
HAL Id: hal-03362663
https://hal.science/hal-03362663v2

Submitted on 9 Jan 2022 (v2), last revised 1 Oct 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid High-Order method for creeping flows of
non-Newtonian fluids

Michele Botti, Daniel Castanon Quiroz, Daniele Antonio Di Pietro, André
Harnist

To cite this version:
Michele Botti, Daniel Castanon Quiroz, Daniele Antonio Di Pietro, André Harnist. A Hybrid High-
Order method for creeping flows of non-Newtonian fluids. ESAIM: Mathematical Modelling and
Numerical Analysis, 2021, 55 (5), pp.2045-2073. �10.1051/m2an/2021051�. �hal-03362663v2�

https://hal.science/hal-03362663v2
https://hal.archives-ouvertes.fr


A Hybrid High-Order method for creeping flows of
non-Newtonian fluids

Michele Botti∗2, Daniel Castanon Quiroz †1, Daniele A. Di Pietro ‡1, and André Harnist §1

1IMAG, Univ Montpellier, CNRS, Montpellier, France
2MOX, Department of Mathematics, Politecnico di Milano, Milano, Italy

January 9, 2022

Abstract

In this paper, we design and analyze a Hybrid High-Order discretization method for the steady
motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities.
The proposed method has several appealing features including the support of general meshes and
high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for
scalar Leray–Lions problems. A complete well-posedness and convergence analysis of the method
is carried out under new, general assumptions on the strain rate-shear stress law, which encompass
several common examples such as the power-law and Carreau–Yasuda models. Numerical examples
complete the exposition.

Keywords: Hybrid High-Order methods, non-Newtonian fluids, power-law, Carreau–Yasuda law,
discrete Korn inequality
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1 Introduction
In this paper, we design and analyze a Hybrid High-Order (HHO) discretization method for the steady
motion of a non-Newtonian, incompressible fluid in the Stokes approximation of small velocities. Notable
applications include ice sheet dynamics [3232], mantle convection [4444], chemical engineering [3333], and
biological fluids rheology [2828, 3737]. We focus on fluids with shear-rate-dependent viscosity, whose
behavior is characterized by a nonlinear strain rate-shear stress function. Physical interpretations and
discussions of non-Newtonian fluid models can be found, e.g., in [88, 4040]. Typical examples that are
frequently used in the applications include the power-law and Carreau–Yasuda model, covered by the
present analysis.

The earliest investigations of fluids with shear-dependent viscosity date back to the pioneering work
of Ladyzhenskaya [3636]. For a detailed mathematical study of the well-posedness and regularity of the
continuous problem, see also [33, 77, 2424, 3939, 4141] and references therein. Early results on the numerical
analysis of non-Newtonian fluid flow problems were given in [22, 3030, 4343]. Later, these results were
improved in [66] and [3131] by proving error estimates that are optimal for fluids with shear thinning
behavior (described by a power-law exponent A ≤ 2). In [66], the authors considered a conforming inf-sup
stable finite element discretization, while in [3131] a low-order scheme with local projection stabilization
was proposed. In both works, the use of Orlicz functions is instrumental to unify the treatment of the shear
thinning and shear thickening cases (also called pseudoplastic and dilatant, respectively; cf. Example 44).
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More recently, a finite element method based on a four-field formulation of the nonlinear Stokes equations
has been analyzed in [4242]. Other notable contributions on the numerical approximation of generalized
Stokes problems include [2525, 3232, 3434, 3535].

The main issues to be accounted for in the numerical solution of non-Newtonian fluid flow problems
are the presence of local features emerging from the nonlinear strain rate-shear stress relation, the
incompressibility condition leading to indefinite systems, the roughly varying model coefficients, and,
possibly, complex geometries requiring unstructured and highly-adapted meshes. The HHO method
provides several advantages to deal with the complex nature of the problem, such as the support of general
polygonal or polyhedral meshes, the possibility to select the approximation order, and unconditional inf-
sup stability. Moreover, HHO schemes can be efficiently implemented thanks to the possibility of statically
condensing a large subset of the unknowns for linearized versions of the problem encountered, e.g., when
solving the nonlinear system by the Newton method. Hybrid High-Order methods have been successfully
applied to the simulation of incompressible flows of Newtonian fluids governed by the Stokes [11] and
Navier–Stokes equations [1212, 2323], possibly driven by large irrotational volumetric forces [1515, 2222]. Works
related to the problem of creeping flows of non-Newtonian fluids are [1313] and [1717, 1818], respectively
dealing with nonlinear elasticity and Leray–Lions problems. Going from nonlinear coercive elliptic
equations to the nonlinear Stokes system involves additional difficulties arising from the pressure and
the divergence constraint. Finally, we mention that HHO methods are members of a wider family of
polytopal methods that also includes, e.g., Virtual Element methods (cf., e.g., [44, 55] for their application
to Newtonian incompressible flows) and can fit within general frameworks for the approximation of
nonlinear problems such as the one provided by the Gradient Discretisation Method (see [2121, 2626]).

The HHO discretization presented in this paper hinges on discontinuous polynomial unknowns on the
mesh and on its skeleton, from which discrete differential operators are reconstructed. These operators
are used to formulate discrete counterparts of the viscous and pressure-velocity coupling terms. For the
former, stability is ensured by a cleverly designed stabilization contribution involving the penalization of
boundary differences. We carry out a complete analysis of the proposed method. In particular, under
general assumptions on the strain rate-shear stress function, we derive error estimates for the velocity and
pressure approximations. The energy-norm error estimate for the velocity given in Theorem 1212 yields the
same convergence orders established in [1717, Theorem 3.2] for the scalar Leray–Lions elliptic problem.
A key tool in our analysis is provided by Lemma 1515, in which we prove a generalization of the discrete
Korn inequality of [1212, Lemma 1] to the non-Hilbertian case. The other main contributions are a novel
formulation of the requirements on the strain rate-shear stress function allowing a unified treatment of
pseudoplastic and dilatant fluids and the identification of a set of general assumptions on the nonlinear
stabilization function ensuring the desired consistency properties along with the well-posedness of the
discrete problem.

The rest of the paper is organized as follows. In Section 22 we introduce the strong and weak
formulations of the nonlinear Stokes problem and present the assumptions on the strain rate-shear stress
function. The discrete setting is established in Section 33, including the definition of the discrete spaces
for the velocity and the pressure. The HHO scheme along with the main theoretical results are stated
in Section 44, and a numerical validation is provided in Section 55. In Section 66 we prove the discrete
counterpart of the Korn inequality needed in the analysis of the method. Section 77 contains the proof
of the main results (well-posedness and error estimates). Finally, in Appendix AA we provide a sufficient
condition for the strain rate-shear stress law to fulfil the assumptions presented in Section 22. The paper is
structured so as to offer two levels of reading. In particular, the reader mainly interested in the formulation
of the method and its numerical performance can focus on Section 22–55. The remaining sections cover
technical aspects of the analysis, and can be skipped at first reading.

2 Continuous setting
Let Ω ⊂ R3 , 3 ∈ {2, 3}, denote a bounded, connected, polyhedral open set with Lipschitz boundary
mΩ. We consider a possibly non-Newtonian fluid occupying Ω and subjected to a volumetric force field
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f : Ω → R3 . Its flow is governed by the generalized Stokes problem, which consists in finding the
velocity field u : Ω→ R3 and the pressure field ? : Ω→ R such that

−∇·2(·,∇su) + ∇? = f in Ω, (1a)
∇·u = 0 in Ω, (1b)

u = 0 on mΩ, (1c)∫
Ω

?(x) dx = 0, (1d)

where ∇· denotes the divergence operator applied to vector or tensor fields, ∇s is the symmetric part
of the gradient operator ∇ applied to vector fields, and, denoting by R3×3s the set of square, symmetric,
real-valued 3 × 3 matrices, 2 : Ω×R3×3s → R3×3s is the strain rate-shear stress law. In what follows, we
formulate assumptions on 2 that encompass common models for non-Newtonian fluids and state a weak
formulation for problem (11) that will be used as a starting point for its discretization.

2.1 Strain rate-shear stress law
We define the Frobenius inner product such that, for all 3 = (g8 9)1≤8, 9≤3 and ( = ([8 9)1≤8, 9≤3 in R3×3 ,
3 : ( B

∑3
8, 9=1 g8 9[8 9 , and we denote by |3 |3×3 B

√
3 : 3 the corresponding norm.

Assumption 1 (Strain rate-shear stress law). Let a real number A ∈ (1,∞) be fixed, denote by A ′ B A
A−1 ∈

(1,∞) the conjugate exponent of A , and define the singular exponent of A by

Ã ≔ min(A, 2) ∈ (1, 2] . (2)

The strain rate-shear stress law satisfies

2(x, 0) = 0 for almost every x ∈ Ω, (3a)

2 : Ω × R3×3s → R3×3s is measurable. (3b)

Moreover, there exist real numbers fde ∈ [0,∞) and fhc, fsm ∈ (0,∞) such that, for all 3, ( ∈ R3×3s and
almost every x ∈ Ω, we have the Hölder continuity property

|2(x, 3) − 2(x, () |3×3 ≤ fhc
(
fAde + |3 |

A
3×3 + |( |

A
3×3

) A−Ã
A |3 − ( |Ã−1

3×3 , (3c)

and the strong monotonicity property

(2(x, 3) − 2(x, ()) : (3 − ()
(
fAde + |3 |

A
3×3 + |( |

A
3×3

) 2−Ã
A ≥ fsm |3 − ( |A+2−Ã3×3 . (3d)

Some remarks are in order.
Remark 1 (Residual shear stress). Assumption (3a3a) can be relaxed by taking 2(·, 0) ∈ !A ′ (Ω,R3×3s ).
This modification requires only minor changes in the analysis, not detailed for the sake of conciseness.
Remark 2 (Singular exponent). Inequalities (3c3c)–(3d3d) can be proved starting from the following assump-
tions, which correspond to the conditions (7474) below characterizing an A-power-framed function: For all
3, ( ∈ R3×3s with 3 ≠ ( and almost every x ∈ Ω,

|2(x, 3) − 2(x, () |3×3 ≤ fhc
(
fAde + |3 |

A
3×3 + |( |

A
3×3

) A−2
A |3 − ( |3×3 ,

(2(x, 3) − 2(x, ()) : (3 − () ≥ fsm
(
fAde + |3 |

A
3×3 + |( |

A
3×3

) A−2
A |3 − ( |23×3 .

These relations are reminiscent of the ones used in [1717] in the context of scalar Leray–Lions problems.
The advantage of assumptions (3c3c)-(3d3d), expressed in terms of the singular index Ã, is that they enable a
unified treatment of the cases A < 2 and A ≥ 2 in the proofs of Lemma 1818, Theorem 1111, Lemma 2020, and
Theorem 1212 below.

3



Remark 3 (Relations between the Hölder and monotonicity constants). Inequalities (3c3c) and (3d3d) give

fsm ≤ fhc. (4)

Indeed, let 3 ∈ R3×3s be such that |3 |3×3 > 0. Using the strong monotonicity (3d3d) (with ( = 0), the
Cauchy–Schwarz inequality, and the Hölder continuity (3c3c) (again with ( = 0), we infer that

fsm
(
fAde + |3 |

A
3×3

) Ã−2
A |3 |A+2−Ã3×3 ≤ 2(·, 3) : 3 ≤ |2(·, 3) |3×3 |3 |3×3 ≤ fhc

(
fAde + |3 |

A
3×3

) A−Ã
A |3 |Ã3×3

almost everywhere in Ω. Hence, fsm
fhc
≤

(
fAde+|3 |

A
3×3

|3 |A
3×3

) |A−2|
A . Letting |3 |3×3 →∞ gives (44).

