
HAL Id: hal-03362658
https://hal.science/hal-03362658

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introduction: On Enrique
Jean-Michel Coron, Alain Haraux

To cite this version:
Jean-Michel Coron, Alain Haraux. Introduction: On Enrique. ESAIM: Control, Optimisation and
Calculus of Variations, 2021, 27, pp.E3. �10.1051/cocv/2021092�. �hal-03362658�

https://hal.science/hal-03362658
https://hal.archives-ouvertes.fr


ESAIM: COCV 27 (2021) E3 ESAIM: Control, Optimisation and Calculus of Variations
https://doi.org/10.1051/cocv/2021092 www.esaim-cocv.org

INTRODUCTION: ON ENRIQUE

Jean-Michel Coron1,* and Alain Haraux2

Abstract. Some of the main contributions of the highly cited mathematician Enrique Zuazua are
outlined at the occasion of his sixtieth birthday. Through various anecdotes, it is shown that taking
advantage of favourable chances is part of a fruitful career and can produce important results for the
benefit of the whole community.
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1. Introduction

In this text, we try to outline some of the main contributions of our colleague Enrique Zuazua at the occasion
of his sixtieth birthday. The second author was Enrique’s thesis advisor and the first author has followed more
thoroughly his achievements in the field of mathematical control theory. A very important part, but not all, of
Enrique Zuazua’s scientific activity has been devoted to the behavior of waves in a bounded domain: oscillations,
stability, stabilization and control. This comes from the fact that after the results obtained in the first part
of his thesis with the second author, Enrique was involved in the theory of exact controllability in continuum
mechanics, devised after 1986 by Jacques Louis Lions who had in mind some application to the stabilization of
large spatial structures. However, to stabilize these structures, some thermal effects have to be taken account
of, and the real equations are in fact coupled systems of hyperbolic and parabolic equations. Because parabolic
problems are not reversible in time, the controllability of semilinear heat equations has become a field of research
in itself, based on quite different methods. The synthesis of parabolic and hyperbolic components is still to come,
after a proper modelization for the couplings involved. For the time being, the hyperbolic and parabolic theories
are still a source of challenging open problems.

Before entering the main topic of this text, we would like to make some general remarks since the case of
our colleague’s career is a good example of a longstanding debate opposing “speed” and “depth”. The first
observation is that in Mathematics, either pure or applied, the time scale is quite different from its analogue in
applied Science. We sometimes hear that in Physics, the time of half-obsolescence is about 20 years, while in
computer science it is about 2 years. In Mathematics, the relevant time unit is the century rather than years
or decades. This might give the impression that “speed” of thinking is not important, while it is exactly the
contrary. If a person is “slow” to solve basic problems, when it becomes necessary to overcome several combined
difficulties to find the truth, the time scale to solve the problem becomes soon larger than a human life time. So
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in our field speed is essential and the opposition between speed and depth is fake. We shall see at the beginning
of this text that speed of thinking was the first obvious feature of Enrique’s behavior. Then he also proved that
he can become deep when the solution of problems makes it necessary.

Enrique Zuazua was lucky enough to meet Jacques-Louis Lions and start to collaborate with his powerful
team even before finishing his thesis. It was luck in a sense because special circumstances made this possible.
But, as we shall explain later, this luck was not a pure effect of chance, and if it was made so productive, it
is mainly because curiosity, creativity and persistence were involved in Enrique’s approach of the problems.
Without these three qualities, luck may become a poisoned gift. The meetings with Enrique typically end up
with a sentence of the following type: “well, now let us work this out and then we will see...”

