = DF̃ µ ⊗ µ∗-a.e.. and, in particular DF can be safely
defined on F that are only defined µ∗-a.e.

Those operators are well suited for stochastic integrals as we get:

Proposition 12. Let f be in Lχ (µ). For µ⊗ µ∗-a.e. (x, ω) ∈ X ×X∗:

DxI (f) (ω) = f (x)

Proof. Set fn := f1|f |> 1
n
, n ≥ 1, we have µ

{
|f | > 1

n

}
< ∞, hence, for µ∗-a.e.

ω, ω
{
|f | > 1

n

}
< ∞ and we can safely write, for µ⊗ µ∗-a.e. (ω, x):

(I (fn))δ (ω, x) =

∫

|f |> 1
n

fd (ω + δx)−

∫

|f |> 1
n

f1|f |≤1dµ

=

∫

|f |> 1
n

fd (ω) + f (x) 1|f |> 1
n
(x)−

∫

|f |> 1
n

f1|f |≤1dµ

= I (fn) (ω) + fn (x)

By definition I (fn) tends to I (f) in µ∗-measure. In particular, there
exists an increasing sequence {nk}k∈N such that I (fnk

) tends to I (f) µ∗-
a.e. as k tends to +∞.

But this implies, thanks to Remark 10 once again, that (I (fnk
))δ tends

to (I (f))δ µ⊗ µ∗-a.e. as k tends to +∞.
Therefore

(I (f))δ (ω, x) = I (f) (ω) + f (x) ,
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hence the result.
Our next goal is to show the converse, to achieve this we need the following

intermediate results. �

Proposition 13. (See [8]) If F ∈ L2 (µ∗) then x 7→ Eµ∗ [DxF ] belongs to
L2 (µ) and, if there exists a measurable f on (X,A) such that DxF (ω) =
f (x) for µ⊗ µ∗-a.e. (x, ω) ∈ X ×X∗ then there exists c ∈ C such that

F = I (f) + c.

And:

Lemma 14. Let F be a measurable on (X∗,A∗, ) such that, µ⊗ µ∗-a.e.,

DF = 0,

then F is constant µ∗-a.e..

Proof. For µ⊗ µ∗-almost all (x, ω) ∈ X ×X∗ we have

Fδ (x, ω) = F (ω) ,

thus, for every Borel set A, we get

1A ◦ Fδ (x, ω) = 1A ◦ F (ω) ,

thus, µ⊗ µ∗-a.e:

D (1A ◦ F ) = 0.

But 1A ◦ F ∈ L2 (µ∗), therefore it is constant by Proposition 13. Since
this is true for all Borel sets, this gives the result. �

We can now formulate our characterization of stochastic integrals:

Theorem 15. A measurable function F on (X∗,A∗) is a stochastic integral
if and only if there exists a measurable function f on (X,A) such that for
µ⊗ µ∗-a.e. (x, ω) ∈ X ×X∗,

(DxF ) (ω) = f (x) ,

in particular there exists c ∈ C such that F = I (f) + c.

Proof. Only one direction has to be proved, thanks to Proposition 12. As-
sume F is a measurable, real valued function F on (X∗,A∗) and there exists
a measurable, real valued function f on (X,A) such that for µ ⊗ µ∗-a.e.
(x, ω) ∈ X ×X∗,

(DxF ) (ω) = f (x) .

For any t ∈ R and for µ⊗ µ∗-a.e. (x, ω) ∈ X ×X∗ we have

exp itFδ (x, ω)− exp itF (ω) = exp itf (x) exp itF (ω)− exp itF (ω)

= exp itF (ω) (exp itf (x)− 1) .

Therefore

Eµ∗ [Dx (exp itF )] = Eµ∗ [exp itF ] (exp itf (x)− 1) .
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Now from Proposition 13, since exp itF ∈ L2 (µ∗), then x 7→ Eµ∗ [Dx (exp itF )] ∈
L2 (µ) and therefore exp itf − 1 ∈ L2 (µ) and:

∫

X
|exp itf (x)− 1|2 µ (dx) = 4

∫

X
sin2

(
1

2
tf (x)

)
µ (dx) < +∞.

We can find t1 and t2 such that there exists ǫ > 0, such that, for any
|y| > 1, sin2

(
1
2t1y

)
+ sin2

(
1
2t2y

)
> ǫ. In particular,

∫

X
ǫ1|f |>1µ (dx) ≤

∫

X
sin2

(
1

2
t1f (x)

)
+ sin2

(
1

2
t2f (x)

)
µ (dx) < ∞

that is

µ (|f | > 1) < ∞

and, as sin2 (1) z2 ≤ sin2 (z) on [−1, 1],

∫

X
f21|f |≤1dµ ≤

∫

X

4

t21 sin
2 (1)

sin2
(
1

2
t1f (x)

)
µ (dx) < ∞.

It follows that f ∈ Lχ (µ) and thus the stochastic integral I (f) is well
defined and satisfies, for µ⊗ µ∗-a.e. (x, ω) ∈ X ×X∗ Dx (I (f)) (ω) = f (x).

Therefore, µ⊗ µ∗-a.e. D (F − I (f)) = 0 and then F = I (f) + c for some
c ∈ R, thanks to Lemma 14.

We get the complex case by considering real an imaginary parts. �

2.4. The set of stochastic integrals. Denote by Iµ∗ ⊂ L0 (µ∗) the set of
stochastic integrals. As a first consequence of Theorem 15, we get:

Proposition 16. Iµ∗ is a closed subspace of L0 (µ∗) with respect to conver-
gence in measure.

Proof. The fact that it is a linear space follows immediately from Remark 5.
Let {Fn}n∈N := {I (fn) + cn}n∈N be a sequence of stochastic integrals

converging to some random variable F with respect to µ∗. There exists a
subsequence {Fnk

}k∈N converging to F µ∗-a.e.