Example 4 (Carreau–Yasuda fluids). (`, X, 0, A)-Carreau–Yasuda fluids, introduced in [4646] and later
generalized in [3131, Eq. (1.2)], are fluids for which it holds, for almost every x ∈ Ω and all 3 ∈ R3×3s ,

2(x, 3) = `(x)
(
X0 (x) + |3 |0 (x)

3×3

) A−2
0 (x)

3, (5)

where ` : Ω → [`−, `+] is a measurable function with `−, `+ ∈ (0,∞) corresponding to the local
flow consistency index, X ∈ [0,∞) is the degeneracy parameter, 0 : Ω → [0−, 0+] is a measurable
function with 0−, 0+ ∈ (0,∞) expressing the local transition flow behavior index, and A ∈ (1,∞) is the
flow behavior index. The Carreau–Yasuda law is a generalization of the Carreau law (corresponding to
0− = 0+ = 2) that takes into account the different local levels of flow behavior in the fluid. The degenerate
case X = 0 corresponds to the power-law model. Non-Newtonian fluids described by constitutive laws
with a (`, X, 0, A)-structure exhibit a different behavior according to the value of A. If A > 2, then the
fluid shows shear thickening behavior and is called dilatant. Examples of dilatant fluids are wet sand and
oobleck. The case A < 2, on the other hand, corresponds to pseudoplastic fluids having shear thinning
behavior, such as blood. Finally, if A = 2, then the fluid is Newtonian and (11) becomes the classical (linear)
Stokes problem. We show in Appendix AA that the strain rate-shear stress law (55) is an A-power-framed
function with fde = X,

fhc =


`+
A−12

[
−
(

1
0+ −

1
A

)	
−1

]
(A−2)+ 1

A if A < 2,

`+(A − 1)2
(

1
0− −

1
A

)⊕
(A−2) if A ≥ 2,

and fsm =


`−(A − 1)2

(
1
0− −

1
A

)⊕
(A−2) if A ≤ 2,

`−
A−12

[
−
(

1
0+ −

1
A

)	
−1

]
(A−2)−1

if A > 2,

where b⊕ ≔ max(0, b) and b	 ≔ −min(0, b) denote, respectively, the positive and negative parts of a
real number b. As a consequence, it matches Assumption 11.

2.2 Weak formulation
From this point on, we omit both the integration variable and the measure from integrals, as they can be
in all cases inferred from the context. We define the following velocity and pressure spaces embedding,
respectively, the homogeneous boundary condition and the zero-average constraint:

[ B
{
v ∈ ,1,A (Ω,R3) : v|mΩ = 0

}
, % B !A

′
0 (Ω,R) B

{
@ ∈ !A ′ (Ω,R) :

∫
Ω
@ = 0

}
.

Assuming f ∈ !A ′ (Ω,R3), the weak formulation of problem (11) reads: Find (u, ?) ∈ [ × % such that

0(u, v) + 1(v, ?) =
∫
Ω

f · v ∀v ∈ [, (6a)

−1(u, @) = 0 ∀@ ∈ %, (6b)

where the function 0 : [ ×[ → R and the bilinear form 1 : [ × !A ′ (Ω,R) → R are defined such that,
for all v, w ∈ [ and all @ ∈ !A ′ (Ω,R),

0(w, v) B
∫
Ω

2(·,∇sw) : ∇sv, 1(v, @) B −
∫
Ω

(∇·v)@. (7)
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Remark 5 (Mass equation). The test space in (6b6b) can be extended to !A ′ (Ω,R) since, for all v ∈ [, the
divergence theorem and the fact that v |mΩ = 0 yield 1(v, 1) = −

∫
Ω
∇·v = −

∫
mΩ

v · nmΩ = 0, with nmΩ
denoting the unit vector normal to mΩ and pointing out of Ω.

Remark 6 (Well-posedness and a priori estimates). It can be checked that, under Assumption 11, the
continuous problem (66) admits a unique solution (u, ?) ∈ [ × %; see, e.g., [3131, Section 2.4], where
slightly stronger assumptions are considered. For future use, we also note the following a priori bound
on the velocity:

|u |, 1,A (Ω,R3) ≤
(
2

2−Ã
A �Kf

−1
sm ‖ f ‖!A′ (Ω,R3)

) 1
A−1 +

(
2

2−Ã
A �K |Ω|

2−Ã
A

3
f2−Ã

de f−1
sm ‖ f ‖!A′ (Ω,R3)

) 1
A+1−Ã

, (8)

where �K > 0 comes from the Korn inequality given at (3333) below. To prove (88), use the strong-
monotonicity (3d3d) of 2, sum (6a6a) written for v = u to (6b6b) written for @ = ?, and use the Hölder
inequality together with the Korn inequality (3333) to write

fsm

(
|Ω|3fAde + ‖∇su‖A!A (Ω,R3×3)

) Ã−2
A ‖∇su‖A+2−Ã!A (Ω,R3×3) ≤ 0(u, u)

=

∫
Ω

f · u ≤ �K‖ f ‖!A′ (Ω,R3) ‖∇su‖!A (Ω,R3×3) ,

where |Ω|3 is the measure of Ω, that is,

N B
(
|Ω|3fAde + ‖∇su‖A!A (Ω,R3×3)

) Ã−2
A ‖∇su‖A+1−Ã!A (Ω,R3×3) ≤ �Kf

−1
sm ‖ f ‖!A′ (Ω,R3) . (9)

Observing that ‖∇su‖A+1−Ã!A (Ω,R3×3) ≤ 2 2−Ã
A max

(
‖∇su‖A!A (Ω,R3×3) , |Ω|3f

A
de

) 2−Ã
A N , we obtain, enumerating

the cases for the maximum and summing the corresponding bounds, ‖∇su‖!A (Ω,R3×3) ≤ (2
2−Ã
A N) 1

A−1 +(
2 2−Ã
A |Ω|

2−Ã
A

3
f2−Ã

de N
) 1
A+1−Ã . Combining this inequality with (99) gives (88).

3 Discrete setting
3.1 Mesh and notation for inequalities up to a multiplicative constant
We define a mesh as a couple Mℎ ≔ (Tℎ, Fℎ), where Tℎ is a finite collection of polyhedral elements
) such that ℎ = max) ∈Tℎ ℎ) with ℎ) denoting the diameter of ) , while Fℎ is a finite collection of
planar faces � with diameter ℎ� . Notice that, here and in what follows, we use the three-dimensional
nomenclature also when 3 = 2, i.e., we speak of polyhedra and faces rather than polygons and edges. It is
assumed henceforth that the meshMℎ matches the geometrical requirements detailed in [1919, Definition
1.7]. In order to have the boundedness property (1414) for the interpolator, we additionally assume that the
mesh elements are star-shaped with respect to every point of a ball of radius uniformly comparable to the
element diameter; see [1919, Lemma 7.12] for the Hilbertian case. Boundary faces lying on mΩ and internal
faces contained in Ω are collected in the sets F b

ℎ
and F i

ℎ
, respectively. For every mesh element ) ∈ Tℎ,

we denote by F) the subset of Fℎ containing the faces that lie on the boundary m) of ) . For every face
� ∈ Fℎ, we denote by T� the subset of Tℎ containing the one (if � ∈ F b

ℎ
) or two (if � ∈ F i

ℎ
) elements

on whose boundary � lies. Finally, for each mesh element ) ∈ Tℎ and face � ∈ F) , n) � denotes the
(constant) unit vector normal to � pointing out of ) .

Our focus is on the ℎ-convergence analysis, so we consider a sequence of refined meshes that is
regular in the sense of [1919, Definition 1.9] with regularity parameter uniformly bounded away from zero.
The mesh regularity assumption implies, in particular, that the diameter of a mesh element and those of
its faces are comparable uniformly in ℎ and that the number of faces of one element is bounded above by
an integer independent of ℎ.
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To avoid the proliferation of generic constants, we write henceforth 0 . 1 (resp., 0 & 1) for
the inequality 0 ≤ �1 (resp., 0 ≥ �1) with real number � > 0 independent of ℎ, of the constants
fde, fhc, fsm in Assumption 11, and, for local inequalities, of the mesh element or face on which the
inequality holds. We also write 0 ' 1 to mean 0 . 1 and 1 . 0. The dependencies of the hidden
constants are further specified when needed.

3.2 Projectors and broken spaces
Given - ∈ Tℎ ∪ Fℎ and ; ∈ N, we denote by P; (-,R) the space spanned by the restriction to - of scalar-
valued, 3-variate polynomials of total degree ≤ ;. The local !2-orthogonal projector c;

-
: !1(-,R) →

P; (-,R) is defined such that, for all E ∈ !1(-,R),∫
-

(c;-E − E)F = 0 ∀F ∈ P; (-,R). (10)

When applied to vector-valued fields in !1(-,R3) (resp., tensor-valued fields in !1(-,R3×3)), the !2-
orthogonal projector mapping on P; (-,R3) (resp., P; (-,R3×3)) acts component-wise and is denoted in
boldface font. Let) ∈ Tℎ, = ∈ [0, ;+1] and< ∈ [0, =]. The following (=, A, <)-approximation properties
of c;

)
hold: For any E ∈ ,=,A (),R),

|E − c;) E |,<,A () ,R) . ℎ
=−<
) |E |, =,A () ,R) . (11a)

The above property will also be used in what follows with A replaced by its conjugate exponent A ′. If,
additionally, = ≥ 1, we have the following (=, A ′)-trace approximation property:

‖E − c;) E‖!A′ (m) ,R) . ℎ
=− 1

A′
)
|E |, =,A′ () ,R) . (11b)

The hidden constants in (1111) are independent of ℎ and ) , but possibly depend on 3, the mesh regularity
parameter, ;, =, and A . The approximation properties (1111) are proved for integer = and < in [1818, Appendix
A.2] (see also [1919, Theorem 1.45]), and can be extended to non-integer values using standard interpolation
techniques (see, e.g., [3838, Theorem 5.1]).

At the global level, for a given integer ; ≥ 0, we define the broken polynomial space P; (Tℎ,R) spanned
by functions in !1(Ω,R) whose restriction to each mesh element ) ∈ Tℎ lies in P; (),R), and we define
the global !2-orthogonal projector c;

ℎ
: !1(Ω,R) → P; (Tℎ,R) such that, for all E ∈ !1(Ω,R) and all

) ∈ Tℎ,
(c;ℎE)|) ≔ c;) E|) .

Broken polynomial spaces are subspaces of the broken Sobolev spaces

,=,A (Tℎ,R) ≔
{
E ∈ !A (Ω,R) : E|) ∈ ,=,A (),R) ∀) ∈ Tℎ

}
.

We define the broken gradient operator ∇ℎ : ,1,1(Tℎ,R) → !1(Ω,R3) such that, for all E ∈ ,1,1(Tℎ,R)
and all ) ∈ Tℎ, (∇ℎE) |) ≔ ∇E |) . We define similarly the broken gradient acting on vector fields along
with its symmetric part ∇s,ℎ, as well as the broken divergence operator ∇ℎ · acting on tensor fields. The
global !2-orthogonal projector 0;

ℎ
mapping vector-valued fields in !1(Ω,R3) (resp., tensor-valued fields

in !1(Ω,R3×3)) on P; (Tℎ,R3) (resp., P; (Tℎ,R3×3)) is obtained applying c;ℎ component-wise.

3.3 Discrete spaces and norms
Let an integer : ≥ 1 be fixed. The HHO space of discrete velocity unknowns is

[:
ℎ
B

{
v
ℎ
= ((v) )) ∈Tℎ , (v� )� ∈Fℎ ) : v) ∈ P: (),R3) ∀) ∈ Tℎ and v� ∈ P: (�,R3) ∀� ∈ Fℎ

}
.

The interpolation operator O:
ℎ

: ,1,1(Ω,R3) → [:
ℎ
maps a function v ∈ ,1,1(Ω,R3) on the vector of

discrete unknowns O:
ℎ
v defined as follows:

O:ℎv B ((0
:
) v|) )) ∈Tℎ , (0:� v|� )� ∈Fℎ ).
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For all ) ∈ Tℎ, we denote by [:
)
and O:

)
the restrictions of [:

ℎ
and O:

ℎ
to ) , respectively and, for all

v
ℎ
∈ [:

ℎ
, we let v

)
B (v) , (v� )� ∈F) ) ∈ [:) denote the vector collecting the discrete unknowns attached

to ) and its faces. Furthermore, for all v
ℎ
∈ [:

ℎ
, we define the broken polynomial field vℎ ∈ P: (Tℎ,R3)

obtained patching element unknowns, that is,

(vℎ)|) B v) ∀) ∈ Tℎ . (12)

We define on[:
ℎ
the,1,A (Ω,R3)-like strain seminorm ‖·‖A ,ℎ such that, for all vℎ ∈ [

:
ℎ
,

‖v
ℎ
‖A ,ℎ B

( ∑
) ∈Tℎ

‖v
)
‖AA ,)

) 1
A

(13a)

with ‖v
)
‖A ,) B

(
‖∇sv) ‖A!A () ,R3×3) +

∑
� ∈F)

ℎ1−A
� ‖v� − v) ‖A!A (�,R3)

) 1
A

for all ) ∈ Tℎ. (13b)

The following boundedness property for O:
)
can be proved adapting the arguments of [1919, Proposition 6.24]

and requires the star-shaped assumption on the mesh elements: For all ) ∈ Tℎ and all v ∈ ,1,A (),R3),

‖O:) v‖A ,) . |v |, 1,A () ,R3) , (14)

where the hidden constant depends only on 3, the mesh regularity parameter, A , and : .
The discrete velocity and pressure are sought in the following spaces, which embed, respectively, the

homogeneous boundary condition for the velocity and the zero-average constraint for the pressure:

[:
ℎ,0 B

{
v
ℎ
= ((v) )) ∈Tℎ , (v� )� ∈Fℎ ) ∈ [:ℎ : v� = 0 ∀� ∈ F b

ℎ

}
, %:ℎ B P

: (Tℎ,R) ∩ %.

