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Prime 3-uniform hypergraphs

Abderrahim Boussäıri∗§ Brahim Chergui ∗‡ Pierre Ille†¶

Mohamed Zaidi∗‖

July 29, 2021

Abstract

Given a 3-uniform hypergraph H, a subset M of V (H) is a module
of H if for each e ∈ E(H) such that e ∩M ≠ ∅ and e ∖M ≠ ∅, there
exists m ∈ M such that e ∩ M = {m} and for every n ∈ M , we have
(e∖{m})∪{n} ∈ E(H). For example, ∅, V (H) and {v}, where v ∈ V (H),
are modules of H, called trivial. A 3-uniform hypergraph is prime if all
its modules are trivial. Given a prime 3-uniform hypergraph, we study its
prime, 3-uniform and induced subhypergraphs. Our main result is: given
a prime 3-uniform hypergraphH, with ∣V (H)∣ ≥ 4, there exist v,w ∈ V (H)
such that H − {v,w} is prime.

Mathematics Subject Classifications (2010): 05C65, 05C20.

Key words: hypergraph, 3-uniform, module, prime.

1 Introduction

Let H be a 3-uniform hypergraph. A tournament T , with the same vertex set
as H, is a realization of H if the edges of H are exactly the 3-element sub-
sets of the vertex set of T that induce 3-cycles. In [3], we characterized the
3-uniform hypergraphs that admit realizations (see [4, Problem 1]). To obtain
our characterization, we introduced a new notion of a module for hypergraphs.
By using the modular decomposition tree, we demonstrated that a 3-uniform
hypergraph is realizable if and only if all its prime, 3-uniform and induced
subhypergraphs are realizable (see [3, Theorem 13]). Moreover, given a real-
izable 3-uniform hypergraph H, we proved that H is prime if and only if its
realizations are prime (see [3, Theorem 12]). These results lead us to study
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the prime, 3-uniform and induced subhypergraphs of a prime 3-uniform hyper-
graph. Precisely, consider a prime 3-uniform hypergraph H. We are interested
in the integers n ∈ {3, . . . , ∣V (H)∣ − 1} for which there exists W ⊆ V (H) satis-
fying ∣W ∣ = n and H[W ] is prime. We adopt the same layout as that followed
for prime tournaments. The main results on prime tournaments are recalled
in Section 2. Similar results were obtained for prime digraphs [10], for prime
binary relational structures [12], or for prime 2-structures [7].

At present, we formalize our presentation. We consider only finite structures.
A hypergraph H is defined by a vertex set V (H) and an edge set E(H), where
E(H) ⊆ 2V (H) ∖ {∅}. In the sequel, we consider only hypergraphs H such that

E(H) ⊆ 2V (H) ∖ ({∅} ∪ {{v} ∶ v ∈ V (H)}).

Given k ≥ 2, a hypergraph H is k-uniform if

E(H) ⊆ (
V (H)

k
).

Let H be a hypergraph. With each W ⊆ V (H), we associate the subhypergraph
H[W ] of H induced by W , which is defined on V (H[W ]) =W by E(H[W ]) =

{e ∈ E(H) ∶ e ⊆W}.
A realization of a 3-uniform hypergraph is defined as follows. To begin, we

associate with each tournament a 3-uniform hypergraph in the following way.

Definition 1. The 3-cycle is the tournament C3 = ({0,1,2},{01,12,20}). Given
a tournament T , the C3-structure of T is the 3-uniform hypergraph C3(T ) de-
fined on V (C3(T )) = V (T ) by

E(C3(T )) = {X ⊆ V (T ) ∶ T [X] is isomorphic to C3} (see [4]).

Definition 2. Given a 3-uniform hypergraph H, a tournament T , with V (T ) =

V (H), realizes H if H = C3(T ). We say also that T is a realization of H. Lastly,
we say that a 3-uniform hypergraph is realizable if it admits a realization.

In [3], we characterized the realizable 3-uniform hypergraphs. We used
mainly the following notion of a module.

Definition 3. Let H be a hypergraph. A subset M of V (H) is a module of H
if for each e ∈ E(H) such that e ∩M ≠ ∅ and e ∖M ≠ ∅, there exists m ∈ M
such that e ∩M = {m}, and for every n ∈M , we have

(e ∖ {m}) ∪ {n} ∈ E(H).

Given distinct v,w ∈ V (H), we say that v and w are twins [2, 5] of H if {v,w}

is a module of H.

Definition 4. Let S be a set. A family F of subsets of S is a partitive family
[6, Definition 6] on S if it satisfies the following assertions.

• ∅ ∈ F , S ∈ F , and for every x ∈ S, {x} ∈ F .
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• For any M,N ∈ F , M ∩N ∈ F .

• For any M,N ∈ F , if M ∩ N ≠ ∅, M ∖ N ≠ ∅ and N ∖M ≠ ∅, then
M ∪N ∈ F and (M ∖N) ∪ (N ∖M) ∈ F .

In [3, Proposition 3], we established the following result.

Proposition 5. The family of the modules of a hypergraph is a partitive family.

As mentioned at the beginning of the section, Definition 3 is not the classic
definition of a module of a hypergraph. The classic definition follows.

Definition 6. Let H be a hypergraph. A subset M of V (H) is a module [1,
Definition 2.4] of H if for any e, f ⊆ V (H) such that ∣e∣ = ∣f ∣, e ∖M = f ∖M ,
and e ∖M ≠ ∅, we have e ∈ E(H) if and only if f ∈ E(H).

Remark 7. Definitions 3 and 6 coincide for 2-uniform hypergraphs, that is,
for graphs. They do not in the general case. Given a hypergraph H, a module
of H in the sense of Definition 3 is a module in the sense of Definition 6. The
converse is not true. For instance, consider the 3-uniform hypergraph H defined
on V (H) = {0,1,2,3} by E(H) = {013,123}. Clearly, {0,1} and {1,2} are
modules of H in the sense of Definition 6, but not in the sense of Definition 3.
Moreover, {0,1,2} is not a module of H in the sense of Definition 6 because
013 ∈ E(H) and 023 /∈ E(H). Consequently, Proposition 5 does not hold for the
family of the modules in the sense of Definition 6.

In [3], we generalized the notion of a partitive family as follows.

Definition 8. Let S be a set. A modular covering of S is a function M which
associates with each W ⊆ S a set M(W ) of subsets of W , and which satisfies
the following assertions.

(A1) For each W ⊆ S, M(W ) is a partitive family on W .

(A2) For any W,W ′ ⊆ S, if W ⊆W ′, then

{M ′
∩W ∶M ′

∈M(W ′
)} ⊆M(W ).

(A3) For any W,W ′ ⊆ S, if W ⊆W ′ and W ∈M(W ′), then

{M ′
∈M(W ′

) ∶M ′
⊆W} =M(W ).

(A4) Let W,W ′ ⊆ S such that W ⊆W ′. For any M ∈M(W ) and M ′ ∈M(W ′),
if M ∩M ′ = ∅ and M ′ ∩W ≠ ∅, then M ∈M(W ∪M ′).

(A5) Let W,W ′ ⊆ S such that W ⊆W ′. For any M ∈M(W ) and M ′ ∈M(W ′),
if M ∩M ′ ≠ ∅, then M ∪M ′ ∈M(W ∪M ′).

In [3, Proposition 5], we proved the following result.
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Proposition 9. Given a hypergraph H, the function defined on 2V (H), which
maps each W ⊆ V (H) to the family of the modules of H[W ], is a modular
covering of V (H).

The main notion follows.

Definition 10. Let H be a hypergraph. By Proposition 5, ∅, V (H) and {v},
where v ∈ V (H), are modules of H, called trivial modules. A hypergraph H
is indecomposable if all its modules are trivial, otherwise it is decomposable. A
hypergraph H is prime if it is indecomposable, with ∣V (H)∣ ≥ 3.

Remark 11. Recall that a hypergraph H is connected if for distinct v,w ∈

V (H), there exists a sequence (e0, . . . , en) of edges of H, where n ≥ 0, satisfying
v ∈ e0, w ∈ en, and (when n ≥ 1) ei ∩ ei+1 ≠ ∅ for every 0 ≤ i ≤ n − 1. Given a
hypergraph H, a maximal connected subhypergraph of H is called a component
of H.

LetH be a hypergraph. For each component C ofH, V (C) and V (H)∖V (C)

are clearly modules of H. Therefore, a disconnected hypergraph with at least
three vertices is decomposable.

1.1 The main results

To begin, we prove that there exist prime subhypergraphs of a small size in a
prime k-uniform hypergraph. We prove the next lemma at the beginning of
Section 3.

Lemma 12. Given a prime k-uniform hypergraph H, where k ≥ 3, the following
assertions hold

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

⋃E(H) = V (H),

and

for every e ∈ E(H), H[e] is prime.

(1)

As for tournaments (see Notation 21), to construct prime subhypergraphs of
a larger size in a prime hypergraph, we use the set p(H,X) defined as follows. The
introduction of p(H,X) is classic in the study of prime structures (for instance,
see [10, Definition 1] for digraphs).