For the same reason already explained earlier {Fnkδ}k∈N converges Q̃-
a.e. and thus µ ⊗ µ∗-a.e. to Fδ. Now from Proposition 12, for µ ⊗ µ∗-a.e.
(x, ω) ∈ X ×X∗:

fnk
(x) = DxFnk

(ω) = Fnkδ (x, ω)− Fnk
(ω) .

Therefore {fnk
}k∈N converges µ-a.e. to some measurable f satisfying

f (x) = Fδ (x, ω)− F (ω) = DxF (ω) .

Thanks to Proposition 15, F = I (f) + c for some c ∈ C as expected. �
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3. Square-integrable stochastic integrals, Fock space

structure

In this section, we recall the classical L2-case that relies almost entirely
on the Hilbertian structure (the details can be found in [14], Chapter 10,
Section 4 and also [8]).

The starting point is the following isometry identity: for any A and B in
Af ,

Eµ∗ [(N (A)− µ (A)) (N (B)− µ (B))] = µ (A ∩B) .

And we get, for any functions f and g in L1 (µ) ∩ L2 (µ):

〈I1 (f) , I1 (g)〉L2(µ∗) = 〈f, g〉L2(µ) ,

where I1 was defined by (2.2).
Moreover, from Remark 7 together with the square integrability criterion

found in [17], page 163, a stochastic integral I (h) is square integrable if and
only if h ∈ L2 (µ).

Setting I2 := I ∩ L2
0 (µ

∗) this leads immediately to:

Theorem 17. I1 extends to an isometric isomorphism between the Hilbert

spaces
(
L2 (µ) , ‖·‖2

)
and

(
I2, ‖·‖L2(µ∗)

)
. In particular, for any f and g in

L2 (µ):

〈I1 (f) , I1 (g)〉L2(µ∗) = 〈f, g〉L2(µ) ,

and

‖I1 (f)‖L2(µ∗) = ‖f‖2 .

The above theorem is actually the ground for the following fundamental
result (see [14], Chapter 10, Section 4):

Theorem 18. There is a natural isometric identification of L2 (µ∗) as the
Fock space F

(
L2 (µ)

)
over L2 (µ):

L2 (µ∗) ≃ F
(
L2 (µ)

)
:= C⊕ L2 (µ)⊕ L2 (µ)⊙2 ⊕ · · · ⊕ L2 (µ)⊙n ⊕ · · ·

The latter space is understood as the completion of the infinite orthogonal
sum of the symmetric tensor products of L2 (µ) with the appropriately scaled
scalar product.

Let us succinctly describe how this identification is actually implemented:
Set, for any n ≥ 1, the stochastic integral of order n by the following

formula:

In
(
f⊗n

)
:=

∫

∆c
n

f⊗nd (N − µ)⊗n ∈ L2 (µ∗) .

where ∆n is the subset of Xn where at least two coordinates coincide,
f is a simple function in L2 (µ) and f⊗ its tensor product, an element of
L2 (µ⊗n)|sym ≃ L2 (µ)⊙n.
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The following formula holds for simple functions f and g in L2 (µ):
〈
In
(
f⊗n

)
, In
(
g⊗n

)〉
L2(µ∗)

= n!
〈
f⊗n, g⊗n

〉
L2(µ)⊙n

and if n 6= m, 〈
In
(
f⊗n

)
, In
(
g⊗m

)〉
L2(µ∗)

= 0.

The formula In (f
⊗n) extends isometrically to any f ∈ L2 (µ) and if we

set I
(0)
2 = C · 1X∗ , I

(1)
2 = I2 and I

(n)
2 = Span

〈
In (f

⊗n) , f ∈ L2 (µ)
〉
, one

gets the orthogonal sum:

L2 (µ∗) = I
(0)
2 ⊕ I

(1)
2 ⊕ I

(2)
2 ⊕ · · · ⊕ I

(n)
2 ⊕ · · ·

where each I
(n)
2 is isometrically identified to

(
L2 (µ)⊙n , n! 〈·, ·〉L2(µ)⊙n

)

through In and called the chaos of order n.
Observe now that if T is an endomorphism of (X,A, µ), then, for any

f ∈ L2 (µ):

In (f) ◦ T∗ = In
(
(f ◦ T )⊗n) ,

in particular, T∗ preserves each chaos.
We end this section by the following lemma that we shall need later, it is

obvious given the above discussion:

Lemma 19. On L2 (µ∗), let P be the orthogonal projection on I2. Then P
and T∗ commute.

4. Integrable stochastic integrals, the Orlicz space LΦ (µ)

The integrable case has deserved considerably less attention than the
square-integrable case, the latter being very handy to work with given its
Hilbertian nature.

Remark 7 together with the integrability criterion found in [17], page 163
yield:

I (f) ∈ L1 (µ∗) ⇐⇒

∫

X
min

(
|f | , |f |2

)
dµ < ∞.(4.1)

And it turns out that if this condition is satisfied, Eµ∗ [I (f)] = µ
(
f1|f |>1

)

and this allows to extend the definition of I1 by setting

I1 (f) = lim
ǫ→0

N
(
f1|f |>ǫ

)
− µ

(
f1|f |>ǫ

)
,

in measure.
As a result, we get

(4.2) I (f) ∈ L1
0 (µ

∗) ⇐⇒

∫

X
min

(
|f | , |f |2

)
dµ < ∞ and I (f) = I1 (f) .