By the discrete Korn inequality proved in Lemma 1515 below, ‖·‖A ,ℎ is a norm on[:
ℎ,0 (the proof is obtained

reasoning as in [1919, Corollary 2.16]).

4 HHO scheme
In this section, after introducing the discrete counterparts of the viscous and pressure-velocity coupling
terms, we state the discrete problem along with the main results.

4.1 Viscous term
4.1.1 Local symmetric gradient reconstruction

For all ) ∈ Tℎ, we define the local symmetric gradient reconstruction G:
s,) : [:

)
→ P: (),R3×3s ) such

that, for all v
)
∈ [:

)
,∫

)

G:
s,) v) : 3 =

∫
)

∇sv) : 3 +
∑
� ∈F)

∫
�

(v� − v) ) · (3n) � ) ∀3 ∈ P: (),R3×3s ). (15)

This symmetric gradient reconstruction, originally introduced in [1313, Section 4.2], is designed so that the
following relation holds (see, e.g., [1414, Proposition 5] or [1919, Section 7.2.5]): For all v ∈ ,1,1(),R3),

G:
s,) (O:) v) = 0:) (∇sv). (16)

The global symmetric gradient reconstruction G:
s,ℎ : [:

ℎ
→ P: (Tℎ,R3×3s ) is obtained patching the local

contributions, that is, for all v
ℎ
∈ [:

ℎ
, we set

(G:
s,ℎvℎ)|) ≔ G:

s,) v) ∀) ∈ Tℎ . (17)
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4.1.2 Discrete viscous function

The discrete counterpart of the function 0 defined by (77) is aℎ : [:
ℎ
× [:

ℎ
→ R such that, for all

v
ℎ
, w

ℎ
∈ [:

ℎ
,

aℎ (wℎ, vℎ) B
∫
Ω

2(·,G:
s,ℎwℎ) : G:

s,ℎvℎ + Wsℎ (wℎ, vℎ). (18)

In the above definition, recalling (44), W is a stabilization parameter such that

W ∈ [fsm, fhc], (19)

while the stabilization function sℎ : [:
ℎ
×[:

ℎ
→ R is such that, for all v

ℎ
, w

ℎ
∈ [:

ℎ
,

sℎ (wℎ, vℎ) B
∑
) ∈Tℎ

s) (w) , v) ), (20)

where the local contributions are assumed to satisfy the following assumption.

Assumption 2 (Local stabilization function). For all ) ∈ Tℎ, the local stabilization function s) :
[:
)
× [:

)
→ R is linear in its second argument and satisfies the following properties, with hidden

constants independent of both ℎ and ) :

1. Stability and boundedness. Recalling the definition (13b13b) of the local ‖·‖A ,) -seminorm, for all
v
)
∈ [:

)
it holds:

‖G:
s,) v) ‖

A

!A () ,R3×3) + s) (v) , v) ) ' ‖v) ‖
A
A ,) . (21)

2. Polynomial consistency. For all w ∈ P:+1(),R3) and all v
)
∈ [:

)
,

s) (O:) w, v) ) = 0. (22)

3. Hölder continuity. For all u
)
, v
)
, w

)
∈ [:

)
, it holds, setting e

)
≔ u

)
− w

)
,��s) (u) , v) ) − s) (w) , v) )

�� . (
s) (u) , u) ) + s) (w) , w) )

) A−Ã
A s) (e) , e) )

Ã−1
A s) (v) , v) )

1
A . (23)

4. Strong monotonicity. For all u
)
, w

)
∈ [:

)
, it holds, setting again e

)
≔ u

)
− w

)
,(

s) (u) , e) ) − s) (w) , e) )
) (

s) (u) , u) ) + s) (w) , w) )
) 2−Ã
A & s) (e) , e) )

A+2−Ã
A . (24)

Remark 7 (Comparison with the linear case). If A = 2, s) can be any symmetric bilinear form satisfying
(2121)–(2222). Indeed, property (2323) coincides in this case with the Cauchy–Schwarz inequality, while, by
linearity of s) , property (2424) holds with the equal sign.

4.1.3 An example of viscous stabilization function

Taking inspiration from the scalar case (cf., e.g., [1818, Eq. (4.11c)]), a local stabilization function that
matches Assumption 22 can be obtained setting, for all v

)
, w

)
∈ [:

)
,

s) (w) , v) ) B
∫
m)

|�:
m)

w
)
|A−2�:

m)
w
)
· �:

m)
v
)
, (25)

where, denoting by P: (F) ,R3) the space of vector-valued broken polynomials of total degree ≤ : on
F) , the boundary residual operator �:m) : [:

)
→ P: (F) ,R3) is such that, for all v) ∈ [

:
)
,

(�:
m)

v
)
)|� ≔ ℎ

− 1
A′

�

(
0:� (r:+1) v

)
− v� ) − 0:) (r:+1) v

)
− v) )

)
∀� ∈ F) ,
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with velocity reconstruction r:+1
)

: [:
)
→ P:+1(),R3) such that∫

)

(∇sr:+1) v
)
−G:

s,) v) ) : ∇sw = 0 ∀w ∈ P:+1(),R3),∫
)

r:+1) v
)
=

∫
)

v) , and
∫
)

∇ssr:+1) v
)
=

1
2

∑
� ∈F)

∫
�

(v� ⊗ n) � − n) � ⊗ v� ).

Above, ∇ss denotes the skew-symmetric part of the gradient operator ∇ applied to vector fields and ⊗ is
the tensor product such that, for all x = (G8)1≤8≤3 and y = (H8)1≤8≤3 inR3 , x⊗ y ≔ (G8H 9)1≤8, 9≤3 ∈ R3×3 .

Lemma 8 (Stabilization function (2525)). The local stabilization function defined by (2525) satisfies Assump-
tion 22.

Proof. The proof of (2121) for A = 2 is given in [1313, Eq. (25)]. The result can be generalized to A ≠ 2
using the same arguments of [1818, Lemma 5.2]. Property (2222) is an immediate consequence of the fact
that �:

m)
(O:
)
w) = 0 for any w ∈ P:+1(),R3), which can be proved reasoning as in [1919, Proposition 2.6].

Let us prove (2323). First, we remark that, since the function U ↦→ UA−2 verifies the conditions in (73b73b)
below, we can apply Theorem 2222 to infer that the function R3 3 x ↦→ |x |A−2x satisfies for all x, y ∈ R3 ,��|x |A−2x − |y |A−2y

�� . (
|x |A + |y |A

) A−Ã
A |x − y |Ã−1, (26a)(

|x |A−2x − |y |A−2y
)
· (x − y)

(
|x |A + |y |A

) 2−Ã
A & |x − y |A+2−Ã . (26b)

Recalling (2525), we can write��s) (u) , v) ) − s) (w) , v) )
�� ≤ ∫

m)

��|�:
m)

u
)
|A−2�:

m)
u
)
− |�:

m)
w
)
|A−2�:

m)
w
)

�� |�:
m)

v
)
|

.

∫
m)

(
|�:
m)

u
)
|A + |�:

m)
w
)
|A
) A−Ã
A |�:

m)
e
)
|Ã−1 |�:

m)
v
)
|

≤
(
s) (u) , u) ) + s) (w) , w) )

) A−Ã
A s) (e) , e) )

Ã−1
A s) (v) , v) )

1
A ,

where we have used (26a26a) to pass to the second line and the (1; A
A−Ã ,

A
Ã−1 , A)-Hölder inequality to conclude.

Moving to (2424), (26b26b) and the (1; A+2−Ã2−Ã ,
A+2−Ã
A
)-Hölder inequality yield

s) (e) , e) )

=

∫
m)

|�:
m)

u
)
− �:

m)
w
)
|A

.

∫
m)

(
|�:
m)

u
)
|A + |�:

m)
w
)
|A
) 2−Ã
A+2−Ã

[(
|�:
m)

u
)
|A−2�:

m)
u
)
− |�:

m)
w
)
|A−2�:

m)
w
)

)
· �:

m)
e
)

] A
A+2−Ã

≤
(
s) (u) , u) ) + s) (w) , w) )

) 2−Ã
A+2−Ã

(
s) (u) , e) ) − s) (w) , e) )

) A
A+2−Ã . �

4.2 Pressure-velocity coupling
For all ) ∈ Tℎ, we define the local divergence reconstruction D:

)
: [:

)
→ P: (),R) by setting, for all

v
)
∈ [:

)
, D:

)
v
)
≔ tr(G:

s,) v) ). We have the following characterization of D:
)
: For all v

)
∈ [:

)
,∫

)

D:) v) @ =
∫
)

(∇·v) ) @ +
∑
� ∈F)

∫
�

(v� − v) ) · n) � @ ∀@ ∈ P: (),R), (27)

as can be checked writing (1515) for 3 = @I3 . Taking the trace of (1616), it is inferred that, for all ) ∈ Tℎ
and all v ∈ ,1,1(),R3), D:

)
(O:
)
v) = c:

)
(∇·v). The pressure-velocity coupling is realized by the bilinear

form bℎ : [:
ℎ
× P: (Tℎ,R) → R such that, for all (v

ℎ
, @ℎ) ∈ [:ℎ × P: (Tℎ,R), setting @) ≔ (@ℎ) |) for all

) ∈ Tℎ,
bℎ (vℎ, @ℎ) B −

∑
) ∈Tℎ

∫
)

D:) v) @) . (28)
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4.3 Discrete problem and main results
The discrete problem reads: Find (u

ℎ
, ?ℎ) ∈ [:ℎ,0 × %:ℎ such that

aℎ (uℎ, vℎ) + bℎ (vℎ, ?ℎ) =
∫
Ω

f · vℎ ∀v
ℎ
∈ [:

ℎ,0, (29a)

−bℎ (uℎ, @ℎ) = 0 ∀@ℎ ∈ %:ℎ . (29b)

Remark 9 (Discrete mass equation). The space of test functions in (29b29b) can be extended to P: (Tℎ,R)
since, for all v

ℎ
∈ [:

ℎ,0, the divergence theorem together with the fact that v� = 0 for all � ∈ F b
ℎ
and∑

) ∈T�
∫
�
v� · n) � = 0 for all � ∈ F i

ℎ
, yield

bℎ (vℎ, 1) = −
∑
) ∈Tℎ

∑
� ∈F)

∫
�

v� · n) � = −
∑
� ∈Fi

ℎ

∑
) ∈T�

∫
�

v� · n) � = 0.

Remark 10 (Efficient implementation). When solving the system of nonlinear algebraic equations cor-
responding to (2929) by, e.g., the Newton algorithm, all element-based velocity unknowns and all but one
pressure unknown per element can be locally eliminated at each iteration by static condensation. As all
the computations are local, this procedure is an embarrassingly parallel task which can fully benefit from
multi-thread and multi-processor architectures. This implementation strategy has been described for the
linear Stokes problem in [2222, Section 6.2]. After further eliminating the boundary unknowns by strongly
enforcing the boundary condition (1c1c), we end up solving, at each iteration of the nonlinear solver, a linear
system of size 3card(F i

ℎ
)
(:+3−1
3−1

)
+ card(Tℎ). Concerning the interplay between the static condensation

strategy and the performance of ?-multilevel linear solvers, we refer to [1111].
In what follows, we state the main results for the HHO scheme (2929). The proofs are postponed to

Section 77.

Theorem 11 (Well-posedness). There exists a unique solution (u
ℎ
, ?ℎ) ∈ [:

ℎ,0 × %:ℎ to the discrete
problem (2929). Additionally, the following a priori bounds hold:

‖u
ℎ
‖A ,ℎ .