2. First realizations, a report by Alain Haraux

Enrique started his career at Laboratory Jacques-Louis Lions (At that time called “Laboratoire d’Analyse
Numérique”) in Paris by preparing a Ph.D. degree under my supervision. As we shall see, the short period
devoted to this preparation was already quite productive at several levels. Enrique was one of the brightest
students of the Master 2 in Laboratory Jacques-Louis Lions, and was introduced to me by Maria Esteban
who came also from Basque country a few years before and held a research position in our department. My
first impression was that of a modest and somewhat shy young man, but I understood rather quickly that, as
intelligent people usually do, he always observed his interlocutor some time before revealing his true personality.

2.1. The birth of a sprinter

In our first meeting, I asked Enrique a simple looking open question which seemed logically solvable in finite
time. The question was about the existence of zeroes in a cylinder (0, T )× Ω for the solutions of the equation

utt + ∆2u = 0

in R×Ω (where Ω is a nonempty bounded domain of Rn for a given positive integer n) with boundary conditions
of homogeneous Dirichlet type u = ||∇u|| = 0 on ∂Ω for T large enough. Such results were previously known
for equations of the form

u′′ +Au = 0

and even for some semilinear perturbations when A is a positive self-adjoint operator with compact inverse on
L2(Ω), assuming that the first eigenvalue of A is realized on some positive eigenfunction. For the case of the
bi-Laplacian it is known that such eigenfunctions can fail to be of one sign, for instance if Ω is an annulus. But
of course in such a case all solutions with initial state made of multiples of that eigenfunction change sign in
any cylinder (0, T )×Ω, so that it is hard to believe that the sign changes of the first eigenfunction really makes
the situation worse. When I asked the question to Enrique, he almost immediately asked whether it would be
useful to find a positive supersolution, i.e. a positive solution of

∆2ψ ≥ λ1ψ, for some λ1 > 0.

Then, maybe the next day he told me that a variational principle of G. Stampacchia that he recently learned
from the seminar course of Haim Brezis should allow to do that. One week after my question was solved. A few
months later we wrote the joint paper [11] containing many more general results, and finally we obtained that
indeed, when the first eigenfunction is not of one sign, the global oscillation time becomes smaller than π√

λ1

which is the optimal oscillation time when the first eigenfunction has a constant sign!
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2.2. Achievements on stability theory of waves

Some time later, Enrique Zuazua obtained partial results on the oscillatory behavior of solutions to dissi-
pative wave equations when the dissipation is small enough. Then I started to ask him some rather technical
questions directly connected with my personal main field of research, something that I almost never did with
my students. The questions concerned the extent of stability (rate of decay) of the “permanent regime” (for
instance stationary, periodic or almost periodic solution) of dissipative wave equations of the general form

u′′ + Lu+ g(u′) = h(t, x)

For instance when g is a sum of two different powers, the highest power gives the worst rate of convergence
and one would like to prove, under assumptions related to Sobolev inequalities, that the rate of convergence is
actually dictated by the lowest power. I had tried to do that for some time and the question became important
for me since I was writing the monograph [9] on dissipative hyperbolic problems following an invitation of
Jacques-Louis Lions and Jean Dieudonné. In a matter of a few months, Enrique developed new techniques
which allowed to do that and even much better. This resulted in two publications, one [10] in collaboration in
the simplest case and the other [27] where he was the sole author for more complicated situations. The technique
of these papers have been used subsequently by several authors, and to my knowledge the results in the initial
setting have never been improved until now, concerning either the results or the hypotheses.