We set I1 := I ∩ L1
0 (µ

∗).
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4.1. The Orlicz space LΦ (µ). To understand the set LΦ (µ) of functions

f ∈ L0 (µ) satisfying
∫
X min

(
|f | , |f |2

)
dµ < ∞, it was natural (see [18]) to

replace it by the equivalent condition
∫

X
Φ (|f |) dµ < ∞,

Φ being the function on R+ given by:

x 7→

{
x2 if x ≤ 1

2x− 1 if x > 1

The consequences are decisive, we list them thereafter, following the first
four chapters of [15]:

Φ is a Young function, that is

• Φ (0) = 0
• limx→∞Φ (x) = +∞
• Φ is convex

Moreover, Φ is continuous, strictly increasing and ∆2-regular, that is, for all
x ≥ 0:

Φ (2x) ≤ 4Φ (x) .

A number of objects associated to such a function come naturally :
One defines NΦ on LΦ (µ) by:

NΦ (f) := inf

{
λ > 0,

∫

X
Φ

(∣∣∣∣
f

λ

∣∣∣∣
)
dµ ≤ 1

}
.

Also the complementary function to Φ is the function Ψ defined on R+ by

Ψ(y) = sup {xy − Φ (x)}

and in this case, we have

Ψ(y) =

{
y2 if y ≤ 2

+∞ if y > 2
.

This yields another set

LΨ (µ) :=

{
g ∈ L0 (µ) ,∃α > 0

∫

X
Ψ(|αg|) dµ < ∞

}
,

with NΨ being defined similarly on LΨ (µ) by

NΨ (g) := inf

{
λ > 0,

∫

X
Ψ
(∣∣∣g

λ

∣∣∣
)
dµ ≤ 1

}
.

The complementary function Ψ allows to define the quantity ‖f‖Φ for

f ∈ LΦ (µ) by:

‖f‖Φ := sup

{∫

X
|fg| dµ,

∫

X
Ψ(|g|) dµ ≤ 1

}
.
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We can now sum up the properties of these objects, thanks to the well
understood theory of Orlicz spaces (see [15] again) as well as simple consid-
erations:

Theorem 20. The following holds:

• LΦ (µ) and LΨ (µ) are Orlicz vector spaces.
• NΦ and ‖·‖Φ are both norms on LΦ (µ) (NΦ is called the gauge or

Luxemburg norm and ‖·‖Φ the Orlicz norm).

• For all f ∈ LΦ (µ),

(4.3) NΦ (f) ≤ ‖f‖Φ ≤ 2NΦ (f) .

•
(
LΦ (µ) , NΦ

)
is a non-reflexive separable Banach space.

• L1 (µ) ⊂ LΦ (µ) and L1
0 (µ) = L1 (µ) = LΦ (µ).

• L2 (µ) ⊂ LΦ (µ) and L2 (µ) = LΦ (µ).
• LΨ (µ) = L2 (µ) ∩ L∞ (µ) .
• NΨ = max

(
‖·‖2 ,

1
2 ‖·‖∞

)
.

• For all f ∈ LΦ (µ), ‖f‖Φ := sup
{∫

X |fg| dµ, NΨ (g) ≤ 1
}
.

•
(
LΨ (µ) , NΨ

)
is (a representation of) the topological dual

(
LΦ (µ)′ , ‖·‖′Φ

)

of
(
LΦ (µ) , ‖·‖Φ

)
.

• If {fn}n∈N is a sequence of elements of LΦ (µ) converging to f ∈

LΦ (µ) with respect to ‖·‖Φ, then there exists an µ-a.e. converging
subsequence.

4.2. The Poisson-Orlicz norm and Urbanik’s theorem. Set I1 := I ∩
L1
0 (µ

∗). I1 is an onto linear map between LΦ (µ) and I1, it is also one-to-one
thanks to Remark 7, for example. This leads naturally to the definition:

Definition 21. For all f ∈ LΦ (µ),

‖f‖∗ := ‖I1 (f)‖L1(µ∗) ,

defines a norm. We call it the Poisson-Orlicz norm of LΦ (µ).

As such,
(
I1, ‖·‖L1(µ∗)

)
is isometric to

(
LΦ (µ) , ‖·‖∗

)
.

The natural question is therefore to compare this norm with NΦ and ‖·‖Φ.
The answer has been given by Urbanik [18]:

Theorem 22. The norms ‖·‖∗, NΦ and ‖·‖Φ are equivalent.

In [11], explicit bounds were obtained:

(4.4) (0.125)NΦ (f) ≤ ‖f‖∗ ≤ (2.125)NΦ (f) ,

which gives another proof of Urbanik’s result. The purpose of the au-
thors in [11] was to a get good approximations of the L1-norm of integrable
infinitely divisible random vectors (which can always been obtained as a
particular (multidimensional) stochastic integral).

For the sake of completeness and in an effort to better understand this
space, we will give our own short proof of Theorem 22. This will allow us
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to get an optimal upper bound with respect to ‖·‖Φ (and thus improve the
right-hand part of Eq (4.4): ‖f‖∗ ≤ 2NΦ (f)).

Let us see how ‖·‖∗ behaves:

Proposition 23. We have

• For any f ∈ L1 (µ),

‖f‖∗ ≤ 2 ‖f‖1 .

• For any f ∈ L2 (µ),

‖f‖∗ ≤ ‖f‖2 .

• For any f ∈ LΦ (µ),

‖f‖∗ ≤ ‖f‖Φ .

Moreover, ‖·‖∗ and ‖·‖Φ are different and the bound is optimal.

Proof. If f ∈ L1 (µ), then

‖f‖∗ = ‖I1 (f)‖L1(µ∗)

= Eµ∗ [|I1 (f)|]

= Eµ∗ [|N (f)− µ (f)|]

≤ Eµ∗ [|N (f)|] + |µ (f)|

≤ Eµ∗ [N (|f |)] + µ (|f |)

= 2 ‖f‖1 .