(
f−1

sm ‖ f ‖!A′ (Ω,R3)
) 1
A−1 +

(
f2−Ã

de f−1
sm ‖ f ‖!A′ (Ω,R3)

) 1
A+1−Ã

, (30a)

‖?ℎ ‖!A′ (Ω,R) . fhc

(
f−1

sm ‖ f ‖!A′ (Ω,R3) + f
|A−2 | (Ã−1)
de

(
f−1

sm ‖ f ‖!A′ (Ω,R3)
) Ã−1
A+1−Ã

)
. (30b)

Proof. See Section 7.27.2. �

Theorem 12 (Error estimate). Let (u, ?) ∈ [ × % and (u
ℎ
, ?ℎ) ∈ [:

ℎ,0 × %:ℎ solve (66) and (2929),
respectively. Assume the additional regularity u ∈ , :+2,A (Tℎ,R3), 2(·,∇su) ∈ ,1,A ′ (Ω,R3×3s ) ∩
, (:+1) (Ã−1) ,A ′ (Tℎ,R3×3s ), and ? ∈ ,1,A ′ (Ω,R) ∩, (:+1) (Ã−1) ,A ′ (Tℎ,R). Then, under Assumptions 11 and
22,

‖u
ℎ
− O:ℎu‖A ,ℎ . ℎ

(:+1) (Ã−1)
A+1−Ã

(
f−1

smN2−Ã
f N2,u, ?

) 1
A+1−Ã

, (31a)

‖?ℎ − c:ℎ?‖!A′ (Ω,R) . ℎ
(:+1) (Ã−1)N2,u, ? + ℎ

(:+1) (Ã−1)2
A+1−Ã fhcN |A−2 | (Ã−1)

f

(
f−1

smN2,u, ?

) Ã−1
A+1−Ã

, (31b)

where we have set, for the sake of brevity,

N2,u, ? ≔ fhc

(
fAde + |u |

A

, 1,A (Ω,R3)

) A−Ã
A |u |Ã−1

, :+2,A (Tℎ ,R3)

+ |2(·,∇su) |, (:+1) (Ã−1) ,A′ (Tℎ ,R3×3) + |? |, (:+1) (Ã−1) ,A′ (Tℎ ,R) ,

Nf B fde +
(
f−1

sm ‖ f ‖!A′ (Ω,R3)
) 1
A−1 +

(
f2−Ã

de f−1
sm ‖ f ‖!A′ (Ω,R3)

) 1
A+1−Ã

.
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Figure 1: Coarsest Cartesian, distorted triangular, and distorted Cartesian meshes used in Section 55.

Proof. See Section 7.37.3. �

Remark 13 (Orders of convergence). From (3131), neglecting higher-order terms, we infer asymptotic
convergence rates of O:vel B

(:+1) (Ã−1)
A+1−Ã for the velocity and O:pre B

(:+1) (Ã−1)2
A+1−Ã for the pressure, that is,

O:vel =

{
(: + 1) (A − 1) if A < 2,
:+1
A−1 if A ≥ 2,

and O:pre =

{
(: + 1) (A − 1)2 if A < 2,
:+1
A−1 if A ≥ 2.

(32)

Notice that, owing to the presence of higher-order terms in the right-hand sides of (3131), higher convergence
rates may be observed before attaining the asymptotic ones; see Section 55. The asymptotic order of
convergence for the velocity coincides with the one proved in [1717, Theorem 3.2] for HHO discretizations
of scalar Leray–Lions problems. We refer to [2020] for recent improvements on these estimates depending
on the degeneracy of the problem.

5 Numerical examples
In this section, we evaluate the numerical performance of the HHO method on a complete panel of
numerical test cases. We focus on the (`, 0, 1, A)-Carreau–Yasuda law (55) (corresponding to the power-
law model) with values of the exponent A ranging from 1.25 to 2.75. Our implementation relies on the
SpaFEDTe library (cf. https://spafedte.github.iohttps://spafedte.github.io).

5.1 Trigonometric solution
We begin by considering a manufactured solution to problem (11) in order to assess the convergence of
the method. We take Ω = (0, 1)2 and exact velocity u and pressure ? given by, respectively,

u(G1, G2) =
(
sin

(
c
2 G1

)
cos

(
c
2 G2

)
,− cos

(
c
2 G1

)
sin

(
c
2 G2

) )
, ?(G1, G2) = sin

(
c
2 G1

)
sin

(
c
2 G2

)
− 4
c2 .

The volumetric load f and the Dirichlet boundary condition are inferred from the exact solution. Con-
sidering ` = 1 and A ∈ {1.5, 1.75, . . . , 2.75}, this solution matches the assumptions required in Theorem
1212 for : = 1, except the case A = 1.5 for which 2(·,∇su) ∉ ,1,A ′ (Ω,R3×3s ). We consider the HHO
scheme for : = 1 on three mesh families, namely Cartesian orthogonal, distorted triangular, and distorted
Cartesian; see Figure 11. Overall, the results are in agreement with the theoretical predictions, and in
some cases the expected asymptotic orders of convergence are exceeded. Specifically, for A ≠ 2, the
convergence rates computed on the last refinement surpass in some cases the theoretical ones. As noticed
in Remark 1313, this suggests that the asymptotic order is still not attained. A similar phenomenon has
been observed on certain meshes for the ?-Laplace problem; see [1717, Section 3.5.2] and [2121, Section
3.7]. In some cases, we observe a better convergence for the velocity on distorted triangular meshes
than on Cartesian meshes. This phenomenon possibly results from the combination of two factors: on
one hand, the improved robustness of HHO methods with respect to elongated elements when compared
to classical discretization methods; on the other hand, the fact that unstructured triangular meshes have
more elements than Cartesian meshes for a given meshsize and lack privileged directions, which reduces
mesh bias. Further investigation is postponed to a future work.
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Figure 2: Numerical results for the test case of Section 55. The slopes indicate the order of convergence
expected from Theorem 1212, i.e. O1

vel = 2(A − 1) and O1
pre = 2(A − 1)2 for A ∈ {1.5, 1.75, 2}.
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Figure 3: Numerical results for the test case of Section 5.15.1. The slopes indicate the order of convergence
expected from Theorem 1212, i.e. O1
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pre =
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5.2 Lid-driven cavity flow
We next consider the lid-driven cavity flow, a well-known problem in fluid mechanics. The domain is the
unit square Ω = (0, 1)2, and we enforce a unit tangential velocity u = (1, 0) on the top edge (of equation
G2 = 1) and wall boundary conditions on the other edges. This boundary condition is incompatible with
the formulation (66), even generalized to non-homogeneous boundary conditions, since u ∉ ,1,A (Ω,R3).
However, this is a very classical test that demonstrates the quality of the method. We consider a low
Reynolds number Re ≔ 2

`
= 1. For A ∈ {1.25, 2, 2.75}, we solve the discrete problem on Cartesian and

distorted triangular meshes (cf. Figure 11) of approximate size 128× 128 for : = 1, and 16× 16 for : = 5.
This choice is meant to compare the low-order version of the method on a fine mesh with the high-order
version on a very coarse one. The corresponding total number of degrees of freedom is: 130048 for the
fine Cartesian mesh with : = 1; 5760 for the coarse Cartesian mesh with : = 5; 298676 for the fine
triangular mesh with : = 1; and 14196 for the coarse triangular mesh with : = 5. In the left column of
Figure 44 we display the velocity magnitude, while in the right column we plot the horizontal component
D1 of the velocity along the vertical centreline G1 =

1
2 (resp., vertical component D2 along the horizontal

centreline G2 =
1
2 ). The lines corresponding to : = 1 on the fine mesh and to : = 5 on the coarse mesh are

perfectly superimposed, regardless of the mesh family and of the value of A . This shows that, despite the
lack of regularity of the exact solution, high-order versions of the scheme on very coarse meshes deliver
similar results as low-order versions on very fine grids. Furthermore, we observe significant differences
in the behavior of the flow according to A , coherent with the expected physical behavior. In particular,
the viscous effects increase with A , as reflected by the size of the central vortex.

6 Discrete Korn inequality
We prove in this section a discrete counterpart of the following Korn inequality (see [2929, Theorem 1])
that will be needed in the analysis: There is �K > 0 depending only on Ω and A such that for all v ∈ [,

‖v‖, 1,A (Ω,R3) ≤ �K‖∇sv‖!A (Ω,R3×3) . (33)

We start by recalling the following preliminary result concerning the node-averaging interpolator (some-
times called Oswald interpolator). Let Tℎ be a matching simplicial submesh ofMℎ in the sense of [1919,
Definition 1.8]. The node-averaging operator O:av,ℎ : P: (Tℎ,R3) → P: (Tℎ,R3) ∩,1,A (Ω,R3) is such
that, for all vℎ ∈ P: (Tℎ,R3) and all Lagrange node + of Tℎ, denoting by T+ the set of simplices sharing
+ ,

(O:av,ℎvℎ) (+) ≔
{

1
card(TV)

∑
3∈T+ vℎ |3 (+) if + ∈ Ω,

0 if + ∈ mΩ.

For all � ∈ F i
ℎ
, denote by )1, )2 ∈ Tℎ the elements sharing �, taken in an arbitrary but fixed order. We

define the jump operator such that, for any function v ∈ ,1,1(Tℎ,R3), [v]� ≔ (v |)1
) |� − (v |)2

) |� . This
definition is extended to boundary faces � ∈ F b

ℎ
by setting [v]� ≔ v|� .

Proposition 14 (Boundedness of the node-averaging operator). For all vℎ ∈ P: (Tℎ,R3), it holds

|vℎ − O:av,ℎvℎ |
A

, 1,A (Tℎ ,R3) .
∑
� ∈Fℎ

ℎ1−A
� ‖ [vℎ]� ‖A!A (�,R3) . (34)

Proof. Combining [1919, Eq. (4.13)] (which corresponds to (3434) for A = 2) with the local Lebesgue
embeddings of [1919, Lemma 1.25] (see also [1818, Lemma 5.1]) gives, for any ) ∈ Tℎ,

‖vℎ − O:av,ℎvℎ ‖
A

!A () ,R3) .
∑

� ∈FV,)

ℎ� ‖ [vℎ]� ‖A!A (�,R3) , (35)

where FV ,) collects the faces whose closure has non-empty intersection with ) . Using the local inverse
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Figure 4: Numerical results for the test case of Section 5.25.2: lid-driven cavity flow. Left: velocity
magnitude contours (15 equispaced values in the range [0, 1]). Computations on a Cartesian mesh of
size 128 × 128 with : = 5. Right: horizontal component D1 of the velocity along the vertical centreline
G1 =

1
2 and vertical component D2 of the velocity along the horizontal centreline G2 =

1
2 .
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inequality of [1919, Lemma 1.28] (see also [1818, Eq. (A.1)]), we can write

|vℎ − O:av,ℎvℎ |
A

, 1,A (Tℎ ,R3) .
∑
) ∈Tℎ

ℎ−A) ‖vℎ − O:av,ℎvℎ ‖
A

!A () ,R3)

.
∑
) ∈Tℎ

∑
� ∈FV,)

ℎ1−A
� ‖ [vℎ]� ‖A!A (�,R3)

.
∑
� ∈Fℎ

∑
) ∈TV,�

ℎ1−A
� ‖ [vℎ]� ‖A!A (�,R3)

≤ max
� ∈Fℎ

card(TV ,� )
∑
� ∈Fℎ

ℎ1−A
� ‖ [vℎ]� ‖A!A (�,R3) ,

where we have used the fact that ℎ−A
)
≤ ℎ−A

�
along with inequality (3535) to pass to the second line, and we

have exchanged the sums after setting TV ,� B
{
) ∈ Tℎ : � ∩ ) ≠ ∅

}
for all � ∈ Fℎ to pass to the third

line. Observing that max� ∈Fℎ card(TV ,� ) . 1 (since, for any � ∈ Fℎ, card(TV ,� ) is bounded by the
left-hand side of [1919, Eq. (4.23)] written for any ) ∈ Tℎ to which � belongs), (3434) follows. �

The following inequalities between sums of powers will be often used in what follows without
necessarily recalling this fact explicitly each time. Let an integer = ≥ 1 and a real number < ∈ (0,∞) be
given. Then, for all 01, . . . , 0= ∈ (0,∞), we have

=−(<−1)	
=∑
8=1

0<8 ≤
(
=∑
8=1

08

)<
≤ =(<−1)⊕

=∑
8=1

0<8 . (36)

If < = 1, then (3636) holds with the equal sign. If < < 1, [4545, Eqs. (5) and (3)] with U = 1 and V = < give
=<−1 ∑=

8=1 0
<
8
≤

(∑=
8=1 08

)< ≤ ∑=
8=1 0

<
8
. If, on the other hand, < > 1, [4545, Eqs. (3) and (5)] with U = <

and V = 1 give
∑=
8=1 0

<
8
≤

(∑=
8=1 08

)< ≤ =<−1 ∑=
8=1 0

<
8
. Gathering the above cases yields (3636).