Notation 13. Let H be a k-uniform hypergraph, where k ≥ 3. Given X ⊊ V (H)

such that H[X] is prime, we consider the following subsets of V (H) ∖X.

• We denote by Ext(H,X) the set of v ∈ V (H) ∖X such that H[X ∪ {v}] is
prime. (Hence, given v ∈ V (H)∖X, v ∈ Ext(H,X) if and only if H[X∪{v}]
is prime extension of H[X].)

• We denote by Dis(H,X) the set of v ∈ V (H) ∖X such that X is a module
of H[X ∪{v}]. (Let v ∈ Dis(H,X). Since X is a module of H[X ∪{v}], we
obtain v /∈ e for every e ∈ E(H[X∪{v}]). Thus, H[X∪{v}] is disconnected
(see Remark 11)).
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• Let y ∈ X. We denote by Twi(H,X)(y) the set of v ∈ V (H) ∖X such that
{y, v} is a module of H[X ∪ {v}]. (Let y ∈ X. Given v ∈ V (H) ∖ X,
v ∈ Twi(H,X)(y) if and only if v and y are twins of H[X ∪ {v}].)

The set {Ext(H,X),Dis(H,X)} ∪ {Twi(H,X)(y) ∶ y ∈X} is denoted by p(H,X).

The following fact constitutes the starting point of our study. It is an easy
consequence of Propositions 5 and 9. We show it at the beginning of Section 3.

Fact 14. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. The set p(H,X) is a partition of V (H) ∖X.

The next result allows us to obtain prime subhypergraphs of a larger size in
a prime 3-uniform hypergraph. We prove it in Section 4.

Theorem 15. Let H be a prime 3-uniform hypergraph. Consider X ⊊ V (H)

such that H[X] is prime. There exists Y ⊆ V (H) ∖X such that 1 ≤ ∣Y ∣ ≤ 3 and
H[X ∪ Y ] is prime.

Theorem 15 has to be compared with Corollary 24 for tournaments. The
following corollary is obtained from Lemma 12 after using Theorem 15 several
times.

Corollary 16. Let H be a prime 3-uniform hypergraph. If ∣V (H)∣ ≥ 4, then
there exists Y ⊆ V (H) such that 1 ≤ ∣Y ∣ ≤ 3 and H − Y is prime.

We establish Corollary 16 at the end of Section 4. To improve Corollary 16,
we establish the following result.

Theorem 17. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such
that H[X] is prime. Set

X = {y ∈X ∶ Twi(H,X)(y) ≠ ∅}.

If H is prime, then there exist v,w ∈ (V (H) ∖X) ∪X such that H − {v,w} is
prime.

We prove Theorem 17 in Section 5. The next result is an easy consequence
of Lemma 12 and Theorem 17. It improves Corollary 16.

Corollary 18. Let H be a prime 3-uniform hypergraph. If ∣V (H)∣ ≥ 4, then
there exist v,w ∈ V (H) such that H − {v,w} is prime.

Corollary 18 does not hold if we require also that v ≠ w (see Remark 41),
whereas it does for a prime tournament T such that ∣V (T )∣ ≥ 7 (see Theorem 26).
In [3, Theorem 12], we proved the following result.

Theorem 19. Consider a realizable and 3-uniform hypergraph H. For a real-
ization T of H, we have H is prime if and only if T is prime.

It follows from Theorems 19 and 26 that the prime 3-uniform hypergraphs
constructed in Remark 41 are not realizable. We conclude this section with the
following problem.

Problem 20. Characterize the prime 3-uniform hypergraphs H such that H −

{v,w} is decomposable for any distinct v,w ∈ V (H).
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2 Background on prime tournaments

Let T be a tournament. A subset M of V (T ) is a module [13] of T provided
that for any x, y ∈ M and v ∈ V (T ), if xv, vy ∈ A(T ), then v ∈ M . Note that
the notions of a module and of a convex subset [9] coincide for tournaments.
Moreover, note that the notions of a module and of an interval coincide for
linear orders.

Given a tournament T , ∅, V (T ) and {v}, where v ∈ V (T ), are modules of
T , called trivial modules. A tournament is indecomposable if all its modules
are trivial, otherwise it is decomposable. A tournament T is prime if it is inde-
composable, with ∣V (T )∣ ≥ 3. For instance, the 3-cycle C3 (see Definition 1) is
prime.

Let T be a strongly connected tournament (with ∣V (T )∣ ≥ 3). For every
v ∈ V (T ), there exists X ⊆ V (T ) such that v ∈ X and T [X] is isomorphic to
C3. Since C3 is prime, we obtain

v ∈X, ∣X ∣ = 3, and T [X] is prime. (2)

Of course, (2) holds for prime tournaments. To construct prime subtournaments
of a larger size in a prime tournament, we use the set p(T,X) defined as follows.

Notation 21. Let T be a tournament. Given X ⊊ V (T ) such that T [X] is
prime, consider the following subsets of V (T ) ∖X

• Ext(T,X) denotes the set of v ∈ V (T ) ∖X such that T [X ∪ {v}] is prime;

• Dis(T,X) denotes the set of v ∈ V (T ) ∖ X such that X is a module of
T [X ∪ {v}];

• for each y ∈ X, Twi(T,X)(y) denotes the set of v ∈ V (T ) ∖X such that
{y, v} is a module of T [X ∪ {v}].

The set {Ext(T,X),Dis(T,X)} ∪ {Twi(T,X)(y) ∶ y ∈X} is denoted by p(T,X).

The next lemma is basic, and its proof is easy. Close statements can be
found for 2-structures in [8] (see Lemmas 5.1, 5.2, and 5.3).

Lemma 22. Given a tournament T , consider X ⊊ V (T ) such that T [X] is
prime. The set p(T,X) is a partition of V (T ) ∖ X. Moreover, the following
assertions hold.

1. For v ∈ Dis(T,X) and w ∈ V (T ) ∖ (X ∪ Dis(T,X)), if T [X ∪ {v,w}] is
decomposable, then X ∪ {w} is a module of T [X ∪ {v,w}].

2. Given y ∈ X, for v ∈ Twi(T,X)(y) and w ∈ V (T ) ∖ (X ∪ Twi(T,X)(y)), if
T [X ∪ {v,w}] is decomposable, then {y, v} is a module of T [X ∪ {v,w}].

3. For v,w ∈ Ext(T,X) such that v ≠ w, if T [X∪{v,w}] is decomposable, then
{v,w} is a module of T [X ∪ {v,w}].

The next result follows from Lemma 22.
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Proposition 23. Given a prime tournament T , consider X ⊆ V (T ) such that
T [X] is prime. The following assertions hold.

1. If Dis(T,X) ≠ ∅, then there exist v ∈ Dis(T,X) and w ∈ V (T )∖(X∪Dis(T,X))

such that T [X ∪ {v,w}] is prime.

2. Given y ∈ X, if Twi(T,X)(y) ≠ ∅, then there exist v ∈ Twi(T,X)(y) and
w ∈ V (T ) ∖ (X ∪Twi(T,X)(y)) such that T [X ∪ {v,w}] is prime.

3. If ∣V (T )∖X ∣ ≥ 2 and V (T )∖X = Ext(T,X), then there exist v,w ∈ Ext(T,X)

such that v ≠ w and T [X ∪ {v,w}] is prime.

The next result is a simple consequence of Proposition 23.

Corollary 24 (Theorem 6.5 [7]). Given a prime tournament T , consider X ⊆

V (T ) such that T [X] is prime. If ∣V (T )∖X ∣ ≥ 2, then there exist v,w ∈ V (T )∖X
such that v ≠ w and T [X ∪ {v,w}] is prime.

The next result follows from (2) by applying Corollary 24 several times.

Corollary 25. For a prime tournament T such that ∣V (T )∣ ≥ 5, there exist
v,w ∈ V (T ) such that T − {v,w} is prime.

Since v = w may occur in Corollary 25, it is improved as follows.

Theorem 26 (Schmerl and Trotter [12]). Given a prime tournament T , if
∣V (T )∣ ≥ 7, then there exist v,w ∈ V (T ) such that v ≠ w and T −{v,w} is prime.

Lastly, Theorem 26 is improved as follows.

Theorem 27 (Sayar [11]). Given a prime tournament T , consider X ⊆ V (T )

such that T [X] is prime. If ∣ V (T ) ∖X ∣≥ 4, then there exist v,w ∈ V (T ) ∖X
such that v ≠ w and T − {v,w} is prime.

3 Preliminary lemmas

We begin the section with the following remark on Lemma 12.

Remark 28. Consider a hypergraphH such that ∣V (H)∣ ≥ 3 and V (H) ∈ E(H).
We verify that H is prime. Indeed, consider a module M of H such that ∣M ∣ ≥ 2.
We have ∣V (H) ∩M ∣ ≥ 2. Since V (H) ∈ E(H) and M is a module of H, we
obtain V (H) ⊆M , so M = V (H). Therefore, H is prime.

Now, we prove Lemma 12.

Proof of Lemma 12. First, we verify that ⋃E(H) = V (H). Clearly, ⋃E(H) is
a module of H. Since H is prime, E(H) ≠ ∅. Given e ∈ E(H), we have ∣e∣ = k
and e ⊆ (⋃E(H)). Thus ∣ ⋃E(H)∣ ≥ k. Since H is prime, ⋃E(H) = V (H).