And if f ∈ L2 (µ),

‖f‖∗ = ‖I1 (f)‖L1(µ∗)

≤ ‖I1 (f)‖L2(µ∗)

= ‖f‖2 ,

thanks to Theorem 17.
Denote by

(
LΦ (µ)′∗ , ‖·‖′∗

)
the topological dual of

(
LΦ (µ) , ‖·‖∗

)
and let

φ ∈ LΦ (µ)′∗. From the beginning of the proof, for any f ∈ L1 (µ):

(4.5) |φ (f)| ≤ ‖φ‖′∗ ‖f‖∗ ≤ 2 ‖φ‖′∗ ‖f‖1 ,

and for any f ∈ L2 (µ):

(4.6) |φ (f)| ≤ ‖φ‖′∗ ‖f‖∗ ≤ ‖φ‖′∗ ‖f‖2 .

Thus φ is a continuous linear form on both
(
L1 (µ) , ‖·‖1

)
and

(
L2 (µ) , ‖·‖2

)
,

and there exists a unique g1 ∈ L∞ (µ) such that, for any f ∈ L1 (µ):

φ (f) =

∫

X
g1fdµ,

and a unique g2 ∈ L2 (µ) such that, for any f ∈ L2 (µ):
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φ (f) =

∫

X
g2fdµ.

Of course g1 = g2 µ-a.e..
Let g := g1 ∈ L2 (µ) ∩ L∞ (µ) and take f in LΦ (µ). We have f =

f1|f |≤1 + f1|f |>1 with f1|f |≤1 ∈ L2 (µ) and f1|f |>1 ∈ L1 (µ) therefore

φ (f) = φ
(
f1|f |≤1

)
+ φ

(
f1|f |>1

)

=

∫

X
gf1|f |≤1dµ+

∫

X
gf1|f |>1dµ

=

∫

X
gfdµ.

In particular, φ ∈ LΦ (µ)′, which yields LΦ (µ)′∗ ⊂ LΦ (µ)′ ≃ L2 (µ) ∩
L∞ (µ). From now on, we identify LΦ (µ)′∗ as a subspace of L2 (µ)∩L∞ (µ) ≃
LΦ (µ)′.

From the inequalities (4.5) and (4.6), for any g ∈ LΦ (µ)′∗,

max

(
‖g‖2 ,

1

2
‖g‖∞

)
≤ ‖g‖′∗ ,

thus, for any g ∈ LΦ (µ)′∗,

NΨ (g) ≤ ‖g‖′∗ .

Hence for any f ∈ LΦ (µ):

‖f‖∗ = sup
g∈LΦ(µ)′∗

∫
X gfdµ

‖g‖′∗

≤ sup
g∈LΦ(µ)′∗

∫
X gfdµ

NΨ (g)

≤ sup
g∈L2(µ)∩L∞(µ)

∫
X gfdµ

NΨ (g)

= ‖f‖Φ .

Now observe that for any f ∈ LΦ (µ), we have

‖|f |‖Φ = ‖f‖Φ .

This is not the case with ‖·‖∗. To see this, let An and Bn, n ≥ 2 be
measurable sets such that, for all n ≥ 2, An∩Bn = ∅ and µ (An) = µ (Bn) =
1
2n , and set fn := 1An − 1Bn , so that fn ∈ L1

0 (µ) and ‖fn‖1 =
1
n .

We have:
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‖|fn|‖∗ = ‖|1An∪Bn |‖∗
= Eµ∗ [|N (An ∪Bn)− µ (An ∪Bn)|]

= Eµ∗

[
µ (An ∪Bn) 1N(An∪Bn)=0

]

+ Eµ∗

[
(N (An ∪Bn)− µ (An ∪Bn)) 1N(An∪Bn)≥1

]

=
1

n
e−

1
n + Eµ∗ [N (An ∪Bn)− µ (An ∪Bn)]

− Eµ∗

[
(N (An ∪Bn)− µ (An ∪Bn)) 1N(An∪Bn)=0

]

=
2

n
e−

1
n ,

whereas

‖fn‖∗ = Eµ∗ [|I1 (fn)|]

= Eµ∗ [|N (fn)− µ (fn)|]

= Eµ∗ [|N (fn)|]

≤ Eµ∗ [N (|fn|)]

= ‖fn‖1 =
1

n
.

To prove the optimality, observe that, since for all g ∈ L2 (µ) ∩ L∞ (µ),
NΨ (g) = max

(
‖g‖2 ,

1
2 ‖g‖∞

)
≥ 1

2 ‖g‖∞, we have, for any f ∈ L1 (µ):

‖f‖Φ = sup
g∈L2(µ)∩L∞(µ)

∫
X gfdµ

NΨ (g)

≤ 2 sup
g∈L2(µ)∩L∞(µ)

∫
X gfdµ

‖g‖∞

≤ 2 sup
g∈L∞(µ)

∫
X gfdµ

‖g‖∞

= 2‖f‖1.

Thus ‖|fn|‖Φ≤
2
n . �

We have just seen that, in general, ‖f‖∗ = ‖|f |‖∗ doesn’t hold. Neverthe-
less we can compare the two quantities:

Proposition 24. Let f ∈ LΦ (µ), real valued. Then

‖f‖∗ ≤ 2 ‖|f |‖∗ ,

and

‖|f |‖∗ ≤ 2 ‖f‖∗ .

Proof. Write f = f+ − f−. Since f+ and f− are supported on disjoint sets,
I1 (f

+) and I1 (f
−) are independent thanks to the independence properties
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of a Poisson measure. Therefore, taking the conditional expectation with
respect to σ (I1 (f

−)):

Eµ∗ [|I1 (f)|] = Eµ∗

[
Eµ∗

[∣∣I1
(
f+
)
− I1

(
f−
)∣∣ | σ

(
I1
(
f−
))]]

≥ Eµ∗

[∣∣Eµ∗

[
I1
(
f+
)
− I1

(
f−
)
| σ
(
I1
(
f−
))]∣∣]

= Eµ∗

[∣∣Eµ∗

[
I1
(
f+
)
| σ
(
I1
(
f−
))]

− Eµ∗

[
I1
(
f−
)
| σ
(
I1
(
f−
))]∣∣]

= Eµ∗

[∣∣Eµ∗

[
I1
(
f+
)]

− I1
(
f−
)∣∣]

= Eµ∗

[∣∣I1
(
f−
)∣∣] .