Lemma 15. (Discrete Korn inequality) We have, for all v
ℎ
∈ [:

ℎ,0, recalling the notation (1212),

‖vℎ ‖A!A (Ω,R3) + |vℎ |
A

, 1,A (Tℎ ,R3) . ‖vℎ ‖
A
A ,ℎ . (37)

Proof. Let v
ℎ
∈ [:

ℎ,0. Using a triangle inequality followed by (3636), we can write

|vℎ |A, 1,A (Tℎ ,R3) . |O
:
av,ℎvℎ |

A

, 1,A (Tℎ ,R3) + |vℎ − O:av,ℎvℎ |
A

, 1,A (Tℎ ,R3)

. ‖∇s(O:av,ℎvℎ)‖
A

!A (Ω,R3×3) + |vℎ − O:av,ℎvℎ |
A

, 1,A (Tℎ ,R3)

. ‖∇s,ℎvℎ ‖A!A (Ω,R3×3) + |vℎ − O:av,ℎvℎ |
A

, 1,A (Tℎ ,R3)

. ‖∇s,ℎvℎ ‖A!A (Ω,R3×3) +
∑
� ∈Fℎ

ℎ1−A
� ‖ [vℎ]� ‖A!A (�,R3) ,

where we have used the continuous Korn inequality (3333) to pass to the second line, we have inserted
±∇s,ℎvℎ into the first norm and used a triangle inequality followed by (3636) to pass to the third line, and
we have invoked the bound (3434) to conclude. Observing that, for any � ∈ Fℎ, | [vℎ]� | ≤

∑
) ∈T� |v� − v) |

by a triangle inequality, and using (3636), we can continue writing

|vℎ |A, 1,A (Tℎ ,R3) . ‖∇s,ℎvℎ ‖A!A (Ω,R3×3) +
∑
� ∈Fℎ

∑
) ∈T�

ℎ1−A
� ‖v� − v) ‖A!A (�,R3) = ‖vℎ ‖

A
A ,ℎ,

where we have exchanged the sums over faces and elements and recalled definition (13a13a) to conclude.
This proves the bound for the second term in the left-hand side of (3737). Combining this result with the
global discrete Sobolev embeddings of [1818, Proposition 5.4] yields the bound for the first term in (3737). �
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7 Well-posedness and convergence analysis
In this section, after studying the stabilization function sℎ, we prove the main results stated in Section 4.34.3.

7.1 Properties of the stabilization function
Lemma 16 (Consistency of s) ). For any ) ∈ Tℎ and any s) satisfying Assumption 22, it holds, for all
w ∈ , :+2,A (),R3) and all v

)
∈ [:

)
,

|s) (O:) w, v) ) | . ℎ
(:+1) (Ã−1)
)

|w |A−Ã
, 1,A () ,R3) |w |

Ã−1
, :+2,A () ,R3) ‖v) ‖A ,) , (38)

where the hidden constant is independent of ℎ, ) , and w.

Proof. The proof adapts the arguments of [1919, Propositon 2.14]. Using the polynomial consistency
property (2222), we can write

|s) (O:) w, v) ) | = |s) (O
:
) w, v) ) − s) (O:) (0

:+1
) w), v

)
) |

. s) (O:) w, O
:
) w)

A−Ã
A s) (O:) (w − 0:+1) w), O:) (w − 0:+1) w)) Ã−1

A s) (v) , v) )
1
A

. ‖O:) w‖
A−Ã
A ,) ‖O:) (w − 0:+1) w)‖Ã−1

A ,) ‖v) ‖A ,)
. |w |A−Ã

, 1,A () ,R3) |w − 0:+1) w |Ã−1
, 1,A () ,R3) ‖v) ‖A ,)

. ℎ (:+1) (Ã−1)
)

|w |A−Ã
, 1,A () ,R3) |w |

Ã−1
, :+2,A () ,R3) ‖v) ‖A ,) ,

where we have used the Hölder continuity (2323) and observed that, by the consistency property (2222),
s) (O:) (0:+1)

w), O:
)
(0:+1
)

w)) = 0 to pass to the second line, we have used the boundedness property (2121)
to pass to the third line, the boundedness (1414) of O:

)
to pass to the fourth line, and the (: + 2, A, 1)-

approximation property (11a11a) of 0:+1
)

to conclude. �

In what follows, we will need generalized versions of the continuous and discrete Hölder inequalities,
recalled hereafter for the sake of convenience. Let - ⊂ R3 be measurable, = ∈ N∗, and let C, ?1, . . . , ?= ∈
(0,∞] be such that

∑=
8=1

1
?8
= 1

C
. The continuous (C; ?1, . . . , ?=)-Hölder inequality reads: For any

( 51, . . . , 5=) ∈
>=
8=1 !

?8 (-,R), 




 =∏
8=1

58







!C (-,R)

≤
=∏
8=1
‖ 58 ‖!?8 (-,R) . (39)

Let < ∈ N∗. For all 5 : {1, . . . , <} → R and all @ ∈ [1,∞), setting ‖ 5 ‖@ B
(∑<

8=1 | 5 (8) |@
) 1
@ , and

‖ 5 ‖∞ B max1≤8≤< | 5 (8) |, the discrete (C; ?1, . . . , ?=)-Hölder inequality reads: For any 51, . . . , 5= :
{1, . . . , <} → R, 




 =∏

8=1
58







C

≤
=∏
8=1
‖ 58 ‖?8 . (40)

Proposition 17 (Properties of sℎ). Let sℎ be given by (2020) with, for all ) ∈ Tℎ, s) satisfying Assumption
22. Then it holds, for all v

ℎ
∈ [:

ℎ
,

‖G:
s,ℎvℎ ‖

A

!A (Ω,R3×3) + sℎ (vℎ, vℎ) ' ‖vℎ ‖
A
A ,ℎ . (41a)

Furthermore, for all u
ℎ
, v
ℎ
, w

ℎ
∈ [:

ℎ
it holds, setting e

ℎ
≔ u

ℎ
− w

ℎ
,��sℎ (uℎ, vℎ) − sℎ (wℎ, vℎ)

�� . (
sℎ (uℎ, uℎ) + sℎ (wℎ, wℎ)

) A−Ã
A sℎ (eℎ, eℎ)

Ã−1
A sℎ (vℎ, vℎ)

1
A , (41b)(

sℎ (uℎ, eℎ) − sℎ (wℎ, eℎ)
) (

sℎ (uℎ, uℎ) + sℎ (wℎ, wℎ)
) 2−Ã
A & sℎ (eℎ, eℎ)

A+2−Ã
A . (41c)
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Finally, for any w ∈ [ ∩, :+2,A (Tℎ,R3), it holds

sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
sℎ (O:ℎw, vℎ) . ℎ

(:+1) (Ã−1) |w |A−Ã
, 1,A (Ω,R3) |w |

Ã−1
, :+2,A (Tℎ ,R3) . (42)

Above, the hidden constants are independent of ℎ and of the arguments of sℎ.

Proof. For the sake of conciseness, we only sketch the proof and leave the details to the reader. Summing
(2121) over ) ∈ Tℎ immediately yields (41a41a). The Hölder continuity property (41b41b) follows applying
to the quantity in the left-hand side triangle inequalities, using (2323), and concluding with a discrete
(1; A

A−Ã ,
A
Ã−1 , A)-Hölder inequality. Moving to (41c41c), starting from |sℎ (eℎ, eℎ) |, we use (2424) and apply a

discrete (1; A+2−Ã2−Ã ,
A+2−Ã
A
)-Hölder inequality to conclude. Finally, to prove (4242) we start from sℎ (O:ℎw, vℎ),

expand this quantity according to (2020), use, for all) ∈ Tℎ, the local consistency property (3838) together with
ℎ) ≤ ℎ, invoke the discrete (1; A

A−Ã ,
A
Ã−1 , A)-Hölder inequality, and pass to the supremum to conclude. �

7.2 Well-posedness
In this section, after proving Hölder continuity and strong monotonicity properties for the discrete viscous
function aℎ and the inf-sup stability of the pressure-velocity coupling bilinear form bℎ, we prove Theorem
1111.

7.2.1 Hölder continuity and strong monotonicity of the viscous function

Lemma 18 (Hölder continuity and strong monotonicity of aℎ). For all uℎ, vℎ, wℎ ∈ [
:
ℎ
, setting e

ℎ
≔

u
ℎ
− w

ℎ
, it holds��aℎ (uℎ, vℎ) − aℎ (wℎ, vℎ)

�� . fhc

(
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) A−Ã
A ‖e

ℎ
‖Ã−1
A ,ℎ ‖vℎ ‖A ,ℎ, (43a)(

aℎ (uℎ, eℎ) − aℎ (wℎ, eℎ)
) (
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) 2−Ã
A

& fsm‖eℎ ‖
A+2−Ã
A ,ℎ . (43b)

Proof. (i) Hölder continuity. Using a Cauchy–Schwarz inequality followed by the Hölder continuity (3c3c)
of 2, we can write����∫

Ω

(
2(·,G:

s,ℎuℎ) − 2(·,G
:
s,ℎwℎ)

)
: G:

s,ℎvℎ

����
≤ fhc

∫
Ω

(
fAde + |G

:
s,ℎuℎ |

A
3×3 + |G

:
s,ℎwℎ |

A
3×3

) A−Ã
A |G:

s,ℎeℎ |
Ã−1
3×3 |G

:
s,ℎvℎ |3×3

. fhc

(
|Ω|3fAde + ‖G

:
s,ℎuℎ ‖

A

!A (Ω,R3×3) + ‖G
:
s,ℎwℎ ‖

A

!A (Ω,R3×3)

) A−Ã
A

× ‖G:
s,ℎeℎ ‖

Ã−1
!A (Ω,R3×3) ‖G

:
s,ℎvℎ ‖!A (Ω,R3×3)

. fhc

(
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) A−Ã
A ‖e

ℎ
‖Ã−1
A ,ℎ ‖vℎ ‖A ,ℎ,

(44)

where we have used the (1; A
A−Ã ,

A
Ã−1 , A)-Hölder inequality (3939) in the second bound and the global

seminorm equivalence (41a41a) together with the fact that |Ω|3 . 1 (since Ω is bounded) to conclude. For
the stabilization term, combining the Hölder continuity (41b41b) of sℎ and the seminorm equivalence (41a41a)
readily gives ��sℎ (uℎ, vℎ) − sℎ (wℎ, vℎ)

�� . (
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) A−Ã
A ‖e

ℎ
‖Ã−1
A ,ℎ ‖vℎ ‖A ,ℎ, (45)

where we have additionally noticed that fAde ≥ 0 to add this term to the quantity inside parentheses. Using
the definition (1818) of aℎ, a triangle inequality followed by (4444) and (4545), and recalling that W ≤ fhc (cf.
(1919)), (43a43a) follows.

17



(ii) Strong monotonicity. Using the strong monotonicity (3d3d) of 2 and the (1; A+2−Ã2−Ã ,
A+2−Ã
A
)-Hölder

inequality (3939), we get

f
A

A+2−Ã
sm ‖G:

s,ℎeℎ ‖
A

!A (Ω,R3×3)

≤
∫
Ω

(
fAde + |G

:
s,ℎuℎ |

A
3×3 + |G

:
s,ℎwℎ |

A
3×3

) 2−Ã
A+2−Ã

( (
2(·,G:

s,ℎuℎ) − 2(·,G
:
s,ℎwℎ)

)
: G:

s,ℎeℎ

) A
A+2−Ã

.
(
fAde + ‖G

:
s,ℎuℎ ‖

A

!A (Ω,R3×3) + ‖G
:
s,ℎwℎ ‖

A

!A (Ω,R3×3)

) 2−Ã
A+2−Ã

×
(∫
Ω

(
2(·,G:

s,ℎuℎ) − 2(·,G
:
s,ℎwℎ)

)
: G:

s,ℎeℎ

) A
A+2−Ã

.
(
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) 2−Ã
A+2−Ã

(∫
Ω

(
2(·,G:

s,ℎuℎ) − 2(·,G
:
s,ℎwℎ)

)
: G:

s,ℎeℎ

) A
A+2−Ã

,

(46)

where the conclusion follows from the global seminorm equivalence (41a41a). Additionally, using the strong
monotonicity (41c41c) of sℎ together with the fact that fsm ≤ W (cf. (1919)) and invoking again the seminorm
equivalence (41a41a), we readily obtain

f
A

A+2−Ã
sm sℎ (eℎ, eℎ) .