Second, let e ∈ E(H). Since H is k-uniform, E(H[e]) = {e}. It follows from
Remark 28 that H[e] is prime.
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To continue, we show Fact 14.

Proof of Fact 14. First, we verify that the union of the elements of p(H,X) equals
V (H) ∖ X. Let v ∈ V (H) ∖ X. If H[X ∪ {v}] is prime, then v ∈ Ext(H,X).
Suppose that H[X ∪ {v}] is decomposable. Consider a nontrivial module M of
H[X ∪ {v}]. By Proposition 9 (see Assertion (A2) of Definition 8), M ∩X is
a module of H[X]. Since H[X] is prime, M ∩X is a trivial module of H[X].
Thus, we obtain M ∩X = ∅, X, or {y}, where y ∈ X. Since M is a nontrivial
module of H[X ∪ {v}], we have M ∩X ≠ ∅. It follows that M ∩X = X or {y},
where y ∈X. We distinguish the following two cases.

• Suppose that M ∩X =X. Since M is a nontrivial module of H[X ∪ {v}],
we have M =X. Therefore, v ∈ Dis(H,X).

• Suppose that M ∩X = {y}, where y ∈ X. Since M is a nontrivial module
of H[X ∪ {v}], we obtain M = {y, v}. Therefore, v ∈ Twi(H,X)(y).

Second, we verify that the elements of p(H,X) are pairwise disjoint. Given
v ∈ V (H) ∖X, we have v ∈ Ext(H,X) if and only if H[X ∪ {v}] is prime. Hence,
Ext(H,X) ∩Dis(H,X) = ∅ and Ext(H,X) ∩Twi(H,X)(y) = ∅ for every y ∈X.

Let y ∈ X. For a contradiction, suppose that there exists v ∈ Dis(H,X) ∩

Twi(H,X)(y). We obtain that X and {y, v} are modules of H[X∪{v}]. It follows
from Proposition 5 that X∖{y} is a module of H[X∪{v}]. By Proposition 9 (see
Assertion (A2) of Definition 8), X ∖{y} is a module of H[X], which contradicts
the fact that H[X] is prime. Consequently, Dis(H,X) ∩Twi(H,X)(y) = ∅.

Finally, consider distinct y, z ∈ X. For a contradiction, suppose that there
exists v ∈ Twi(H,X)(y) ∩ Twi(H,X)(z). We obtain that {y, v} and {z, v} are
modules of H[X ∪{v}]. It follows from Proposition 5 that {y, z, v} is a module
of H[X ∪{v}]. By Proposition 9 (see Assertion (A2) of Definition 8), {y, z} is a
module of H[X], which contradicts the fact that H[X] is prime. Consequently,
Twi(H,X)(y) ∩Twi(H,X)(z) = ∅.

We use the following fact to prove Lemmas 31, 32, 33, and 35.

Fact 29. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. Let M be a module of H. We have M ∩X = ∅, M ⊇ X or
M ∩X = {y}, where y ∈X. Moreover, the following assertions hold.

1. If M ∩ X = ∅, then all the elements of M belong to the same block of
p(H,X).

2. If M ⊇X, then all the elements of V (H) ∖M belong to Dis(H,X).

3. If M ∩X = {y}, where y ∈ X, then all the elements of M ∖ {y} belong to
Twi(H,X)(y).

Proof. Consider a module M of H[X ∪ {v}]. By Proposition 9 (see Asser-
tion (A2) of Definition 8), M ∩X is a module of H[X]. Since H[X] is prime,
M ∩X is a trivial module of H[X]. Thus, we obtain M ∩X = ∅, X, or {y},
where y ∈X.

8



For the first assertion, suppose that M ∩X = ∅. Let v,w ∈M . By Proposi-
tion 9 (see Assertion (A2) of Definition 8), {v,w} is a module of H[X ∪{v,w}].
It follows that the function

X ∪ {v} Ð→ X ∪ {w}

v z→ w
z ∈X z→ z,

is an isomorphism from H[X ∪ {v}] onto H[X ∪ {w}]. Therefore, v and w
belong to the same block of p(H,X).

For the second assertion, suppose that M ∩ X = X, so M ⊇ X. Let v ∈

V (H) ∖ M . By Proposition 9 (see Assertion (A2) of Definition 8), X is a
module of H[X ∪ {v}]. Therefore, v ∈ Dis(H,X).

For the third assertion, suppose that M ∩ X = {y}, where y ∈ X. Let
v ∈M ∖ {y}. By Proposition 9 (see Assertion (A2) of Definition 8), {v, y} is a
module of H[X ∪ {v}]. Therefore, v ∈ Twi(H,X)(y).

The remainder of the section is organized as follows. We consider a 3-
uniform hypergraph H, a subset X of V (H) such that H[X] is prime, and
distinct elements v and w of V (H) ∖X. We examine the following cases.

• In Lemma 31, we suppose that v,w ∈ Dis(H,X).

• In Lemma 32, we suppose that v ∈ Dis(H,X) and w ∈ Twi(H,X)(y), where
y ∈X.

• In Lemma 33, we suppose that v,w ∈ Twi(H,X)(y), where y ∈X.

• In Lemma 35, we suppose that v ∈ Twi(H,X)(y) and w ∈ Twi(H,X)(z),
where y and z are distinct elements of X.

In the next remark, we discuss Lemma 31 in the particular case of a 3-uniform
hypergraph on 5 vertices in terms of decomposability and realizability.

Remark 30. Given a tournament T , consider X ⊊ V (T ) such that T [X] is
prime. Let v and w be distinct elements of Dis(T,X). Clearly, X is a module of
T [X ∪ {v,w}]. Hence, T [X ∪ {v,w}] is decomposable.

This obvious fact does not hold for 3-uniform hypergraphs. Let H5 be the
3-uniform hypergraph defined on V (H5) = {0, . . . ,4} by E(H5) = {012,034}. As
observed at the beginning of Remark 28, H5[{0,1,2}] is prime. Set X = {0,1,2}.
Since E(H5[X ∪ {3}]) = {012}, we have 3 ∈ Dis(H5,X). Similarly, 4 ∈ Dis(H5,X).
We verify that H5[X ∪ {3,4}], which is H5, is prime. Let M be a module of
H5 such that ∣M ∣ ≥ 2. We have to show that M = V (H5). By Fact 29, we have
M ∩X = ∅, M ⊇ X or ∣M ∩X ∣ = 1. Since 034 ∈ E(H5), {3,4} is not a module
of H. Thus M ∩X ≠ ∅. For a contradiction, suppose that ∣M ∩X ∣ = 1, and
denote by y the unique element of M ∩X. Since ∣M ∣ ≥ 2, M ∖ {y} ≠ ∅. Let
v ∈ M ∖ {y}. As previously seen, v ∈ Dis(H5,X). Moreover, it follows from the
third assertion of Fact 29 that v ∈ Twi(H5,X)(y). Hence, v ∈ Dis(H5,X)∩XH5(y),
which contradicts Fact 14. Therefore ∣M ∩X ∣ ≠ 1, and hence M ⊇ X. Since
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034 ∈ E(H5) and 134 /∈ E(H5), X is not a module of H. Since 034 ∈ E(H5),
X ∪ {3} and X ∪ {4} are not modules of H. It follows that M = V (H5).
Consequently, H5 is prime.

For a contradiction, suppose that H5 admits a realization T5. It follows
from Theorem 19 that T5 is prime. Since 012 ∈ E(H5), T5[X] is a 3-cycle, so
T5[X] is prime. Since H5[X ∪{3}] is decomposable, it follows from Theorem 19
that T5[X ∪ {3}] is decomposable too. Hence, 3 /∈ Ext(T5,X). Suppose for a
contradiction that 3 ∈ Twi(T5,X)(y), where y ∈X. Since 012 ∈ E(H5), we obtain
that 013, 023 or 123 belongs to E(H5), which contradicts E(H5) = {012,034}.
It follows that 3 /∈ Twi(T5,X)(y). It follows from Lemma 22 that 3 ∈ Dis(T5,X).
Similarly, 4 ∈ Dis(T5,X). As previously seen, X is a module of T5, and hence T5
is decomposable, a contradiction. Consequently, H5 is not realizable.

In Lemma 31, we examine the general case by considering distinct elements
v and w of Dis(H,X), where H is a 3-uniform hypergraph, and X ⊊ V (H) such
that H[X] is prime.

Lemma 31. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. Let v and w be distinct elements of Dis(H,X).

1. If H[X ∪ {v,w}] is decomposable, then X is a module of H[X ∪ {v,w}].

2. H[X ∪ {v,w}] is prime if and only if there exist y, z ∈ X such that yvw ∈

E(H) and zvw /∈ E(H).