Thus ‖f‖∗ ≥ ‖f−‖∗ and of course ‖f‖∗ ≥ ‖f+‖∗. This yields

max
(∥∥f−

∥∥
∗
,
∥∥f+

∥∥
∗

)
≤ ‖f‖∗ ,

and the triangular inequality implies

‖f‖∗ ≤
∥∥f+

∥∥
∗
+
∥∥f−

∥∥
∗
≤ 2max

(∥∥f−
∥∥
∗
,
∥∥f+

∥∥
∗

)
,

Hence

max
(∥∥f−

∥∥
∗
,
∥∥f+

∥∥
∗

)
≤ ‖f‖∗ ≤ 2max

(∥∥f−
∥∥
∗
,
∥∥f+

∥∥
∗

)
.

Writing now |f | = f+ + f−, the same reasoning gives

max
(∥∥f−

∥∥
∗
,
∥∥f+

∥∥
∗

)
≤ ‖|f |‖∗ ≤ 2max

(∥∥f−
∥∥
∗
,
∥∥f+

∥∥
∗

)
,

and we get the result. �

We can now end this section with our proof of Urbanik’s result, Theorem
22:

Proof. (of Theorem 22) From Proposition 16, it follows that I1 is closed

in the Banach space
(
L1 (µ∗) , ‖·‖L1(µ∗)

)
. But

(
LΦ (µ) , ‖·‖∗

)
is isometri-

cally isomorphic to
(
I1, ‖·‖L1(µ∗)

)
therefore

(
LΦ (µ) , ‖·‖∗

)
is a Banach space.

Thanks to Proposition 23 and the open map theorem applied to the identity
on LΦ (µ), the norms ‖·‖∗ and ‖·‖Φ are equivalent. �

5. LΦ (µ)-ergodic results

5.1. Mean ergodic theorem in LΦ (µ). We now introduce an endomor-
phism T on (X,A, µ). The next observation follows from Remark 5.

Proposition 25. T∗ satisfies, for any f ∈ LΦ (µ):

I1 (f) ◦ T∗ = I1 (f ◦ T ) .

In particular, T is an isometry of
(
LΦ (µ) , ‖·‖∗

)
.

We can state:
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Theorem 26. The dynamical system (X,A, µ, T ) has no absolutely contin-
uous T -invariant probability measure if and only if, for every f ∈ L1 (µ) (or
f ∈ LΦ (µ)):

1

n

n∑

k=1

f ◦ T k →‖·‖
∗
0,

as n tends to +∞.

Proof. Assume T has no absolutely continuous T -invariant probability mea-
sure (in particular (X∗,A∗, µ∗, T∗) is ergodic by Theorem 3) and let f ∈
L1 (µ):

∥∥∥∥∥
1

n

n∑

k=1

f ◦ T k

∥∥∥∥∥
∗

=

∥∥∥∥∥I1
(
1

n

n∑

k=1

f ◦ T k

)∥∥∥∥∥
L1(µ∗)

=

∥∥∥∥∥
1

n

n∑

k=1

I1 (f) ◦ T
k
∗

∥∥∥∥∥
L1(µ∗)

→ 0

as n tends to infinity thanks to Birkhoff’s ergodic theorem.
Let now f ∈ L1 (µ) and g ∈ LΦ (µ):

∥∥∥∥∥
1

n

n∑

k=1

g ◦ T k

∥∥∥∥∥
∗

=

∥∥∥∥∥
1

n

n∑

k=1

(g − f) ◦ T k +
1

n

n∑

k=1

f ◦ T k

∥∥∥∥∥
∗

≤
1

n

n∑

k=1

∥∥∥(g − f) ◦ T k
∥∥∥
∗
+

∥∥∥∥∥
1

n

n∑

k=1

f ◦ T k

∥∥∥∥∥
∗

= ‖g − f‖∗ +

∥∥∥∥∥
1

n

n∑

k=1

f ◦ T k

∥∥∥∥∥
∗

since T is an isometry of LΦ (µ) (Proposition 25).
Thus

lim sup

∥∥∥∥∥
1

n

n∑

k=1

g ◦ T k

∥∥∥∥∥
∗

≤ ‖g − f‖∗

And the result follows by density of L1 (µ) in LΦ (µ) (Theorem 20).
Conversely, assume there exists an absolutely continuous T -invariant prob-

ability measure ν ≪ µ. This implies the existence of a non-trivial T -invariant
set A ∈ Af and we get:

∥∥∥∥∥
1

n

n∑

k=1

1A ◦ T k

∥∥∥∥∥
∗

= ‖1A‖∗ > 0.

�
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Remark 27. Mean ergodic theorems are often associated to pointwise con-
vergence. In our context, the result is immediate, for any f ∈ LΦ (µ):

1

n

n∑

k=1

f
(
T kx

)

converges as n tends to infinity, for µ-almost every x ∈ X since, as we
saw above, we can write f = f1|f |≤1 + f1|f |>1 with f1|f |≤1 ∈ L2 (µ) and

f1|f |>1 ∈ L1 (µ) and the µ-almost sure convergence holds for both L1 (µ)

([6]) and L2 (µ) ([2]). In particular, if T has no absolutely continuous T -
invariant probability measure, then for µ-almost every x ∈ X:

1

n

n∑

k=1

f
(
T kx

)
→ 0,

as n tends to infinity.