(
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) 2−Ã
A+2−Ã (

Wsℎ (uℎ, eℎ) − Wsℎ (wℎ, eℎ)
) A
A+2−Ã . (47)

Finally, combining again the norm equivalence (41a41a) with (4646) and (4747), and using (3636) yields

f
A

A+2−Ã
sm ‖e

ℎ
‖AA ,ℎ .

(
fAde + ‖uℎ ‖

A
A ,ℎ + ‖wℎ ‖

A
A ,ℎ

) 2−Ã
A+2−Ã (

aℎ (uℎ, eℎ) − aℎ (wℎ, eℎ)
) A
A+2−Ã .

Raising this inequality to the power A−2−Ã
A

yields (43b43b). �

7.2.2 Stability of the pressure-velocity coupling

Lemma 19 (Inf-sup stability of bℎ). It holds, for all @ℎ ∈ %:ℎ ,

‖@ℎ ‖!A′ (Ω,R) . sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
bℎ (vℎ, @ℎ), (48)

with hidden constant depending only on 3, : , A , Ω, and the mesh regularity parameter.

Proof. The proof follows the classical Fortin argument (cf., e.g., [99, Section 8.4]), adapted here to the
non-Hilbertian setting.

(i) Fortin operator. We need to prove that the following properties hold for any v ∈ ,1,A (Ω,R3):

‖O:ℎv‖A ,ℎ . |v |, 1,A (Ω,R3) , (49a)

bℎ (O:ℎv, @ℎ) = 1(v, @ℎ) ∀@ℎ ∈ P: (Tℎ,R). (49b)

Property (49a49a) is obtained by raising both sides of (1414) to the power A , summing over ) ∈ Tℎ, then taking
the Ath root of the resulting inequality. The proof of (49b49b) is given, e.g., in [1919, Lemma 8.12].

(ii) Inf-sup condition on bℎ. Let @ℎ ∈ %:ℎ and set 2ℎ B
∫
Ω
|@ℎ |A

′−2@ℎ. Using the triangle and Hölder
inequalities, we get

‖|@ℎ |A
′−2@ℎ − 2ℎ ‖!A (Ω,R) ≤ ‖@ℎ ‖A

′−1
!A
′ (Ω,R) + |2ℎ | |Ω|

1
A

3
≤ (1 + |Ω|3) ‖@ℎ ‖A

′−1
!A
′ (Ω,R) . ‖@ℎ ‖

A ′−1
!A
′ (Ω,R) , (50)

where we have used the fact that |2ℎ | ≤ ‖@ℎ ‖A
′−1
!A
′ (Ω,R) |Ω|

1
A′
3

along with 1
A
+ 1
A ′ = 1 in the second bound

and the fact that |Ω|3 . 1 to conclude. Thus, using the surjectivity of the continuous divergence operator
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∇· : [ → !A0 (Ω,R) ≔
{
@ ∈ !A (Ω,R) :

∫
Ω
@ = 0

}
, (c.f. [2727] and also [1010, Theorem 1]), we infer that

there exists v@ℎ ∈ [ such that

− ∇·v@ℎ = |@ℎ |A
′−2@ℎ − 2ℎ and |v@ℎ |, 1,A (Ω,R3) . ‖|@ℎ |A

′−2@ℎ − 2ℎ ‖!A (Ω,R) . (51)

Denote by $ the supremum in (4848). Using the fact that @ℎ has zero mean value over Ω, the equality in
(5151) together with the definition (77) of 1, and the second Fortin property (49b49b), we have

‖@ℎ ‖A
′

!A
′ (Ω,R)=

∫
Ω

(
|@ℎ |A

′−2@ℎ − 2ℎ
)
@ℎ = 1(v@ℎ , @ℎ) = bℎ (O:ℎv@ℎ , @ℎ) ≤ $‖O:ℎv@ℎ ‖A ,ℎ . $‖@ℎ ‖A

′−1
!A
′ (Ω,R) ,

where, to conclude, we have used (49a49a) followed by (5151) and (5050). Simplifying yields (4848). �

7.2.3 Proof of Theorem 1111

Proof of Theorem 1111. (i) Existence. Denote by %:,∗
ℎ

the dual space of %:
ℎ
and let �ℎ : [:

ℎ,0 → %
:,∗
ℎ

be
such that, for all v

ℎ
∈ [:

ℎ,0,

〈�ℎvℎ, @ℎ〉 B −bℎ (vℎ, @ℎ) ∀@ℎ ∈ %:ℎ .

Here and in what follows, 〈·, ·〉 denotes the appropriate duality pairing as inferred from its arguments.
Define the following subspace of [:

ℎ,0 spanned by vectors of discrete unknowns with zero discrete
divergence:

]:
ℎ
≔ Ker(�ℎ) =

{
v
ℎ
∈ [:

ℎ,0 : bℎ (vℎ, @ℎ) = 0 ∀@ℎ ∈ %:ℎ
}
, (52)

and consider the following problem: Find u
ℎ
∈ ]:

ℎ
such that

aℎ (uℎ, vℎ) =
∫
Ω

f · vℎ ∀v
ℎ
∈ ]:

ℎ
. (53)

Existence of a solution to this problem for a fixed ℎ can be proved adapting the arguments of [1818, Theorem
4.5]. Specifically, equip]:

ℎ
with an inner product (·, ·)] ,ℎ (which need not be further specified), denote

by ‖·‖] ,ℎ the induced norm, and let�ℎ : ]:
ℎ
→ ]:

ℎ
be such that, for all w

ℎ
∈ ]:

ℎ
, (�ℎ (wℎ), vℎ)] ,ℎ =

aℎ (wℎ, vℎ) for all vℎ ∈ ]:
ℎ
. The strong monotonicity (43b43b) of aℎ yields, for any v

ℎ
∈ ]:

ℎ
such that

‖v
ℎ
‖A ,ℎ ≥ fde,

(�ℎ (vℎ), vℎ)] ,ℎ ≥ fsm(fAde + ‖vℎ ‖
A
A ,ℎ)

Ã−2
A ‖v

ℎ
‖A+2−ÃA ,ℎ & fsm‖vℎ ‖

A
A ,ℎ ≥ �

Afsm‖vℎ ‖
A
] ,ℎ,

where � denotes the constant (possibly depending on ℎ) in the equivalence of the norms ‖·‖A ,ℎ and
‖·‖] ,ℎ (which holds since ]:

ℎ
is finite-dimensional). This shows that �ℎ is coercive hence, by [1616,

Theorem 3.3], surjective. Let now w
ℎ
∈ ]:

ℎ
be such that (w

ℎ
, v
ℎ
)] ,ℎ =

∫
Ω
f · vℎ for all vℎ ∈ ]

:
ℎ
. By

the surjectivity of�ℎ, there exists uℎ ∈ ]
:
ℎ
such that�ℎ (uℎ) = w

ℎ
which, by definition of w

ℎ
and�ℎ,

is a solution to the discrete problem (5353).
The proof of existence now continues as in the linear case; see, e.g., [99, Theorem 4.2.1]. Denote by

[:,∗
ℎ,0 the dual space of[

:
ℎ,0 and consider the linear mapping ℓℎ ∈ [:,∗ℎ,0 such that, for all vℎ ∈ [

:
ℎ,0,

〈ℓℎ, vℎ〉 ≔
∫
Ω

f · vℎ − aℎ (uℎ, vℎ).

Thanks to (5353), ℓℎ vanishes identically for every v
ℎ
∈ ]:

ℎ
, that is to say, ℓℎ lies in the polar space of]:

ℎ

which, denoting by �∗
ℎ

: %:
ℎ
→ [:,∗

ℎ,0 the adjoint operator of �ℎ, coincides in our case with Im(�∗
ℎ
) (see,

e.g., [99, Theorem 4.14]). Hence, ℓℎ ∈ Im(�∗
ℎ
), and there exists therefore a ?ℎ ∈ %:ℎ such that �

∗
ℎ
?ℎ = ℓℎ.

This means that, for all v
ℎ
∈ [:

ℎ,0,

bℎ (vℎ, ?ℎ) = 〈�
∗
ℎ?ℎ, vℎ〉 = 〈ℓℎ, vℎ〉 =

∫
Ω

f · vℎ − aℎ (uℎ, vℎ),
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i.e., the (u
ℎ
, ?ℎ) satisfies the discrete momentum equation (29a29a). On the other hand, since u

ℎ
∈ ]:

ℎ
, we

also have, by the definition (5252) of ]:
ℎ
, bℎ (uℎ, @ℎ) = 0 for all @ℎ ∈ %:ℎ , which shows that the discrete

mass equation (29b29b) is also verified. In conclusion, (u
ℎ
, ?ℎ) ∈ [:ℎ,0 × %:ℎ solves (2929).

(ii) Uniqueness. We start by proving uniqueness for the velocity. Let (u
ℎ
, ?ℎ), (u′ℎ, ?

′
ℎ
) ∈ [:

ℎ,0 × %:ℎ be
two solutions of (2929). Making v

ℎ
= u

ℎ
− u′

ℎ
in (29a29a) written first for (u

ℎ
, ?ℎ) then for (u′

ℎ
, ?′
ℎ
), then

taking the difference and observing that bℎ (uℎ − u′ℎ, ?ℎ) = bℎ (uℎ − u′ℎ, ?
′
ℎ
) = 0 by (29b29b), we infer that

aℎ (uℎ, uℎ − u
′
ℎ
) − aℎ (u′ℎ, uℎ − u

′
ℎ
) = 0.

Thus, the strong monotonicity (43b43b) of aℎ yields ‖uℎ − u′
ℎ
‖A ,ℎ = 0, which implies u

ℎ
= u′

ℎ
since ‖·‖A ,ℎ

is a norm on [:
ℎ,0. Moreover, using the inf-sup stability (4848) of bℎ and (29a29a) written first for u

ℎ
then for

u′
ℎ
, we get

‖?ℎ − ?′ℎ ‖!A′ (Ω,R) . sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
bℎ (vℎ, ?ℎ − ?

′
ℎ)

= sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1

(
aℎ (u′ℎ, vℎ) − aℎ (uℎ, vℎ)

)
= 0,

hence ?ℎ = ?′ℎ.

(iii) A priori estimates. Using the strong monotonicity (43b43b) of aℎ (with wℎ = 0), equation (29a29a) together
with (29b29b), and the Hölder inequality together with the discrete Korn inequality (3737), we obtain

fsm
(
fAde + ‖uℎ ‖

A
A ,ℎ

) Ã−2
A ‖u

ℎ
‖A+2−ÃA ,ℎ . aℎ (uℎ, uℎ) =

∫
Ω

f · uℎ . ‖ f ‖!A′ (Ω,R3) ‖uℎ ‖A ,ℎ . (54)

We then conclude as in the continuous case to infer (30a30a) (see Remark 66). To prove the bound (30b30b) on
the pressure, we use the inf-sup stability (4848) of bℎ to write

‖?ℎ ‖!A′ (Ω,R) . sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
bℎ (vℎ, ?ℎ)

= sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1

(∫
Ω

f · vℎ − aℎ (uℎ, vℎ)
)

. ‖ f ‖!A′ (Ω,R3) + fhc(fAde + ‖uℎ ‖
A
A ,ℎ)

A−Ã
A ‖u

ℎ
‖Ã−1
A ,ℎ

. fhc

(
f−1

sm ‖ f ‖!A′ (Ω,R3) + f
|A−2 | (Ã−1)
de

(
f−1

sm ‖ f ‖!A′ (Ω,R3)
) Ã−1
A+1−Ã

)
,

where we have used the discrete momentum equation (29a29a) to pass to the second line, the Hölder and
discrete Korn (3737) inequalities together with the Hölder continuity (43a43a) of aℎ to pass to the third line,
and the a priori bound (30a30a) on the velocity together with fhc

fsm
≥ 1 (see (44)) to conclude. �

7.3 Error estimate
In this section, after studying the consistency of the viscous and pressure-velocity coupling terms, we
prove Theorem 1212.