2.3. Meeting J.L Lions: the decisive impulse

Chance sometimes plays a role not only for our results, but to guide our careers. In 1986, J.L. Lions, who was
delivering his regular course at College de France, asked me whether I could help to write down the corresponding
lecture notes. Unfortunately (or maybe fortunately!) I had a long sojourn already planned in Tokyo which made
it impossible for me to follow most of his lectures in the fall of 1986. A few weeks before, I discussed with Jesus
Hernandez who warned me that already as a high school student, Enrique had the reputation of exhausting all
his maths teachers, and told me that I should be very strong to control his incredible energy. And actually, I
remember that during the years from 1985 to 1987, each morning when arriving at LJLL, after making 2 steps
in the corridor, I saw at a distance Enrique saying “as a matter of fact, it turns out that...” or something of this
type referring to our previous conversation that I partly forgot, since I had the strange habit of sleeping at night.
I decided to do something very unusual at that time: on the pretext of the lecture notes, share the direction
of research of Enrique with J.L. Lions. The plan worked perfectly: although initially Lions was a bit disturbed
by the small southeast accent of Enrique, very soon he understood that Enrique never had enough work for his
capabilities. The lecture notes were written, they were published, and as expectable Enrique immediately got
some sharp results in the field, cf. e.g. [26]. To improve the plan I did one more thing: I introduced Enrique to
another talented young colleague who followed regularly and very actively that course, namely Vilmos Komornik,
with whom he immediately started to collaborate on some fundamental open questions raised by J.L. Lions,
following a well established tradition which attracted a large audience. Their joint achievements were quite
remarkable and have been highly appreciated at the international level, cf. e.g. the highly cited work [14].

2.4. A very precocious recognition

One afternoon, after his recognition by J.L. Lions but probably before the defense of the Ph.D. that was
promising to approach the level of a habilitation, I remember asking Enrique, near the metro station of Jussieu,
whether he was planning to look for a position in France or go back to Spain. He immediately answered that his
parents were getting old and consequently he preferred to go back to Spain to remain not too far from them.
By chance, some time later I happened to talk with Yves Meyer who just started to interact with J.L. Lions
on some aspects of control theory. Yves Meyer had a very strong influence on Spanish mathematicians and,
with a 3 lines firm recommendation letter from Lions, Enrique obtained very quickly a full professor position
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in Madrid. However, Enrique was not satisfied with doing classical academic research, he wanted his ideas to
produce concrete results. We shall see that in the last section of this text.

3. Some maturity achievements in control of partial
differential equations

After 1990, Enrique has been remarkably productive with numerous outstanding papers in control of partial
differential equations. In particular1:

– In [5], in collaboration with Caroline Fabre and Jean-Pierre Puel, Enrique Zuazua considers the nonlinear
parabolic equation  yt −∆y + f(y) = uχω in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,
y = y0 in Ω.

(3.1)

In (3.1), ω is a nonempty open subset of Ω, χω is the characteristic function of ω, u = u(t, x) is the control,
and f : R→ R and y0 : Ω→ Rn are given functions. They assume the existence of C > 0 such that

f(y) 6 C(1 + |y|), ∀y ∈ R. (3.2)

Then they prove that the reachable set R defined by

R := {y(T ); u ∈ L∞((0, T )× Ω)} (3.3)

is dense in L2(Ω). The proof relies on the minimization of a very cleverly chosen functional combined
with a suitable fixed point argument. This strategy is very flexible. It has turned out to be very useful for
many controllability issues for nonlinear control systems modeled by partial differential equations. It is a
wonderful paper, which is already a classical one.

– In the breakthrough paper [28], Enrique considers the controllability of the semilinear wave equation

ytt − yxx + f(y) = uχω, y(t, 0) = y(t, 1) = 0,

where the state is (y, yt) and the control is the function u = u(t, x) and ω is a nonempty open interval of
(0, 1). He proves the exact controllability (with an optimal time) when

lim
|s|→+∞

f(s)

s log2(| s |)
= 0. (3.4)