Proof. For the first assertion, consider a nontrivial module M of H[X ∪{v,w}].
It follows from Facts 14 and 29 that M ∩ X = ∅ or M ⊇ X. Therefore, we
have M = {v,w},X,X ∪ {v} or X ∪ {w}. To conclude, we show that if M =

{v,w},X ∪ {v} or X ∪ {w}, then X is a module of H[X ∪ {v,w}]. Hence,
suppose that M = {v,w},X ∪ {v} or X ∪ {w}. It suffices to verify that for
e ∈ E(H[X∪{v,w}]), we cannot have e∩X ≠ ∅ and e∖X ≠ ∅. If ∣e∩X ∣ = 2, then
e∖X = {v} or {w}, which contradicts the fact that X is a module of H[X ∪{v}]
and H[X ∪ {w}]. Moreover, if there exists y ∈ X such that e ∩X = {y}, then
e = yvw, which is not possible because M = {v,w},X ∪ {v} or X ∪ {w}.

For the second assertion, suppose that there exist y, z ∈ X such that yvw ∈

E(H) and zvw /∈ E(H). Thus, X is not a module of H[X ∪ {v,w}]. It follows
from the first assertion above that H[X ∪{v,w}] is prime. Conversely, suppose
that H[X ∪{v,w}] is prime. In particular, X is not a module of H[X ∪{v,w}].
Therefore, there exists e ∈ E(H[X ∪ {v,w}]) such that

∣e ∩X ∣ = 2 or

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e ∩X ∣ = 1

and

there exists z ∈X such that (e ∖X) ∪ {z} /∈ E(H[X ∪ {v,w}]).

(3)

We cannot have ∣e∩X ∣ = 2 because X is a module of H[X∪{v}] and H[X∪{w}].
Consequently, (3) holds. By denoting by y the unique element of e∩X, we obtain
e = yvw and (e ∖X) ∪ {z} = zvw. Therefore, yvw ∈ E(H) and zvw /∈ E(H).
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Lemma 32. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. Let v ∈ Dis(H,X) and w ∈ Twi(H,X)(y), where y ∈X.

1. X ∪{w} is a module of H[X ∪{v,w}] if and only if {y,w} is a module of
H[X ∪ {v,w}].

2. If H[X ∪ {v,w}] is decomposable, then X ∪ {w} and {y,w} are modules
of H[X ∪ {v,w}].

3. H[X ∪ {v,w}] is prime if and only if there exists z ∈ X such that zvw ∈

E(H).

Proof. For the first assertion, suppose that X∪{w} is a module of H[X∪{v,w}].
We have to show that {y,w} is a module of H[X ∪ {v,w}]. Hence, consider e ∈
E(H[X∪{v,w}]) such that e∩{y,w} ≠ ∅ and e∖{y,w} ≠ ∅. For a contradiction,
suppose that e∩ {y,w} = {y,w}. We cannot have e∖ {y,w} ⊆X because {y,w}

is a module of H[X ∪ {w}]. Moreover, we cannot have e∖ {y,w} = {v} because
X ∪ {w} is a module of H[X ∪ {v,w}]. It follows that e ∩ {y,w} = {y} or {w}.
For a contradiction, suppose that v ∈ e. Denote by z the unique element of
e∩ (X ∖ {y}). We get e = yzv or zvw, which is impossible because X ∪ {w} is a
module of H[X ∪ {v,w}]. Consequently, we obtain

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e ∩ {y,w} = {y} or {w}.

and

e ∖ {y,w} ⊆X.

Since {y,w} is a module of H[X ∪ {w}], we obtain

(e ∖ (e ∩ {y,w})) ∪ ({y,w} ∖ e) ∈ E(H[X ∪ {v,w}]).

Conversely, suppose that {y,w} is a module of H[X ∪ {v,w}]. Since X is
a module of H[X ∪ {v}], it follows from Proposition 9 (see Assertion (A5) of
Definition 8) that X ∪ {w} is a module of H[X ∪ {v,w}].

For the second assertion, consider a nontrivial module M of H[X ∪ {v,w}].
By Fact 14, v and w do not belong to the same block of p(H,X). It follows from
Fact 29 that M ⊇X or ∣M ∩X ∣ = 1. We distinguish the following two cases.

• Suppose that M ⊇ X. By the second assertion of Fact 29, V (H) ∖M ⊆

Dis(H,X). Since w ∈ Twi(H,X)(y), w /∈ Dis(H,X) by Fact 14. Hence w ∈M .
Since M is a nontrivial module of H[X ∪ {v,w}], M =X ∪ {w}.

• Suppose that ∣M ∩ X ∣ = 1. Denote by z the unique element of M ∩ X.
Since M is a nontrivial module of H[X ∪ {v,w}], M ∖ X ≠ ∅. By the
third assertion of Fact 29, M ∖ X ⊆ Twi(H,X)(z). Since v ∈ Dis(H,X),
v /∈ Twi(H,X)(z) by Fact 14. Thus v /∈ M . Since M ∖X ≠ ∅, we obtain
M = {z,w}. Therefore w ∈ Twi(H,X)(y) ∩ Twi(H,X)(z). By Fact 14, we
have y = z, so M = {y,w}.
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It follows from both cases above that M =X ∪ {w} or M = {y,w}. By the first
assertion above, X ∪ {w} and {y,w} are modules of H[X ∪ {v,w}].

For the third assertion, suppose that H[X ∪ {v,w}] is prime. In particular,
{y,w} is not a module of H[X∪{v,w}]. Thus, there exists e ∈ E(H[X∪{v,w}])

such that
∣e ∩ {y,w}∣ = 2 or

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e ∩ {y,w}∣ = 1

and

(e ∖ {y,w}) ∪ ({y,w} ∖ e) /∈ E(H[X ∪ {v,w}]).

(4)

We distinguish the following two cases.

• Suppose that ∣e ∩ {y,w}∣ = 2. There exists u ∈ (X ∖ {y}) ∪ {v} such that
e = uyw. We cannot have u ∈X because {y,w} is a module of H[X∪{w}].
Therefore u = v, and hence e = yvw.

• Suppose that (4) holds. Since {y,w} is a module of H[X ∪{w}], it follows
from (4) that v ∈ e. Denote by z′ the unique element of e∩(X ∖{y}). We
cannot have y ∈ e because X is a module of H[X ∪ {v}]. Consequently
w ∈ e, and hence e = z′vw.

In both cases, there exists z ∈X such that zvw ∈ E(H).
Conversely, suppose that there exists z ∈ X such that zvw ∈ E(H). Thus,

X ∪ {w} is not a module of H[X ∪ {v,w}]. By the second assertion above,
H[X ∪ {v,w}] is prime.

Lemma 33. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. Let v and w be distinct elements of Twi(H,X)(y), where y ∈X.

1. If H[X ∪ {v,w}] is decomposable, then {y, v,w} is a module of H[X ∪

{v,w}].

2. H[X ∪ {v,w}] is prime if and only if there exists z ∈ X ∖ {y} such that
zvw ∈ E(H).

Proof. For the first assertion, consider a nontrivial module M of H[X ∪{v,w}].
It follows from Facts 14 and 29 that M = {v,w},{y, v},{y,w} or {y, v,w}.
Suppose that M = {v,w} or {y, v}. Since {y,w} is a module of H[X ∪ {w}], it
follows from Proposition 9 (see Assertion (A5) of Definition 8) that {y, v,w} is
a module of H[X ∪ {v,w}]. Similarly, if {y,w} is a module of H[X ∪ {v,w}],
then {y, v,w} is a module of H[X ∪ {v,w}].

For the second assertion, suppose that H[X∪{v,w}] is prime. In particular,
{y, v,w} is not a module of H[X ∪ {v,w}]. Hence, there exists e ∈ E(H[X ∪

{v,w}]) such that
∣e ∩ {y, v,w}∣ = 2 or

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e ∩ {y, v,w}∣ = 1

and

(e ∖ {y, v,w}) ∪ {z} /∈ E(H[X ∪ {v,w}]), where z ∈ {y, v,w} ∖ e.

(5)
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Suppose that ∣e ∩ {y, v,w}∣ = 1. We have e ∖ {y, v,w} ⊆ X ∖ {y}. Since {y, v} is
a module of H[X ∪ {v}] and {y,w} is a module of H[X ∪ {w}], it follows from
e ∈ E(H[X ∪ {v,w}]) that (e ∖ {y, v,w}) ∪ {z} ∈ E(H[X ∪ {v,w}]) for every
z ∈ {y, v,w}. Thus (5) does not hold. Consequently ∣e ∩ {y, v,w}∣ = 2. Since
{y, v} is a module of H[X ∪{v}] and {y,w} is a module of H[X ∪{w}], we get
e ∩ {y, v,w} = {v,w}. By denoting by z the unique element of e ∖ {y, v,w}, we
obtain z ∈X ∖ {y} and e = zvw. Hence zvw ∈ E(H).

Conversely, suppose that there exists z ∈X ∖{y} such that zvw ∈ E(H). We
obtain that {y, v,w} is not a module of H[X ∪ {v,w}]. By the first assertion
above, H[X ∪ {v,w}] is prime.

We use the following notation to state Lemma 35.

Notation 34. Let H be a 3-uniform hypergraph.

For e, f ∈ (
V (H)

3
), e ≡H f means

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e, f ∈ E(H)

or

e, f /∈ E(H).