7.3.1 Consistency of the viscous function

Lemma 20 (Consistency of aℎ). Let w ∈ [∩, :+2,A (Tℎ,R3) be such that 2(·,∇sw) ∈ ,1,A ′ (Ω,R3×3s ) ∩
, (:+1) (Ã−1) ,A ′ (Tℎ,R3×3s ). Define the viscous consistency error linear form Ea,ℎ (w; ·) : [:

ℎ
→ R such

that, for all v
ℎ
∈ [:

ℎ
,

Ea,ℎ (w; v
ℎ
) B

∫
Ω

(∇·2(·,∇sw)) · vℎ + aℎ (O:ℎw, vℎ). (55)
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Then, under Assumptions 11 and 22, we have

sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
Ea,ℎ (w; v

ℎ
) . ℎ (:+1) (Ã−1)

[
fhc

(
fAde + |w |

A

, 1,A (Ω,R3)

) A−Ã
A |w |Ã−1

, :+2,A (Tℎ ,R3)

+ |2(·,∇sw) |, (:+1) (Ã−1) ,A′ (Tℎ ,R3×3)

]
. (56)

Proof. Let ŵ
ℎ
B O:

ℎ
w and v

ℎ
∈ [:

ℎ,0. Expanding aℎ according to its definition (1818) in the expression

(5555) of Ea,ℎ, inserting ±
(∫
Ω
2(·,∇sw) : G:

s,ℎvℎ +
∫
Ω
0:
ℎ
2(·,∇sw) : G:

s,ℎvℎ

)
, and rearranging, we obtain

Ea,ℎ (w; v
ℎ
) =∫

Ω

(∇·2(·,∇sw)) · vℎ+
∫
Ω

0:ℎ2(·,∇sw) : G:
s,ℎvℎ︸                                                            ︷︷                                                            ︸

T1

+
((((

(((
((((

(((
((((∫

Ω

(
2(·,∇sw) − 0:ℎ2(·,∇sw)

)
: G:

s,ℎvℎ

+
∫
Ω

(
2(·,G:

s,ℎŵℎ) − 2(·,∇sw)
)

: G:
s,ℎvℎ︸                                                ︷︷                                                ︸

T2

+ Wsℎ (ŵℎ, vℎ)︸         ︷︷         ︸
T3

, (57)

where have used the definition (1010) of 0:
ℎ
together with the fact that G:

s,ℎvℎ ∈ P: (Tℎ,R3×3s ) in the
cancellation. We proceed to estimate the terms in the right-hand side. For the first term, we start by
noticing that ∑

) ∈Tℎ

∑
� ∈F)

∫
�

v� · (2(·,∇sw)n) � ) = 0 (58)

as a consequence of the continuity of the normal trace of 2(·,∇sw) together with the single-valuedness
of v� across each interface � ∈ F i

ℎ
and of the fact that v� = 0 for every boundary face � ∈ F b

ℎ
. Using

an element by element integration by parts on the first term of T1 along with the definitions (1717) of G:
s,ℎ

and (1515) of G:
s,) , we can write

T1 =
((((

(((
((((

(((
((((∫

Ω

(
0:ℎ2(·,∇sw) − 2(·,∇sw)

)
: ∇s,ℎvℎ

+
∑
) ∈Tℎ

∑
� ∈F)

(∫
�

(v� − v) ) · (0:)2(·,∇sw))n) � +
∫
�

v) · (2(·,∇sw)n) � )
)

=
∑
) ∈Tℎ

∑
� ∈F)

∫
�

(v� − v) ) ·
(
0:)2(·,∇sw) − 2(·,∇sw)

)
n) � ,

where we have used the definition (1010) of 0:
ℎ
together with the fact that ∇s,ℎvℎ ∈ P:−1(Tℎ,R3×3s ) ⊂

P: (Tℎ,R3×3s ) to cancel the term in the first line, and we have inserted (5858) and rearranged to conclude.
Therefore, applying the Hölder inequality together with the bound ℎ� ≤ ℎ) , we infer

|T1 | ≤
( ∑
) ∈Tℎ

ℎ) ‖2(·,∇sw) − 0:)2(·,∇sw)‖A
′

!A
′ (m) ,R3×3)

) 1
A′

( ∑
) ∈Tℎ

∑
� ∈F)

ℎ1−A
� ‖v� − v) ‖A!A (�,R3)

) 1
A

. ℎ (:+1) (Ã−1) |2(·,∇sw) |, (:+1) (Ã−1) ,A′ (Tℎ ,R3×3) ‖vℎ ‖A ,ℎ,
(59)

where the conclusion follows using the ((: + 1) (Ã − 1), A ′)-trace approximation properties (11b11b) of 0:
)

along with ℎ) ≤ ℎ for the first factor and the definition (1313) of the ‖·‖A ,ℎ-norm for the second.
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For the second term, using the Hölder inequality and again (41a41a), we get

|T2 | ≤ ‖2(·,G:
s,ℎŵℎ) − 2(·,∇sw)‖!A′ (Ω,R3×3) ‖vℎ ‖A ,ℎ . (60)

We estimate the first factor as follows:

‖2(·,G:
s,ℎŵℎ) − 2(·,∇sw)‖!A′ (Ω,R3×3)

≤ fhc





(fAde + |G
:
s,ℎŵℎ |

A
3×3 + |∇sw |A3×3

) A−Ã
A |G:

s,ℎŵℎ − ∇sw |Ã−1
3×3






!A
′ (Ω,R)

. fhc

(
fAde + ‖G

:
s,ℎŵℎ ‖

A

!A (Ω,R3×3) + ‖∇sw‖A!A (Ω,R3×3)
) A−Ã
A ‖G:

s,ℎŵℎ − ∇sw‖Ã−1
!A (Ω,R3×3)

. fhc

(
fAde + ‖ŵℎ ‖

A
A ,ℎ + |w |

A

, 1,A (Ω,R3)

) A−Ã
A ‖0:ℎ (∇sw) − ∇sw‖Ã−1

!A (Ω,R3×3)

. ℎ (:+1) (Ã−1)fhc

(
fAde + |w |

A

, 1,A (Ω,R3)

) A−Ã
A |w |Ã−1

, :+2,A (Tℎ ,R3) ,

where we have used the Hölder continuity (3c3c) of2 in the first bound, the (A ′; A
A−Ã ,

A
Ã−1 )-Hölder inequality

(3939) in the second, the boundedness of Ω along with (41a41a) and the commutation property (1616) of G:
s,ℎ in

the third, and we have concluded invoking the (: +1, A, 0)-approximation property (11a11a) of 0:
)
. Plugging

this estimate into (6060), we get

|T2 | . ℎ (:+1) (Ã−1)fhc

(
fAde + |w |

A

, 1,A (Ω,R3)

) A−Ã
A |w |Ã−1

, :+2,A (Tℎ ,R3) ‖vℎ ‖A ,ℎ . (61)

Finally, using the fact that W ≤ fhc together with the consistency (4242) of sℎ and the norm equivalence
(41a41a), we obtain for the third term

|T3 | . ℎ (:+1) (Ã−1)fhc |w |A−Ã, 1,A (Ω,R3) |w |
Ã−1
, :+2,A (Tℎ ,R3) ‖vℎ ‖A ,ℎ . (62)

Plug the bounds (5959), (6161), and (6262) into (5757) and pass to the supremum to conclude. �

7.3.2 Consistency of the pressure-velocity coupling bilinear form

Lemma 21 (Consistency of bℎ). Let @ ∈ ,1,A ′ (Ω,R) ∩, (:+1) (Ã−1) ,A ′ (Tℎ,R). Let Eb,ℎ (@; ·) : [:
ℎ
→ R

be the pressure consistency error linear form such that, for all v
ℎ
∈ [:

ℎ
,

Eb,ℎ (@; v
ℎ
) B

∫
Ω

∇@ · vℎ − bℎ (vℎ, c
:
ℎ@). (63)

Then, we have that

sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
Eb,ℎ (@; v

ℎ
) . ℎ (:+1) (Ã−1) |@ |, (:+1) (Ã−1) ,A′ (Tℎ ,R) . (64)

Proof. Let v
ℎ
∈ [:

ℎ,0. Integrating by parts element by element, we can reformulate the first term in the
right-hand side of (6363) as follows:∫

Ω

∇@ · vℎ = −
∑
) ∈Tℎ

(∫
)

@(∇·v) ) +
∑
� ∈F)

∫
�

@(v� − v) ) · n) �

)
, (65)

where the introduction of v� in the boundary term is justified by the fact that the jumps of @ vanish across
interfaces by the assumed regularity and that v� = 0 on every boundary face � ∈ F b

ℎ
. On the other hand,

expanding, for each ) ∈ Tℎ, D:
)
according to its definition (2727), we get

− bℎ (vℎ, c
:
ℎ@) =

∑
) ∈Tℎ

(∫
)

c:) @ (∇·v) ) +
∑
� ∈F)

∫
�

c:) @ (v� − v) ) · n) �

)
. (66)
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Summing (6565) and (6666) and observing that the first terms in parentheses cancel out by the definition (1010)
of c:

)
since ∇·v) ∈ P:−1(),R) ⊂ P: (),R) for all ) ∈ Tℎ, we can write

Eb,ℎ (@; v
ℎ
) =

∑
) ∈Tℎ

(
��

���
���

��∫
)

(c:) @ − @) (∇·v) ) +
∑
� ∈F)

∫
�

(c:) @ − @) (v� − v) ) · n) �

)

≤
( ∑
) ∈Tℎ

ℎ) ‖c:) @ − @‖A
′

!A
′ (m) ,R)

) 1
A′

( ∑
) ∈Tℎ

∑
� ∈F)

ℎ1−A
� ‖v� − v) ‖A!A (�,R3)

) 1
A

. ℎ (:+1) (Ã−1) |@ |, (:+1) (Ã−1) ,A′ (Tℎ ,R) ‖vℎ ‖A ,ℎ,

where we have used the Hölder inequality along with ℎ� ≥ ℎ) whenever � ∈ F) in the second line and
the ((: + 1) (Ã − 1), A ′)-trace approximation property (11b11b) of c:

)
together with the bound ℎ� ≤ ℎ and

the definition (1313) of the ‖·‖A ,ℎ-norm to conclude. Passing to the supremum yields (6464). �

7.3.3 Proof of Theorem 1212

Proof of Theorem 1212. Let (e
ℎ
, nℎ) B (uℎ − û

ℎ
, ?ℎ − ?̂ℎ) ∈ [:

ℎ,0 × %:ℎ where û
ℎ
B O:

ℎ
u ∈ [:

ℎ,0 and
?̂ℎ B c:

ℎ
? ∈ %:

ℎ
.

Step 1. Consistency error. Let Eℎ : [:
ℎ,0 → R be the consistency error linear form such that, for all

v
ℎ
∈ [:

ℎ,0,

Eℎ (vℎ) B
∫
Ω

f · vℎ − aℎ (ûℎ, vℎ) − bℎ (vℎ, ?̂ℎ). (67)

Using in the above expression the fact that f = −∇·2(·,∇su) + ∇? almost everywhere in Ω to write
Eℎ (vℎ) = Ea,ℎ (u; v

ℎ
) + Eb,ℎ (?; v

ℎ
), and invoking the consistency properties (5656) of aℎ and (6464) of bℎ,

we obtain
$ ≔ sup

v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
Eℎ (vℎ) . ℎ

(:+1) (Ã−1)N2,u, ? . (68)

Step 2. Error estimate for the velocity. Using the strong monotonicity (43b43b) of aℎ, we get

‖e
ℎ
‖A+2−ÃA ,ℎ . f−1

sm

(
fAde + ‖uℎ ‖

A
A ,ℎ + ‖ûℎ ‖

A
A ,ℎ

) 2−Ã
A (

aℎ (uℎ, eℎ) − aℎ (ûℎ, eℎ)
)

. f−1
smN2−Ã

f

(
aℎ (uℎ, eℎ) − aℎ (ûℎ, eℎ)

)
,

(69)

where we have used the a priori bound (30a30a) on the discrete solution along with the boundedness (49a49a)
of the global interpolator and the a priori bound (88) on the continuous solution to conclude. Using then
the discrete mass equation (29b29b) along with (49b49b) (written for v = u) and the continuous mass equation
(6b6b) to write bℎ (O:ℎu, @ℎ) = 1(u, @ℎ) = 0, we get bℎ (eℎ, @ℎ) = 0 for all @ℎ ∈ %:ℎ . Hence, combining this
result with (6767) and the discrete momentum equation (29a29a) (with v

ℎ
= e

ℎ
), we obtain

aℎ (uℎ, eℎ) − aℎ (ûℎ, eℎ) =
∫
Ω

f · eℎ − aℎ (ûℎ, eℎ) −����
�bℎ (eℎ, ?ℎ) = Eℎ (eℎ). (70)

Plugging (7070) into (6969), we get

‖e
ℎ
‖A+2−ÃA ,ℎ ≤ f−1

smN2−Ã
f $‖e

ℎ
‖A ,ℎ .