5.2. Blum-Hanson type Theorem.

Theorem 28. The following assertions are equivalent:

(1) (X,A, µ, T ) is of zero type
(2) {T n}n∈N tends weakly to 0 in LΦ (µ)
(3) for every strictly increasing sequence {nk}k∈N of integers and every

f ∈ L1 (µ) (or equivalently f ∈ LΦ (µ)):

1

n

n∑

k=1

f ◦ T nk →‖·‖
∗
0,

as n tends to infinity.

Proof. Observe that (X,A, µ, T ) is of zero type is equivalent to the fact that
{T n}n∈N tends weakly to 0 in L2 (µ). But since LΦ (µ)′ ≃ L2 (µ)∩L∞ (µ) and

L2 (µ) = LΦ (µ) (Theorem 20), we easily obtain that zero type is equivalent
to the fact that {T n}n∈N tends weakly to 0 in LΦ (µ).

If (X,A, µ, T ) is of zero type then (X∗,A∗, µ∗, T∗) is mixing (Theorem
3) and Blum-Hanson theorem ([3]) applies: for every strictly increasing se-
quence {nk}k∈N of integers, every f ∈ LΦ (µ),

1

n

n∑

k=1

I1 (f) ◦ T
nk
∗ →‖·‖

L1(µ∗)
0,

but ∥∥∥∥∥
1

n

n∑

k=1

I1 (f) ◦ T
nk
∗

∥∥∥∥∥
L1(µ∗)

=

∥∥∥∥∥
1

n

n∑

k=1

f ◦ T nk

∥∥∥∥∥
∗

,

that is,

1

n

n∑

k=1

f ◦ T nk →‖·‖
∗
0.
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Conversely, assume the convergence holds for every f ∈ L1 (µ) and every
strictly increasing sequence {nk}k∈N of integers and consider sets A and B
in Af .

We want to prove µ (A ∩ T−nB) → 0 as n tends to infinity. By a stan-
dard exercise, it is equivalent to show the Cesàro convergence to zero of its
subsequences i.e., for every strictly increasing sequence {nk}k∈N:

1

n

n∑

k=1

µ
(
A ∩ T−nkB

)
→ 0,

as n tends to infinity, but this will indeed be the case, since∣∣∣∣∣
1

n

n∑

k=1

µ
(
A ∩ T−nkB

)
∣∣∣∣∣ =

∣∣∣∣∣

∫

X
1A ·

1

n

n∑

k=1

1B ◦ T nkdµ

∣∣∣∣∣

≤ ‖1A‖
′
∗

∥∥∥∥∥
1

n

n∑

k=1

1B ◦ T nk

∥∥∥∥∥
∗

as 1A ∈ L∞ (µ) ∩ L2 (µ) and 1B ∈ L1 (µ) ⊂ LΦ (µ).
Hence T is of zero type. �

6. Duality and transfer operators

6.1. Duality. It will be useful to have another representation of
(
L2 (µ) ∩ L∞ (µ) , ‖·‖′∗

)
,

the dual of
(
LΦ (µ) , ‖·‖∗

)
, and that requires the introduction of a few objects.

Recall that, we denoted by I2 :=
{
I1 (f) , f ∈ L2 (µ)

}
the first chaos and

we pointed out the fact that I1 is implementing an isometric isomorphism

between
(
I2, ‖·‖L2(µ∗)

)
and

(
L2 (µ) , ‖·‖2

)
. Recall that we have introduced

P in Lemma 19 as the orthogonal projection on I2; we can then define π
from L2 (µ∗) to L2 (µ) by

π := I−1
1 ◦ P.

Consider now the restriction of π to L∞ (µ∗) ⊂ L2 (µ∗). We will show:

Proposition 29. π is a surjective bounded operator from
(
L∞ (µ∗) , ‖·‖L∞(µ∗)

)

to
(
L2 (µ) ∩ L∞ (µ) , ‖·‖′∗

)
.

Proof. If Z ∈ L∞ (µ∗), then the formula

LΦ (µ) ∋ f 7→ Eµ∗ [ZI1 (f)]

defines a continuous linear form on
(
LΦ (µ) , ‖·‖∗

)
since

|Eµ∗ [ZI1 (f)]| ≤ ‖Z‖L∞(µ∗) ‖I1 (f)‖L1(µ∗)

= ‖Z‖L∞(µ∗) ‖f‖∗ .(6.1)

Therefore, there exists g ∈ L2 (µ)∩L∞ (µ) such that, for any f ∈ LΦ (µ):

Eµ∗ [ZI1 (f)] =

∫

X
gfdµ



POISSON-ORLICZ NORM AND INFINITE ERGODIC THEORY 23

but, if f ∈ L2 (µ), then, if P (Z) = I1 (h) for some h ∈ L2 (µ), then

Eµ∗ [ZI1 (f)] = Eµ∗ [I1 (g) I1 (f)]

=

∫

X
hfdµ.

Therefore h = g and π (Z) = g ∈ L2 (µ) ∩ L∞ (µ).
Conversely, for any g ∈ L2 (µ) ∩ L∞ (µ), the map

F 7→

∫

X
gI−1

1 (F ) dµ = Eµ∗ [I1 (g)F ]

defines a continuous linear form on
(
I1, ‖·‖L1(µ∗)

)
that extends, thanks

to Hahn-Banach theorem to
(
L1 (µ∗) , ‖·‖L1(µ∗)

)
, that is, there exists Z ∈

L∞ (µ∗) such that, for, any F ∈ L1 (µ∗):

Eµ∗ [ZF ] = Eµ∗ [I1 (g)F ] .

In particular, for any f ∈ L2 (µ),

Eµ∗ [ZI1 (f)] = Eµ∗ [I1 (g) I1 (f)] .