Lemma 35. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. Let v ∈ Twi(H,X)(y) and w ∈ Twi(H,X)(z), where y and z are
distinct elements of X.

1. {y, v} is a module of H[X ∪ {v,w}] if and only if {z,w} is a module of
H[X ∪ {v,w}].

2. If H[X ∪ {v,w}] is decomposable, then {y, v} and {z,w} are modules of
H[X ∪ {v,w}].

3. H[X ∪ {v,w}] is prime if and only if

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E(H) ∩ {yvw, zvw} ≠ ∅

or

there exists z′ ∈X ∖ {y, z} such that z′yz /≡H z′vw.

(6)

Proof. The first assertion follows from Proposition 9 (see Assertion (A4) of
Definition 8). For the second assertion, consider a nontrivial module M of
H[X ∪ {v,w}]. It follows from Facts 14 and 29 that M = {y, v} or {z,w}. By
the first assertion above, {y, v} and {z,w} are modules of H[X ∪ {v,w}].

For the third assertion, suppose that H[X ∪ {v,w}] is prime. In particular,
{y, v} is not a module of H[X∪{v,w}]. Hence, there exists e ∈ E(H[X∪{v,w}])

such that
{y, v} ⊆ e or

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e ∩ {y, v}∣ = 1

and

(e ∖ {y, v}) ∪ ({y, v} ∖ e) /∈ E(H[X ∪ {v,w}]).

(7)
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Suppose that {y, v} ⊆ e. Since {y, v} is a module of H[X ∪ {v}], w ∈ e. Hence
e = yvw. Therefore yvw ∈ E(H), and hence (6) holds. Now, suppose that
(7) holds. Since {y, v} is a module of H[X ∪ {v}], w ∈ e. We distinguish the
following two cases.

• Suppose that y ∈ e, hence v /∈ e. Since {z,w} is a module of H[X ∪ {w}],
z /∈ e. Therefore, there exists z′ ∈ X ∖ {y, z} such that z′ ∈ e. We obtain
e = z′yw, so z′yw ∈ E(H). Since {z,w} is a module of H[X ∪ {w}],
z′yz ∈ E(H). Furthermore, (e ∖ {y}) ∪ {v} /∈ E(H[X ∪ {v,w}]) by (7).
Therefore z′vw /∈ E(H). It follows that (6) holds.

• Suppose that v ∈ e, hence y /∈ e. If z ∈ e, then e = zvw, so zvw ∈ E(H), and
hence (6) holds. Lastly, suppose that z /∈ e. There exists z′ ∈ X ∖ {y, z}
such that z′ ∈ e. We get e = z′vw, and hence z′vw ∈ E(H). Furthermore,
(e∖ {v}) ∪ {y} /∈ E(H[X ∪ {v,w}]) by (7). Therefore z′yw /∈ E(H). Since
{z,w} is a module of H[X ∪ {w}], z′yz /∈ E(H). It follows that (6) holds.

Conversely, suppose that (6) holds. To begin, suppose that yvw ∈ E(H). It
follows that {y, v} is not a module of H[X ∪ {v,w}]. By the second assertion
above, H[X ∪{v,w}] is prime. Similarly, if zvw ∈ E(H), then H[X ∪{v,w}] is
prime. Finally, suppose that there exists z′ ∈X ∖ {y, z} such that z′vw /≡H z′yz
(see Notation 34). Since {y, v} is a module of H[X ∪{v}], we get z′yz ≡H z′zv.
Thus, z′zv /≡H z′vw. It follows that {z,w} is not a module of H[X ∪ {v,w}].
By the second assertion above, H[X ∪ {v,w}] is prime.

4 Proof of Theorem 15

We begin the section with two remarks on Corollary 24.

Remark 36. The analogue of Corollary 24 does not hold for prime hypergraphs.
Indeed, consider a hypergraph H such that E(H) = {X,V (H)}, where ∣X ∣ ≥ 3
and ∣V (H) ∖X ∣ ≥ 2. It follows from Remark 28 that H and H[X] are prime.
Furthermore, for every nonempty Y ⊊ V (H) ∖X, X is a (nontrivial) module of
H[X ∪ Y ], so H[X ∪ Y ] is decomposable.

Remark 37. The analogue of Corollary 24 does not hold for prime 3-uniform
hypergraphs. Indeed, given n ≥ 4, consider the 3-uniform hypergraph H defined
on V (H) = {0, . . . , n + 3} by

E(H) = {i(i + 1)(i + 2) ∶ 0 ≤ i ≤ n − 2}

∪ {(n − 2)(n − 1)(n + 1), (n − 2)(n − 1)(n + 2), (n + 1)(n + 2)(n + 3)}.

Proceeding by induction on p ∈ {4, . . . , n}, it is easy to verify that H[{0, . . . , p}]
is prime. For

X = {0, . . . , n},

we have H[X] is prime. We have n+1, n+2 ∈ Twi(H,X)(n), and n+3 ∈ Dis(H,X).
Thus, H[X ∪{v}] is decomposable for every v ∈ V (H)∖X. Moreover, it follows
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from Lemmas 32 and 33 that H[X ∪ {v,w}] is decomposable for distinct v,w ∈

V (H)∖X. Lastly, by using Fact 29, it is not difficult to verify that H is prime.

Given Remark 36, we conjecture the following.

Conjecture 38. Let H be a prime hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. There exists Y ⊆ V (H) ∖X such that H[X ∪ Y ] is prime, and

1 ≤ ∣Y ∣ ≤ max({∣e∣ ∶ e ∈ E(H)}).

Theorem 15 provides a positive answer to Conjecture 38 for prime 3-uniform
hypergraphs.

Remark 39. As mentioned at the beginning of Section 1, we do not use the
classic definition of a module of a hypergraph (see Definition 6). The classic
definition leads to a new type of prime hypergraphs. Conjecture 38 can be
stated for this new type as well. Of course, an analogue of Lemma 12 has to be
found too.

Proof of Theorem 15. We suppose that

for any v,w ∈ V (H) ∖X, H[X ∪ {v,w}] is decomposable. (8)

Observe that (8) implies Ext(H,X) = ∅.
To begin, suppose that Dis(H,X) ≠ ∅. Since H is prime, V (H) ∖Dis(H,X) is

not a module of H. Thus, there exists e ∈ E(H) such that

∣e ∩Dis(H,X)∣ = 1 or

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e ∩Dis(H,X)∣ = 2

and there exists β ∈ V (H) ∖Dis(H,X) such that

(e ∩Dis(H,X)) ∪ {β} /∈ E(H).

(9)

We distinguish the following cases.

1. Suppose that ∣e ∩ Dis(H,X)∣ = 1. Denote by u the unique element of e ∩
Dis(H,X). Since X is a module of H[X∪{u}], e∩(V (H)∖(X∪Dis(H,X))) ≠

∅. Let v ∈ e ∩ (V (H) ∖ (X ∪ Dis(H,X))). Since Ext(H,X) = ∅, it follows
from Fact 14 that v ∈ Twi(H,X)(y), where y ∈X. If e ∖ {u, v} ⊆X, then it
follows from the third assertion of Lemma 32 that H[X ∪{u, v}] is prime,
which contradicts (8). Thus e ∩X = ∅. Denote by w the unique element
of e ∖ {u, v}. As previously for v, we have w ∈ Twi(H,X)(z), where z ∈ X.
We show that

H[X ∪ e] is prime.

Let M be a module of H[X ∪ e] such that ∣M ∣ ≥ 2. We have to prove that
M = X ∪ e. It follows from Fact 29 that X ∪ {v,w} ⊆ M , M = {y, v} or
{z,w}, and, when y = z, M = {y, v,w} or {v,w}. Since v,w ∈ e, {v,w},
{y, v,w} and X ∪ {v,w} are not modules of H[X ∪ e]. Moreover, suppose
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for a contradiction that {y, v} is a module of H[X ∪ e]. Since e = uvw, we
obtain yuw ∈ E(H). By the third assertion of Lemma 32, H[X∪{u,w}] is
prime, which contradicts (8). Therefore, {y, v} is not a module of H[X∪e].
Similarly, {z,w} is not a module of H[X ∪ e]. Consequently, it follows
that X ∪ {v,w} ⊊M , so M =X ∪ e.

2. Suppose that (9) holds. Denote the elements of e ∩Dis(H,X) by v and w.
Furthermore, denote by α the unique element of e∖{v,w}. We get αvw ∈

E(H). By (9), there exists β ∈ V (H) ∖Dis(H,X) such that βvw /∈ E(H).
Moreover, H[X ∪{v,w}] is decomposable by (8). It follows from the first
assertion of Lemma 31 that

either yvw ∈ E(H) for every y ∈X (10)

or yvw /∈ E(H) for every y ∈X. (11)

Set

γ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

α if (11) holds

or

β if (10) holds.

(12)

Since γ = α or β, γ /∈ Dis(H,X). It follows from (12) that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

γvw ∈ E(H) ⇐⇒ for every y ∈X, yvw /∈ E(H),

and

γvw /∈ E(H) ⇐⇒ for every y ∈X, yvw ∈ E(H).

(13)

Thus
γ ∈ V (H) ∖ (X ∪Dis(H,X)).