The proof relies on a new strategy introduced by Enrique: it uses
• The Hilbert Uniqueness Method (HUM) due to J.-L. Lions,
• A fixed point argument (the Leray-Schauder fixed point here),
• Careful estimates on optimal controls for linearized control systems.
One cannot praise this paper too much: it is a paper which has strongly influenced a large number of
people working in control of nonlinear partial differential equations. Let us point out that (3.4) is optimal.
Indeed Enrique has also shown in this article that if ω 6= Ω and if, for some p > 2,

lim inf
s→+∞

(−f(s))/(s lnp(| s |)) > 0,

1These are just examples. To be exhaustive on Enrique’s papers in control of partial differential equations is an impossible target.
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blow-up phenomena cannot be avoided with the only help of the control.
– In [2], Enrique, in collaboration with Carlos Castro, studies the eigenvalues and eigenfunctions associated

to the vibrations of a string with a rapidly oscillating bounded periodic density, that is the following
eigenvalue problem {

u′′(x) + λρ
(
x
ε

)
u(x) = 0,

u(0) = u(1) = 0,

where ρ is a periodic function and ε is a small parameter (the size of the microstructure). They provide,
among other things, all order correction formulas for the eigenvalues and the eigenfunctions when the size
ε of the microstructure is small compared to the wavelength 1/

√
λε of the eigenfunctions. Their method

relies on a rigorous use of the classical asymptotic method WKB. This is the first time where the WKB
method has been used in a rigorous way for singular perturbations problems. This result has turned out
to be very useful for controllability problems. For example it has allowed them to get a very interesting
result for the controllability of a wave equation with rapidly oscillating density.

– In [15], Enrique, in collaboration with Gilles Lebeau, studies the decay rates for solutions of the two and
three-dimensional system of linear thermoelasticity in a bounded smooth domain with Dirichlet boundary
conditions. They prove that there is no uniform exponential decay if there exist rays of geometric optics of
arbitrarily large length that are always reflected perpendicularly or almost tangentially on the boundary.
In dimension two they give a sufficient and (almost) necessary geometric condition for the uniform decay.
They also give quite interesting applications of their results to controllability problems. This paper is a
masterpiece. In particular it is a perfect illustration of the technical virtuosity of the authors.

– In [7], in collaboration with Enrique Fernández-Cara, Enrique considers a semilinear heat equation (in
arbitrary dimension). They give a very interesting sufficient condition on the growth at infinity of the
nonlinearity in order to have controllability. It turns that this condition allows blow-up in finite time
if there is no control. This is a very surprising result, not at all expected. This is the first example
of a nonlinear partial differential equation where one has blow-up in finite time without control and
controllability when the control is there. The proof relies in particular on observability inequalities of heat
equations with potentials. This important subject was already considered by Enrique in [6], in collaboration
with Enrique Fernández-Cara, where a seminal global Carleman estimate is established for these equations.
The sharpness of this estimate was proved in even dimension later on in [3] by Enrique, in collaboration
with Thomas Duyckaerts and Xu Zhang. It is a major piece of work, for which the authors got the “Best
article prize” of the Annales de l’IHP. It has been the source of inspiration for a vast literature.

– Singular perturbations for partial differential equations are hard problems. There are many works on this
important subject without control. However the case of controlled partial differential equations is harder
and has been much less studied. A pioneer work on this subject is the article [16] written by Enrique in
collaboration with Antonio López and Xu Zhang. They consider the controlled wave equation{

εytt −∆y = uχω in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω.

(3.5)

In (3.5), as above, Ω is a nonempty bounded domain of Rn, ω is a nonempty open subset of Ω, u = u(t, x)
is the control. One has ε > 0 and, as it is often the case, ε → 0+. Under suitable geometric conditions
(related to the possibility to use the multiplier method) they prove the existence of converging controls
as ε → 0+ steering the control system (3.5) from a given state to 0. As a consequence they get the null
controllability of the heat equation. It is again a breakthrough work. It has opened the path to many other
contributions.