Simplifying, using (6868), and taking the (A + 1 − Ã)th root of the resulting inequality yields (31a31a).

Step 3. Error estimate for the pressure. Using the Hölder continuity (43a43a) of aℎ, we have, for all
v
ℎ
∈ [:

ℎ,0, ��aℎ (ûℎ, vℎ) − aℎ (uℎ, vℎ)
�� . fhc

(
fAde + ‖ûℎ ‖

A
A ,ℎ + ‖uℎ ‖

A
A ,ℎ

) A−Ã
A ‖e

ℎ
‖Ã−1
A ,ℎ ‖vℎ ‖A ,ℎ

. fhcNA−Ãf ‖e
ℎ
‖Ã−1
A ,ℎ ‖vℎ ‖A ,ℎ,

(71)
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where the first factor is estimated as in (6969). Thus, using the inf-sup condition (4848), we can write

‖nℎ ‖!A′ (Ω,R) . sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1
bℎ (vℎ, nℎ)

= sup
v
ℎ
∈[:

ℎ,0, ‖vℎ ‖A,ℎ=1

(
Eℎ (vℎ) + aℎ (ûℎ, vℎ) − aℎ (uℎ, vℎ)

)
. $ + fhcNA−Ãf ‖e

ℎ
‖Ã−1
A ,ℎ

. ℎ (:+1) (Ã−1)N2,u, ? + ℎ (:+1) (Ã−1)2fhcN |A−2 | (Ã−1)
f

(
f−1

smN2,u, ?

) Ã−1
A+1−Ã

,

(72)

where we have used the definition (6767) of the consistency error together with equation (29a29a) to pass to
the second line, (7171) to pass to the third line (recall that $ denotes here the supremum in the left-hand
side of (6868)), and the bounds (6868) and (31a31a) (proved in Step 2) to conclude. �

A Power-framed functions
In the following theorem, we introduce the notion of power-framed function and discuss sufficient
conditions for this property to hold.

Theorem 22 (Power-framed function). Let * be a measurable subset of R= with = ≥ 1, (,, (·, ·), )
an inner product space, and 2 : * × , → , . Assume that there exists a Carathéodory function
e : * × [0,∞) → R such that, for all 3 ∈ , and almost every x ∈ *,

2(x, 3) = e (x, ‖3‖, )3, (73a)

where ‖·‖, is the norm induced by (·, ·), . Additionally assume that, for almost every x ∈ *, e (x, ·) is
differentiable on (0,∞) and there exist ede ∈ [0,∞) and esm, ehc ∈ (0,∞) independent of x such that,
for all U ∈ (0,∞),

esm(eAde + U
A ) A−2

A ≤ m (Ue (x, U))
mU

≤ ehc(eAde + U
A ) A−2

A . (73b)

Then, 2 is an A-power-framed function, i.e., for all (3, () ∈ ,2 with 3 ≠ ( and almost every x ∈ *, the
function 2 verifies the Hölder continuity property

‖2(x, 3) − 2(x, ()‖, ≤ fhc
(
fAde + ‖3‖

A
, + ‖(‖A,

) A−2
A ‖3 − (‖, , (74a)

and the strong monotonicity property

(2(x, 3) − 2(x, (), 3 − (), ≥ fsm
(
fAde + ‖3‖

A
, + ‖(‖A,

) A−2
A ‖3 − (‖2, , (74b)

with fde B ede, fhc B 22−Ã+A−1 d2−Ã e (Ã − 1)−1ehc, and fsm B 2Ã−A−dA−1 (A−Ã )e (A + 1 − Ã)−1esm, where Ã
is given by (22) and d·e is the ceiling function.

Remark 23 (Notation). The boldface notation for the elements of, is reminiscent of the fact that Theorem
2222 is used with, = R3×3s in Corollary 2424 to characterize the Carreau-Yasuda law as an A-power-framed
function and in Lemma 88 with, = R3 to study the local stabilization function s) .

Proof of Theorem 2222. Let x ∈ * be such that (7373) holds, and 3, ( ∈ , . By symmetry of inequalities (7474)
and the fact that 2 is continuous, we can assume, without loss of generality, that ‖3‖, > ‖(‖, > 0.

(i) Strong monotonicity. Let V ∈ (0,∞) and let 6 : [V,∞) → R be such that, for all U ∈ [V,∞),

6(U) B Ue (x, U) − Ve (x, V) − �sm(eAde + U
A + VA ) A−2

A (U − V), with �sm B
2Ã−A
A+1−Ã esm.

24



Differentiating 6 and using the first inequality in (73b73b), we obtain, for all U ∈ [V,∞),

m

mU
6(U) ≥ esm(eAde + U

A ) A−2
A − �sm

(
(A − 2) (eAde + U

A + VA )− 2
A (U − V)UA−1 + (eAde + U

A + VA ) A−2
A

)
≥ esm(eAde + U

A ) A−2
A − (A + 1 − Ã)�sm(eAde + U

A + VA ) A−2
A

≥ esm2Ã−A (eAde + U
A + VA ) A−2

A − (A + 1 − Ã)�sm(eAde + U
A + VA ) A−2

A = 0,

where, to pass to the second line, we have removed negative contributions if A < 2 and used the fact
that (U − V)UA−1 ≤ eAde + U

A + VA if A ≥ 2, to pass to the third line we have used the fact that C ↦→ CA−2

is non-increasing if A < 2, and the fact that V ≤ U otherwise, while the conclusion follows from the
definition of �sm. This shows that 6 is non-decreasing. Hence, for all U ∈ [V,∞), 6(U) ≥ 6(V) = 0, i.e.

Ue (x, U) − Ve (x, V) ≥ �sm(eAde + U
A + VA ) A−2

A (U − V). (75)

Moreover, for all U, V ∈ (0,∞), using (7575) (with V = 0) along with the fact that C ↦→ CA−2 is decreasing if
A < 2 and inequality (3636) if A ≥ 2, we infer that

e (x, U) + e (x, V) ≥ �sm

(
(eAde + U

A ) A−2
A + (eAde + V

A ) A−2
A

)
≥ �sm21−d A−ÃA e (eAde + U

A + VA ) A−2
A . (76)

We conclude that 2 verifies (74b74b) by using (7575) and (7676) with U = ‖3‖, and V = ‖(‖, as follows:

(2(x, 3) − 2(x, (), 3 − (),
= (3e (x, ‖3‖, ) − (e (x, ‖(‖, ), 3 − (),
= ‖3‖2, e (x, ‖3‖, ) + ‖(‖2, e (x, ‖(‖, ) − (3, (), [e (x, ‖3‖, ) + e (x, ‖(‖, )]
= [‖3‖, e (x, ‖3‖, ) − ‖(‖, e (x, ‖(‖, )] (‖3‖, − ‖(‖, )
+ [e (x, ‖3‖, ) + e (x, ‖(‖, )] (‖3‖, ‖(‖, − (3, (), )

≥ �sm2−d A−ÃA e
(
eAde + ‖3‖

A
, + ‖(‖A,

) A−2
A

[
(‖3‖, − ‖(‖, )2 + 2(‖3‖, ‖(‖, − (3, (), )

]
= �sm2−d A−ÃA e

(
eAde + ‖3‖

A
, + ‖(‖A,

) A−2
A ‖3 − (‖2, .

(ii) Hölder continuity. Now, setting �hc B
ehc
Ã−1 and reasoning in a similar way as for the proof of (7575) to

leverage the second inequality in (73b73b), we have, for all U ∈ [V,∞),

Ue (x, U) − Ve (x, V) ≤ �hc
(
eAde + U

A + VA
) A−2
A (U − V). (77)

First, let A ≥ 2. Using (7777) (with V = 0) and the fact that C ↦→ CA−2 is non-decreasing, we have, for all
U, V ∈ (0,∞),

e (x, U)e (x, V) ≤ �2
hc

(
eAde + U

A
) A−2
A

(
eAde + V

A
) A−2
A ≤

[
�hc

(
eAde + U

A + VA
) A−2
A

]2
. (78)

Thus, using inequalities (7777) and (7878) with U = ‖3‖, and V = ‖(‖, , we infer

‖2(x, 3) − 2(x, ()‖2,
= (3e (x, ‖3‖, ) − (e (x, ‖(‖, ), 3e (x, ‖3‖, ) − (e (x, ‖(‖, )),
= [‖3‖, e (x, ‖3‖, ) − ‖(‖, e (x, ‖(‖, )]2

+ 2e (x, ‖3‖, )e (x, ‖(‖, ) [‖3‖, ‖(‖, − (3, (), ]

≤
[
�hc

(
eAde + ‖3‖

A
, + ‖(‖A,

) A−2
A

]2 [
(‖3‖, − ‖(‖, )2 + 2(‖3‖, ‖(‖, − (3, (), )

]
=

[
�hc

(
eAde + ‖3‖

A
, + ‖(‖A,

) A−2
A ‖3 − (‖,

]2
,

(79)
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hence 2 verifies (74a74a) for A ≥ 2. Assume now A < 2. Using a triangle inequality followed by (7777) and
the left inequality in (3636), it is inferred that

‖2(x, 3) − 2(x, ()‖, ≤ e (x, ‖3‖, )‖3‖, + e (x, ‖(‖, )‖(‖,
≤ �hc

(
(eAde + ‖3‖

A
, )

A−1
A + (eAde + ‖(‖

A
, )

A−1
A

)
≤ 2

1
A�hc(2eAde + ‖3‖

A
, + ‖(‖A, )

A−1
A

= 2
1
A�hc(2eAde + ‖3‖

A
, + ‖(‖A, )

A−2
A (2eAde + ‖3‖

A
, + ‖(‖A, )

1
A ,

≤ 2
1
A�hc(eAde + ‖3‖

A
, + ‖(‖A, )

A−2
A (2ede + ‖3‖, + ‖(‖, ),

where the last line follows from the fact that C ↦→ CA−2 is decreasing and again (3636). If 2ede+‖3‖, +‖(‖, ≤
22−A ‖3 − (‖, , from the previous bound we directly get the conclusion, i.e. (74a74a) with fhc = 22−A+ 1

A�hc.
Otherwise, using (3636) and a triangle inequality yields

(eAde + ‖3‖
A
, )

1
A (eAde + ‖(‖

A
, )

1
A ≥ 2−

2
A′ (ede + ‖3‖, ) (ede + ‖(‖, )

= 2−2( 1
A′ +1)

[
(2ede + ‖3‖, + ‖(‖, )2 − (‖3‖, − ‖(‖, )2

]
≥ 2−2( 1

A′ +1)
[
(2ede + ‖3‖, + ‖(‖, )2 − ‖3 − (‖2,

]
≥ 2−2( 1

A′ +1) (1 − 4A−2) (2ede + ‖3‖, + ‖(‖, )2

≥ 2
2

(A−2)A −2 (
eAde + ‖3‖

A
, + ‖(‖A,

) 2
A ,

(80)

where we concluded with (3636) together with the fact that 2−2( 1
A′ +1)

(
1 − 4A−2) ≥ 2

2
(A−2)A −2. Finally, raising

both sides of (8080) to the power A − 2, we get a relation analogous to (7878). Hence, proceeding as in (7979),
we infer (74a74a). �

Corollary 24 (Carreau–Yasuda). The strain rate-shear stress law of the (`, X, 0, A)-Carreau–Yasuda fluid
defined in Example 44 is an A-power-framed function.

Proof. Let x ∈ Ω and 6 : (0,∞) → R be such that, for all U ∈ (0,∞),

6(U) B m

mU

[
U`(x)

(
X0 (x) + U0 (x)

) A−2
0 (x)

]
= `(x)

(
X0 (x) + U0 (x)

) A−2
0 (x) −1 (

X0 (x) + (A − 1)U0 (x)
)
.

We have for all U ∈ (0,∞),

`−(Ã − 1)
(
X0 (x) + U0 (x)

) A−2
0 (x) ≤ 6(U) ≤ `+(A + 1 − Ã)

(
X0 (x) + U0 (x)

) A−2
0 (x)

,

and we conclude using (3636) together with Theorem 2222. �
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