Since Ext(H,X) = ∅, it follows from Fact 14 that there exists z ∈ X such
that γ ∈ Twi(H,X)(z). We prove that

H[X ∪ {γ, v,w}] is prime.

Let M be a module of H[X∪{γ, v,w}] such that ∣M ∣ ≥ 2. We have to show
that M = X ∪ {γ, v,w}. It follows from Fact 29 that M = {v,w},{z, γ}
or M ⊇ X ∪ {γ}. It follows from (13) that {z, γ} and X ∪ {γ} are not
modules of H[X ∪ {γ, v,w}]. Moreover, it follows from (13) that there
exists δ ∈ X ∪ {γ} such that δvw ∈ E(H). Therefore, {v,w}, X ∪ {γ, v}
and X ∪ {γ,w} are not modules of H[X ∪ {γ, v,w}]. Consequently M =

X ∪ {γ, v,w}.

Now, suppose that Dis(H,X) = ∅. Since Ext(H,X) = ∅, it follows from Fact 14
that there exists y ∈X such that Twi(H,X)(y) ≠ ∅. Hence, {y}∪Twi(H,X)(y) is
not a module of H. Therefore, there exists e ∈ E(H) such that

∣e ∩ ({y} ∪Twi(H,X)(y))∣ = 2 or
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⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣e ∩ ({y} ∪Twi(H,X)(y))∣ = 1

and there exists β ∈ {y} ∪Twi(H,X)(y) such that

(e ∖ ({y} ∪Twi(H,X)(y))) ∪ {β} /∈ E(H).

(14)

We distinguish the following two cases.

1. Suppose that ∣e∩({y}∪Twi(H,X)(y))∣ = 2. We have ∣e∩Twi(H,X)(y)∣ = 1 or
2. For a contradiction, suppose that ∣e∩Twi(H,X)(y)∣ = 1. Denote by v the
unique element of e∩Twi(H,X)(y). We get e∩({y}∪Twi(H,X)(y)) = {y, v}.
Denote by w the unique element of e∖{y, v}. We have e = yvw, and hence
yvw ∈ E(H). Since {y, v} is a module of H[X ∪ {v}], w /∈ X. Thus
w /∈ X ∪ Twi(H,X)(y)). Since Ext(H,X) = ∅ and Dis(H,X) = ∅, it follows
from Fact 14 that there exists z ∈X∖{y} such that w ∈ Twi(H,X)(z). Since
yvw ∈ E(H), it follows from the third assertion of Lemma 35 that H[X ∪

{v,w}] is prime, which contradicts (8). It follows that ∣e∩Twi(H,X)(y)∣ =
2. Denote by u′ and v′ the elements of e ∩ Twi(H,X)(y), and denote by
w′ the unique element of e ∖ {u′, v′}. We have e = u′v′w′, and hence
u′v′w′ ∈ E(H). Clearly, w′ /∈ {y} ∪Twi(H,X)(y). If w′ ∈X, then it follows
from the second assertion of Lemma 33 that H[X ∪ {u′, v′}] is prime,
which contradicts (8). Thus w′ /∈ X, so w′ ∈ V (H) ∖ (X ∪ Twi(H,X)(y)).
Since Ext(H,X) = ∅ and Dis(H,X) = ∅, it follows from Fact 14 that there
exists z ∈X ∖ {y} such that w′ ∈ Twi(H,X)(z). We prove that

H[X ∪ {u′, v′,w′
}] is prime.

Let M be a module of H[X ∪ {u′, v′,w′}] such that ∣M ∣ ≥ 2. We have
to show that M = X ∪ {u′, v′,w′}. It follows from Fact 29 that M =

{u′, v′},{y, u′, v′},{y, u′},{y, v′},{z,w′} or X ∪ {u′, v′,w′}. Since u′v′w′ ∈

E(H), {u′, v′} and {y, u′, v′} are not modules of H[X ∪ {u′, v′,w′}]. Fur-
thermore, H[X ∪ {v′,w′}] is decomposable by (8). It follows from the
third assertion of Lemma 35 that yv′w′ /∈ E(H). Since u′v′w′ ∈ E(H),
{y, u′} is not a module of H[X ∪ {u′, v′,w′}]. Similarly, {y, v′} is not a
module of H[X ∪ {u′, v′,w′}]. Lastly, H[X ∪ {u′, v′}] is decomposable by
(8). It follows from the second assertion of Lemma 33 that zu′v′ /∈ E(H).
Since u′v′w′ ∈ E(H), {z,w′} is not a module of H[X ∪ {u′, v′,w′}]. Con-
sequently, we obtain M =X ∪ {u′, v′,w′}.

2. Suppose that (14) holds. Denote by α the unique element of e ∩ ({y} ∪
Twi(H,X)(y)). Furthermore, denote by γ and δ the elements of e∖ ({y} ∪
Twi(H,X)(y)). Hence e = αγδ. By (14), αγδ /≡H βγδ (see Notation 34).
Therefore, there exists α′ ∈ {α,β} such that

α′γδ /≡H yγδ. (15)

We obtain α′ ∈ Twi(H,X)(y). Since {y,α′} is a module of H[X ∪ {α′}], it
follows from (15) that {γ, δ} ∖X ≠ ∅. For instance, assume that γ /∈ X.
Since Ext(H,X) = ∅ and Dis(H,X) = ∅, it follows from Fact 14 that there
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exists z ∈ X such that γ ∈ Twi(H,X)(z). Since γ /∈ Twi(H,X)(y), we have
y ≠ z. For a contradiction, suppose that δ ∈X. It follows from (15) that

{y,α′} is not a module of H[X ∪ {α′, γ}]. (16)

By the second assertion of Lemma 35, H[X ∪ {α′, γ}] is prime, which
contradicts (8). Therefore δ /∈ X. Since Ext(H,X) = ∅ and Dis(H,X) =

∅, it follows from Fact 14 that there exists z′ ∈ X ∖ {y} such that δ ∈

Twi(H,X)(z
′). We prove that

H[X ∪ {α′, γ, δ}] is prime.

Let M be a module of H[X ∪ {α′, γ, δ}] such that ∣M ∣ ≥ 2. We have
to show that M = X ∪ {α′, γ, δ}. It follows from Fact 29 that M = X ∪

{α′, γ, δ},{y,α′},{z, γ} or {z′, δ}, and, when z = z′, M = {γ, δ} or {z, γ, δ}.
By (15), yγδ ∈ E(H) or α′γδ ∈ E(H). Thus, {γ, δ} and {z, γ, δ} are
not modules of H[X ∪ {α′, γ, δ}]. Moreover, it follows from (16) and
Proposition 9 (see Assertion (A2) of Definition 8) that

{y,α′} is not a module of H[X ∪ {α′, γ, δ}]. (17)

Finally, suppose for a contradiction that {z, γ} is a module of H[X ∪

{α′, γ, δ}]. By (8), H[X ∪ {α′, δ}] is decomposable. By the second as-
sertion of Lemma 35, {y,α′} is a module of H[X ∪ {α′, δ}]. It follows
from Proposition 9 (see Assertion (A4) of Definition 8) that {y,α′} is a
module of H[X ∪ {α′, γ, δ}], which contradicts (17). Consequently, {z, γ}
is not a module of H[X ∪ {α′, γ, δ}]. Similarly, {z′, δ} is not a module of
H[X ∪ {α′, γ, δ}]. It follows that M =X ∪ {α′, γ, δ}.

Proof of Corollary 16. Consider a prime 3-uniform hypergraph H such that
∣V (H)∣ ≥ 4. By Lemma 12, there exists X ⊆ V (H) such that ∣X ∣ = 3 and H[X]

is prime. Hence, ∣X ∣ < ∣V (H)∣. Consider a maximal proper subset Z of V (H)

such that H[Z] is prime. For a contradiction, suppose that ∣V (H) ∖Z ∣ ≥ 4. By
Theorem 15, there exists Z ′ ⊆ V (H) ∖Z such that 1 ≤ ∣Z ′∣ ≤ 3 and H[Z ∪Z ′] is
prime. Since ∣V (H) ∖ Z ∣ ≥ 4 and 1 ≤ ∣Z ′∣ ≤ 3, we obtain Z ∪ Z ′ ⊊ V (H), which
contradicts the maximality of Z. Consequently, we have ∣V (H) ∖ Z ∣ ≤ 3. By
setting Y = V (H) ∖Z, we obtain 1 ≤ ∣Y ∣ ≤ 3 and H − Y is prime.

5 Proof of Theorem 17

We use the next lemma to establish Theorem 17.

Lemma 40. Let H be a 3-uniform hypergraph. Consider X ⊊ V (H) such that
H[X] is prime. Let v ∈ Twi(H,X)(y), where y ∈X. Set

Y = (X ∖ {y}) ∪ {v}.

We have H[Y ] is prime. Moreover, the following three assertions hold.
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1. For every w ∈ Twi(H,X)(y) ∖ {v}, if H[X ∪ {v,w}] is decomposable, then
w ∈ Twi(H,Y )(v).