And this proves that π (Z) = g. Therefore the range of π is L2 (µ)∩L∞ (µ)
and from (6.1), we get

‖π (Z)‖′∗ ≤ ‖Z‖L∞(µ∗) .

�

Proposition 30. In the duality σ
(
L1 (µ∗) , L∞ (µ∗)

)
, the orthogonal I⊥

1 of
I1 is the subspace kerπ. In particular, there is a canonical isometric identi-
fication (

L∞ (µ∗) / ker π, ‖·‖/

)
≃
(
L2 (µ) ∩ L∞ (µ) , ‖·‖′∗

)
,

where ‖·‖/ is the usual quotient norm induced by ‖·‖L∞(µ∗).

Proof. If f ∈ L2 (µ) and Z ∈ L∞ (µ∗), then

Eµ∗ [ZI1 (f)] = Eµ∗ [I1 (π (Z)) I1 (f)]

=

∫

X
π (Z) fdµ.

This formula extends by density of L2 (µ) in LΦ (µ) with respect to ‖·‖∗,
and thus of I2 in I1 with respect to ‖·‖L1(µ∗).

Therefore I⊥
1 = ker π.

The map π induces an isometric isomorphism between
(
L∞ (µ∗) / ker π, ‖·‖/

)

and
(
L2 (µ) ∩ L∞ (µ) , ‖·‖′∗

)
. �

Remark 31. We could have appeal to general results on Banach spaces to
get that L∞ (µ∗) /I⊥

1 is canonically isomorphic (and isometric) to the dual of
I1, however we get an explicit description through the operator π as above.
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6.2. Transfer operators. Let T be an endomorphism on (X,A, µ). The

transfer operator is the operator T̂ acting on L1 (µ) defined as the predual
operator of T seen as acting as an isometry on L∞ (µ), characterized by the
following relation, for any f ∈ L1 (µ) and g ∈ L∞ (µ):∫

X
T̂ f · gdµ =

∫

X
f · g ◦ Tdµ.

Similarly, the same object exists at the level of the Poisson suspension

(X∗,A∗, µ∗, T∗): T̂∗ is the transfer operator of T∗ .
We will mimic the same procedure to define a “transfer” operator acting

on LΦ (µ).

Proposition 32. The isometry T∗ on
(
L∞ (µ∗) , ‖·‖L∞(µ∗)

)
acts also on the

quotient space
(
L∞ (µ∗) / ker π, ‖·‖/

)
as an isometry and corresponds to T

through the identification with
(
L2 (µ) ∩ L∞ (µ) , ‖·‖′∗

)
. In particular, T is

an isometry of
(
L2 (µ) ∩ L∞ (µ) , ‖·‖′∗

)
.

Proof. The first step consists in showing that T∗ preserves ker π:
Take Z ∈ ker π, in particular Z belongs to I⊥

2 ⊂ L2 (µ∗). But T∗ com-
mutes with P thanks to Lemma 19 and thus P (Z ◦ T∗) = P (Z) ◦ T∗ = 0
and thus Z ◦ T∗ ∈ ker π.

Now observe that for any Z ∈ L∞ (µ∗):

π (Z ◦ T∗) = I−1
1 (P (Z ◦ T∗))

= I−1
1 (P (Z) ◦ T∗)

= I−1
1 (P (Z)) ◦ T

= π (Z) ◦ T

and this proves the result. �

Definition 33. We define the Poisson-transfer operator T̂P acting on LΦ (µ)
as the dual operator of T acting on LΦ (µ)′. It satisfies, for any f in LΦ (µ),
g ∈ L2 (µ) ∩ L∞ (µ) : ∫

X
T̂P (f) · gdµ =

∫

X
fg ◦ Tdµ.

Proposition 34. T̂∗ preserves I1 and satisfies, for all f ∈ LΦ (µ):

T̂∗I1 (f) = I1

(
T̂Pf

)

Moreover T̂P preserves L1 (µ) and coincide with T̂ on it.

Proof. The first part of the proof follows immediately from Proposition 32
and the fact that ker π = I⊥

1 from Proposition 30.
Now taking f ∈ L1 (µ) ⊂ LΦ (µ), for any set A ∈ Af :∫

A
T̂P (f) dµ =

∫

T−1A
fdµ =

∫

A
T̂ (f) dµ.
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and this implies T̂Pf = T̂ f , that is T̂P coincide with T̂ on L1 (µ). �

Remark 35. Being a positive operator defined on L1 (µ), T̂ extends in a
unique (mod. µ) way to any non-negative measurable function. The same

applies to T̂P and since they coincide on L1 (µ), the extension of T̂ to LΦ (µ)

is in fact T̂P .

7. exact and remotely infinite transformations

We recall the two definitions that we will deal with in this section:

Definition 36. (See [7]) (X,A, µ, T ) is said to be

• exact if ∩n≥0T
−nA = {∅,X} mod. µ.

• remotely infinite1 if ∩n≥0T
−nA contains only 0 or infinite measure

sets.

We recall the chain of implications we already gave in the introduction:

T exact ⇒ T remotely infinite ⇒ Tof zero type =⇒ absence of a.c. T -invariant measure.

Note also that exactness implies ergodicity whereas it is not the case for
the other three properties.

Example 37. It is be proven (see Corollary 3.7.7 in [1]) that pointwise dual
ergodic endomorphisms (see also [1] for the definition and examples) are al-
ways remotely infinite. Null recurrent aperiodic Markov chains under their
infinite invariant measure yields unilateral shifts that are exact endomor-
phisms.

We are interested in transfer operator characterization of these properties,
we also recall Lin’s result:

Theorem 38. ([9]) (X,A, µ, T ) is exact if and only if, for all f ∈ L1
0 (µ):∥∥∥T̂ nf

∥∥∥
L1(µ)

→ 0,

as n → +∞.