2. Given z ∈X ∖{y} and w ∈ Twi(H,X)(z), if H[X ∪{v,w}] is decomposable,
then w ∈ Twi(H,Y )(z).

3. For every w ∈ Dis(H,X), if H[X ∪ {v,w}] is decomposable, then w ∈

Dis(H,X).

Proof. Since {y, v} is a module of H[X ∪ {v}], the function

X Ð→ Y
y z→ v

z ∈X ∖ {y} z→ z,

is an isomorphism from H[X] onto H[Y ]. Hence H[Y ] is prime.
Let w ∈ Twi(H,X)(y) ∖ {v} be such that H[X ∪ {v,w}] is decomposable.

By the first assertion of Lemma 33, {y, v,w} is a module of H[X ∪ {v,w}].
By Proposition 9 (see Assertion (A2) of Definition 8), {v,w} is a module of
H[(X ∪ {v,w}) ∖ {y}], that is, H[Y ∪ {w}]. It follows that w ∈ Twi(Y,X)(v).

Given z ∈ X ∖ {y}, consider w ∈ Twi(H,X)(z) such that H[X ∪ {v,w}] is
decomposable. By the second assertion of Lemma 35, {z,w} is a module of
H[X ∪ {v,w}]. By Proposition 9 (see Assertion (A2) of Definition 8), {z,w} is
a module of H[Y ∪ {w}]. It follows that w ∈ Twi(H,Y )(z).

Let w ∈ Dis(H,X) such that H[X ∪ {v,w}] is decomposable. By the second
assertion of Lemma 32, X ∪{v} is a module of H[X ∪{v,w}]. By Proposition 9
(see Assertion (A2) of Definition 8), Y is a module of H[Y ∪ {w}]. It follows
that w ∈ Dis(H,Y ).

Proof of Theorem 17. We suppose that

H − {v,w} is decomposable for any v,w ∈ (V (H) ∖X) ∪X, (18)

where v = w is allowed. Consequently, we have to prove that H is decomposable.
Using Theorem 15 several times, beginning with H[X], we obtain Y ⊆ V (H)

such that X ⊆ Y , H[Y ] is prime, and 1 ≤ ∣V (H) ∖ Y ∣ ≤ 3. Set

Y = {z ∈ Y ∶ Twi(H,Y )(z) ≠ ∅}.

We prove that
(V (H) ∖ Y ) ∪ Y ⊆ (V (H) ∖X) ∪X. (19)

Clearly, (V (H)∖Y ) ⊆ (V (H)∖X). Now, consider z ∈ Y . We have z ∈ V (H)∖X
or z ∈X. Hence, suppose that z ∈X. Since z ∈ Y , there exists v ∈ V (H)∖Y such
that {z, v} is a module of H[Y ∪{v}]. Since z ∈X, it follows from Proposition 9
(see Assertion (A2) of Definition 8) that {z, v} is a module of H[X ∪{v}]. Thus
v ∈ Twi(H,X)(z), so z ∈X. Hence (19) holds. It follows from (18) that

H − {v,w} is decomposable for any v,w ∈ (V (H) ∖ Y ) ∪ Y . (20)
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Furthermore, since 1 ≤ ∣V (H) ∖ Y ∣ ≤ 3, it follows from (20) that ∣V (H) ∖ Y ∣ = 3.
Denote by v1, v2 and v3 the elements of V (H) ∖ Y . By (20), Ext(H,Y ) = ∅.
Therefore, one of the following seven cases holds. In each of them, we obtain a
nontrivial module of H.

1. Suppose that v1, v2, v3 ∈ Dis(H,Y ). We show that Y is a module of H. Let
e ∈ E(H) such that e ∩ Y ≠ ∅ and e ∖ Y ≠ ∅. Since Y is a module of
H[Y ∪ {vi}] for i ∈ {1,2,3}, there exist distinct i, j ∈ {1,2,3} such that
e∖Y = {vi, vj}. By (20), H[Y ∪{vi, vj}] is decomposable. It follows from
the first assertion of Lemma 31 that Y is a module of H[Y ∪{vi, vj}]. Since
Y is a module of H[Y ∪{vi, vj}], there exists y ∈ Y such that e∩Y = {y}.
Furthermore, for every z ∈ Y , we have (e ∖ {y}) ∪ {z} ∈ E(H). It follows
that Y is a module of H.

2. Suppose that v1, v2 ∈ Dis(H,Y ) and v3 ∈ Twi(H,Y )(y), where y ∈ Y . We
show that {y, v3} is a module of H. Let e ∈ E(H) such that e∩{y, v3} ≠ ∅
and e ∖ {y, v3} ≠ ∅.

Suppose that there exists i ∈ {1,2} such that e ∖ {y, v3} ⊆ Y ∪ {vi}. We
get e ⊆ Y ∪ {vi, v3}. By (20), H[Y ∪ {vi, v3}] is decomposable. By the
second assertion of Lemma 32, {y, v3} is a module of H[Y ∪ {vi, v3}].
Therefore, there exists α ∈ {y, v3} such that e∩{y, v3} = {α}. Furthermore,
(e∖{α})∪{β} ∈ E(H), where β denotes the unique element of {y, v3}∖{α}.

Now, suppose that e ∖ {y, v3} /⊆ Y ∪ {v1} and e ∖ {y, v3} /⊆ Y ∪ {v2}. Since
e ∖ {y, v3} /⊆ Y ∪ {v1}, we have v2 ∈ e. Similarly, v1 ∈ e. Thus e ∖ {y, v3} =
{v1, v2}. We have to verify that

v1v2v3 ≡H v1v2y (see Notation 34). (21)

Let z ∈ Y ∖ {y}. By (20), H[Y ∪ {v1, v2}] is decomposable. By the first
assertion of Lemma 31, Y is a module of H[Y ∪ {v1, v2}]. Thus

v1v2y ≡H v1v2z. (22)

Set Z = (Y ∖ {y}) ∪ {v3}. By Lemma 40, H[Z] is prime. Clearly, y ∈

Twi(H,Z)(v3). Furthermore, H[Y ∪ {v1, v3}] is decomposable by (20). It
follows from the third assertion of Lemma 40 that v1 ∈ Dis(H,Z). Similarly,
v2 ∈ Dis(H,Z). Since v3 ∈ Twi(H,Y )(y), y ∈ Y . By (20), H − y, which is
H[Z ∪ {v1, v2}], is decomposable. By the first assertion of Lemma 31, Z
is a module of H[Z ∪ {v1, v2}]. Therefore

v1v2z ≡H v1v2v3. (23)

It follows from (22) and (23) that (21) holds.

3. Suppose that v1 ∈ Dis(H,Y ) and v2, v3 ∈ Twi(H,Y )(y), where y ∈ Y . We
prove that Y ∪{v2, v3} is a module of H. It suffices to prove that for each
e ∈ E(H), v1 /∈ e. Suppose to the contrary that there exists e ∈ E(H) such
that v1 ∈ e. We verify that

e = v1v2v3. (24)
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Suppose that v3 /∈ e. We obtain e ∈ E(H[Y ∪{v1, v2}]) and ∣e∩(Y ∪{v2})∣ =
2. Therefore, Y ∪ {v2} is not a module of H[Y ∪ {v1, v2}]. It follows from
the second assertion of Lemma 32 that H[Y ∪ {v1, v2}] is prime, which
contradicts (20). Consequently, v3 ∈ e. Similarly, v2 ∈ e. Hence, (24)
holds. Set Z = (Y ∖ {y}) ∪ {v3}. By Lemma 40, H[Z] is prime. Clearly,
y ∈ Twi(H,Z)(v3). By (20), H[Y ∪ {v1, v3}] is decomposable. It follows
from the third assertion of Lemma 40 that v1 ∈ Dis(H,Z). Furthermore,
H[Y ∪{v2, v3}] is decomposable by (20). It follows from the first assertion
of Lemma 40 that v2 ∈ Twi(H,Z)(v3). Since v1 ∈ e∖ (Z ∪{v2}) and v2, v3 ∈
e∩(Z ∪{v2}), Z ∪{v2} is not a module of H[Z ∪{v1, v2}]. It follows from
the second assertion of Lemma 32 that H[Z ∪ {v1, v2}] is prime. Clearly,
H[Z ∪ {v1, v2}] = H − y. Since v2 ∈ Twi(H,Y )(y), we have y ∈ Y , which
contradicts (20).

4. Suppose that v1 ∈ Dis(H,Y ) and v2 ∈ Twi(H,Y )(y) and v3 ∈ Twi(H,Y )(z),
where y and z are distinct elements of Y . We prove that Y ∪ {v2, v3} is a
module of H. It suffices to prove that

for each e ∈ E(H), v1 /∈ e. (25)

Since v1 ∈ Dis(H,Y ), we have

y′z′v1 /∈ E(H) for distinct elements y′ and z′ of Y . (26)

By (20), H[Y ∪ {v1, v2}] is decomposable. By the second assertion of
Lemma 32, {y, v2} is a module of H[Y ∪ {v1, v2}]. Hence yv1v2 /∈ E(H).
Let t ∈ Y ∖ {y}. By (26), tyv1 /∈ E(H). Since {y, v2} is a module of
H[Y ∪ {v1, v2}], we obtain tv1v2 /∈ E(H). Therefore, y′v1v2 /∈ E(H) for
every y′ ∈ Y . Similarly, we have z′v1v3 /∈ E(H) for every z′ ∈ Y .

Lastly, we verify that v1v2v3 /∈ E(H). Set Z = (Y ∖ {y}) ∪ {v2}. By
Lemma 40, H[Z] is prime. Clearly, y ∈ Twi(H,Z)(v2). Furthermore, it
follows from (20) and Lemma 40 that v1 ∈ Dis(H,Z) and v3 ∈ Twi(H,Z)(z).
Moreover, y ∈ Y because v2 ∈ Twi(H,Y )(y). By (20), H − y, which is
H[Z ∪ {v1, v3}], is decomposable. By the second assertion of Lemma 32,
Z ∪ {v3} is a module of H[Z ∪ {v1, v3}]. Therefore v1v2v3 /∈ E(H).

5. Suppose that v1, v2, v3 ∈ Twi(H,Y )(y), where y ∈ Y . We prove that
{y, v1, v2, v3} is a module of H. Consider e ∈ E(H) such that e∩{y, v1, v2,
v3} ≠ ∅ and e ∖ {y, v1, v2, v3} ≠ ∅. There exist distinct i, j ∈ {1,2,3}
such that e ∩ {y, v1, v2, v3} ⊆ {y, vi, vj}. Hence e ⊆ Y ∪ {vi, vj}. By (20),
H[Y ∪ {vi, vj}] is decomposable. By the first assertion of Lemma 33,
{y, vi, vj} is a module of H[Y ∪ {vi, vj}]. It follows that there exists α ∈

{y, vi, vj} such that e∩{y, vi, vj} = {α}. Since e∩{y, v1, v2, v3} ⊆ {y, vi, vj},
we get

e ∩ {y, v1, v2, v3} = {α}.

Furthermore, since {y, vi, vj} is a module of H[Y ∪ {vi, vj}], we obtain
that

(e ∖ {α}) ∪ {β} ∈ E(H) for every β ∈ {y, vi, vj}. (27)
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It remains to verify that (e ∖ {α}) ∪ {vk} ∈ E(H), where k denotes the
unique element of {1,2,3}∖{i, j}. By (27), we have (e∖{α})∪{y} ∈ E(H).
Since vk ∈ Twi(H,Y )(y), that is, {y, vk} is a module of H[Y ∪{vk}], we get
(e ∖ {α}) ∪ {vk} ∈ E(H).

6. Suppose that v1, v2 ∈ Twi(H,Y )(y) and v3 ∈ Twi(H,Y )(z), where y and z are
distinct elements of Y . We prove that {z, v3} is a module of H. Consider
e ∈ E(H) such that e ∩ {z, v3} ≠ ∅ and e ∖ {z, v3} ≠ ∅.

Suppose that there exists i ∈ {1,2} such that e∖{z, v3} ⊆ Y ∪{vi}. We get
e ⊆ Y ∪ {vi, v3}. By (20), H[Y ∪ {vi, v3}] is decomposable. By the second
assertion of Lemma 35, {z, v3} is a module of H[Y ∪ {vi, v3}]. Therefore,
there exists α ∈ {z, v3} such that e ∩ {z, v3} = {α}, and (e ∖ {α}) ∪ {β} ∈

E(H), where β denotes the unique element of {z, v3} ∖ {α}.

Now, suppose that e ∖ {z, v3} /⊆ Y ∪ {v1} and e ∖ {z, v3} /⊆ Y ∪ {v2}. Since
e∖{z, v3} /⊆ Y ∪{v1}, v2 ∈ e. Similarly, v1 ∈ e. To conclude, we have to verify
that v1v2v3 ≡H zv1v2. In fact, we have v1v2v3 /∈ E(H) and zv1v2 /∈ E(H).
Indeed, H[Y ∪{v1, v2}] is decomposable by (20). By the first assertion of
Lemma 33, {y, v1, v2} is a module of H[Y ∪{v1, v2}]. Thus zv1v2 /∈ E(H).
Lastly, set Z = (Y ∖ {z}) ∪ {v3}. By Lemma 40, H[Z] is prime. Clearly,
z ∈ Twi(H,Z)(v3). Furthermore, it follows from (20) and Lemma 40 that
v1, v2 ∈ Twi(H,Z)(y). Moreover, z ∈ Y because v3 ∈ Twi(H,Y )(z). By (20),
H − z, which is H[Z ∪{v1, v2}], is decomposable. By the first assertion of
Lemma 33, {y, v1, v2} is a module of H[Z ∪ {v1, v2}]. Therefore v1v2v3 /∈

E(H).

7. Suppose that v1 ∈ Twi(H,Y )(y1), v2 ∈ Twi(H,Y )(y2) and v3 ∈ Twi(H,Y )(y3),
where y1, y2 and y3 are distinct elements of Y . We prove that {y1, v1}
is a module of H. Consider e ∈ E(H) such that e ∩ {y1, v1} ≠ ∅ and
e ∖ {y1, v1} ≠ ∅.

Suppose that there exists i ∈ {2,3} such that e∖{y1, v1} ⊆ Y ∪{vi}. We get
e ⊆ Y ∪ {v1, vi}. By (20), H[Y ∪ {v1, vi}] is decomposable. By the second
assertion of Lemma 35, {y1, v1} is a module of H[Y ∪{v1, vi}]. Therefore,
there exists α ∈ {y1, v1} such that e∩ {y1, v1} = {α}, and (e∖ {α}) ∪ {β} ∈
E(H), where β denotes the unique element of {y1, v1} ∖ {α}.

Now, suppose that e∖{y1, v1} /⊆ Y ∪{v2} and e∖{y1, v1} /⊆ Y ∪{v3}. Since
e ∖ {y1, v1} /⊆ Y ∪ {v2}, v3 ∈ e. Similarly, v2 ∈ e. To conclude, we have to
verify that

v1v2v3 ≡H y1v2v3.

By (20), H[Y ∪ {v2, v3}] is decomposable. By the second assertion of
Lemma 35, {y2, v2} and {y3, v3} are modules of H[Y ∪ {v2, v3}]. It fol-
lows that y1v2v3 ≡H y1y2y3. Since v1 ∈ Twi(H,Y )(y1), we have y1y2y3 ≡H
y2y3v1. Therefore,

y1v2v3 ≡H y2y3v1.

Set Z = (Y ∖ {y1}) ∪ {v1}. By Lemma 40, H[Z] is prime. Clearly y1 ∈

Twi(H,Z)(v1). Furthermore, it follows from (20) and Lemma 40 that v2 ∈
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Twi(H,Z)(y2) and v3 ∈ Twi(H,Z)(y3). Moreover, y1 ∈ Y because v1 ∈

Twi(H,Y )(y1). By (20), H −y1, which is H[Z ∪{v2, v3}], is decomposable.
By the second assertion of Lemma 35, {y2, v2} and {y3, v3} are modules of
H[Z∪{v2, v3}]. Consequently, y2y3v1 ≡H v1v2v3. It follows that y1v2v3 ≡H
v1v2v3.

Lastly, a remark on Corollary 18 follows.
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Figure 1: The 3-uniform hypergraph C12.

Remark 41. Given n ≥ 3, the 3-uniform hypergraph C2n is defined on {0, . . . ,2n−
1} by

E(C2n) = {(2i)(2i+1)(2i+2) ∶ 0 ≤ i ≤ n−2}∪{0(2n−2)(2n−1)} (see Figure 1).

The 3-uniform hypergraph C2n is prime. However, for any distinct v,w ∈

{0, . . . ,2n − 1}, C2n − {v,w} is disconnected, and hence decomposable (see Re-
mark 11). It follows from Theorems 19 and 26 that C2n is not realizable. By
Corollary 18, there exists v ∈ {0, . . . ,2n− 1} such that C2n − v is prime. Indeed,
C2n − (2p + 1) is prime for p = 0, . . . , n − 1.
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naments, Discrete Math. 277 (2004) 29–43.

[5] M. Burley, J.P. Uhry, Parity graphs, Ann. Discrete Math. 16 (1982) 1–26.

[6] M. Chein, M. Habib, M.C. Maurer, Partitive hypergraphs, Discrete Math.
37 (1981) 35–50.

[7] A. Ehrenfeucht, T. Harju, G. Rozenberg, The Theory of 2-Structures, A
Framework for Decomposition and Transformation of Graphs, World Sci-
entific, Singapore, 1999.

[8] A. Ehrenfeucht, G. Rozenberg, Primitivity is hereditary for 2-structures,
Theoret. Comput. Sci. 70 (1990) 343–358.

[9] D. Haglin, M. Wolf, On convex subsets in tournaments, SIAM J. Discrete
Math. 9 (1996) 63–70.

[10] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71–78.

[11] M. Y. Sayar, Partially critical indecomposable tournaments and partially
critical supports, Contrib. Discrete Math. 6 (2011) 52–76.

[12] J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered
sets, graphs, tournaments and other binary relational structures, Discrete
Math. 113 (1993), 191–205.

[13] J. Spinrad, P4-trees and substitution decomposition, Discrete Appl. Math.
39 (1992) 263–291.

24