We will prove the following:

Theorem 39. (X,A, µ, T ) is remotely infinite if and only if, for all f ∈
L1
0 (µ): ∥∥∥T̂ nf

∥∥∥
∗
→ 0,

as n → +∞.

To this end, we first need to establish the following characterization of
remotely infinite systems:

1We warn the reader that the authors of [7] also define, remotely infinite automorphisms

(which cannot exist with the above definition...) in the same paper. This is the same
difference that occurs between exact endomorphisms and K-automorphisms.
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Proposition 40. (X,A, µ, T ) is remotely infinite if and only if (X∗,A∗, µ∗, T∗)
is exact.

Proof. Recall (see [16]) that if B ⊂ A is a σ-algebra then B∗ := σ {N (A) , A ∈ B}
is said to be a Poisson σ-algebra.

The proof of the Proposition is then a straightforward consequence of the
following facts �

• (T−nA)
∗
= T−n

∗ A∗

• (∩n≥0T
−nA)

∗
= ∩n≥0T

−n
∗ A∗ (see Lemma 3.3 in [16] for a proof)

• A Poisson σ-algebra G∗ for G ⊂ A is trivial if and only if G contains
only zero or infinite measure sets (the Poisson random measure N
cannot distinguish between zero measure sets nor between infinite
measure sets).

We can then prove our theorem:

Proof. (of Theorem 39). Assume (X,A, µ, T ) is remotely infinite. Then
(X∗,A∗, µ∗, T∗) is exact from Proposition 40, and thus, for any f ∈ L1

0 (µ),∥∥∥T̂ n
∗ I1 (f)

∥∥∥
L1(µ∗)

→ 0

But, we have seen in Proposition 34 that T̂ n
∗ I1 (f) = I1

(
T̂ nf

)
, therefore

∥∥∥T̂ n
∗ I1 (f)

∥∥∥
L1(µ∗)

=
∥∥∥I1

(
T̂ nf

)∥∥∥
L1(µ∗)

=
∥∥∥T̂ nf

∥∥∥
∗
.

For the converse, assume that for all f ∈ L1
0 (µ),

∥∥∥T̂ nf
∥∥∥
∗
→ 0 as n → +∞.

Recall that T̂ n
P is an isometry on LΦ (µ) and from Proposition 34, T̂ n =

T̂ n
P on L1

0 (µ), thus, for any g ∈ LΦ (µ) and f ∈ L1
0 (µ):

∥∥∥T̂ n
Pg
∥∥∥
∗
=
∥∥∥T̂ n

P (g − f) + T̂ n
Pf
∥∥∥
∗

≤
∥∥∥T̂ n

P (g − f)
∥∥∥
∗
+
∥∥∥T̂ n

Pf
∥∥∥
∗

≤ ‖g − f‖∗ +
∥∥∥T̂ nf

∥∥∥
∗

That is

lim sup
n→∞

∥∥∥T̂ n
Pg
∥∥∥
∗
≤ ‖g − f‖∗ .

We conclude by density of L1
0 (µ) in LΦ (µ) (see Theorem 20).

In other words, from Proposition 34 we have proved that, for any F ∈ I1:

∥∥∥T̂ n
∗ F
∥∥∥
L1(µ∗)

→ 0

as n → +∞.
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For the converse we follow the same lines of arguments used in the proof
of Theorem 38: assume that (X,A, µ, T ) is not remotely infinite, this means
that there exists A ∈ ∩n≥0T

−nA such that 0 < µ (A) < ∞ and we can set,
for any n ∈ N, An such that A = T−nAn.

Consider 1N(A)=0 ∈ L∞ (µ∗), we have 1N(An)=0 ◦ T n
∗ = 1N(T−nAn)=0 =

1N(A)=0.
Then, for any n ∈ N,

∥∥∥T̂ n
∗ I1 (−1A)

∥∥∥
L1(µ∗)

≥ Eµ∗

[∣∣∣1N(An)=0 · T̂ n
∗ I1 (−1A)

∣∣∣
]

≥ Eµ∗

[
1N(An)=0 · T̂ n

∗ I1 (−1A)
]

≥ Eµ∗

[
1N(An)=0 ◦ T

n
∗ · I1 (−1A)

]

= Eµ∗

[
1N(A)=0 · I1 (−1A)

]

= Eµ∗

[
1N(A)=0 · (−N (A) + µ (A))

]

= µ (A)Eµ∗

[
1N(A)=0

]

= µ (A) e−µ(A) > 0.

This contradicts that for any F ∈ I1,
∥∥∥T̂ n

∗ F
∥∥∥
L1(µ∗)

→ 0 . �

Combining Proposition 39 and the last point of Theorem 20, we obtain:

Corollary 41. (X,A, µ, T ) is not remotely infinite if there exists a non-
negative f ∈ L1 (µ) such that

lim inf
n→∞

T̂ nf 6= 0 µ-a.e.

Observe that Fatou lemma gives, if lim infn→∞ T̂ nf 6= 0:

0 <

∫

X

(
lim inf
n→∞

T̂ nf
)
dµ ≤ lim inf

n→∞

∥∥∥T̂ nf
∥∥∥
1

which only implies that (X,A, µ, T ) is not exact.

8. Conclusion

We aimed to have illustrated the canonical character of LΦ (µ) and think
that this space could be a new reference space when studying infinite measure
dynamical systems. If the Poisson-Orlicz norm is by far the preferred choice
when looking at the interplay between a system and its Poisson suspension
as we did, the actual computation of the norm of a particular function is a
mathematical challenge on its own ! However the equivalent Orlicz norm is
always available and much easier to compute in concrete situations, making
the use of LΦ (µ) quite flexible.
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