– In pioneer papers, [4, 12, 13, 17–20, 24, 29, 30], Enrique studies the discretized version of observability
inequalities for wave equations, heat equations, beam equations etc. For simplicity, let us consider only
the wave equation. This is a long standing problem to understand how the finite time speed propagation
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of the wave equation, which imposes to have a large enough observation time (T > Tc), can be seen on
the corresponding semi-discretized version of the partial differential equation. One would expect that the
constant of observability of the semi-discretized version of the wave equation do not blow-up as the mesh-
size tends to 0 if the time of observability T is strictly larger than Tc. It turns out to be false as pointed
by Roland Glowinski, Chin Hsien Li and Jacques Louis Lions in [8]. This is due to the appearance in the
numerical scheme of spurious high frequencies, which interfere with the mesh, and imply that the group
velocity of the semidiscrete model may vanish. This fact, that has been clearly analyzed and highlighted
by Enrique Zuazua (partially together with his collaborators) in the above papers, is responsible for
the failure of the uniform observability property. Enrique Zuazua has moreover studied some theoretical
and numerical remedies to this bad behavior, suggested by R. Glowinski, such as Tychonoff regularization,
filtering highfrequencies, multigrid methods, mixed finite elements, numerical viscosity, and, more recently,
the very innovative use of nonuniform meshes with a way to construct them. He has studied and compared
their efficiency, showing their numerical relevance (which lead in particular to sharp observability time).
These are remarkable works which are very important both at practical and theoretical levels.

– In the beautiful and deep paper [1] Enrique in collaboration with Karine Beauchard, gives a precise decay
rate for partially dissipative hyperbolic systems. Their proof relies on the introduction of a new original
Lyapunov function, which is very cleverly chosen. This allows them to cover new situations. They also
construct explicit Lyapunov functions. It is very useful for the feedback stabilization of control hyperbolic
systems.

– In the seminal papers [21–23], Enrique Zuazua, in collaboration with Yannick Privat and Emmanuel
Trélat, studies the optimal shape and location of the observation domain for heat and wave equations
with random initial data. This leads to unexpected results with very different behaviors for these two
different equations: a great stability for the heat equation, a great instability for the wave equation.

– Recently Enrique has been strongly involved in turnpike phenomena in the context of partial differential
equations. The turnpike phenomena is the fact that for many interesting optimal control problem, if the
time horizon is large enough, the optimal solution remains most of the time close to an optimal solution of
a corresponding “static” optimal control problem. In particular in [25], in collaboration with Emmanuel
Trélat and Can Zhang, Enrique establishes very general and powerful turnpike theorems which can be used
for partial differential equations and indeed shows how one can use them for semilinear heat equations.

– At present, Enrique Zuazua’s team is working on the use and applications of control methodologies
to Machine Learning. In a recent article (arXiv:2008.02491), he, together with Carlos Esteve, Borjan
Geshkovski and Dario Pighin, shows that the turnpike property holds for the Neural ODEs arising in Deep
Supervised Learning when the parameters of the deep neural network are chosen so to optimize a criterion
that involves a tracking term all along the evolution of the network. In another paper (arXiv:2104.05278)
Enrique Zuazua, in collaboration with his Ph.D. student Doménec Ruiz-Balet, proves a fundamental result
in the area, showing a strong simultaneous controllability result for the Neural Differential Equations,
which provides a dynamic interpretation of the Universal Approximation Theorem. These very impressive
results, allow to design more stable and robust neural networks, and open new promising perspectives at
the interface between Control Theory and Machine/Deep Learning.

4. Far beyond paperwork

4.1. Dissemination of scientific ideas and methods

Enrique Zuazua has a strong experience in popularizing science. He received on two occasions the prize
for scientific dissemination of the Spanish Applied Mathematical Society (SEMA). He had for many years a
fortnightly radio show on the radio “Onda Vasca”, a program that was highly appreciated by a wide audience.

4.2. A strong international impact

Enrique Zuazua was invited to prestigious international congresses (e.g. the International Congress of Mathe-
maticians 2006, a sectional speaker in the section “Control Theory and Optimization”). He has been identified as

https://arxiv.org/abs/2008.02491
https://arxiv.org/abs/2104.05278
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a “Highly Cited Researcher” by ISI-Thomson. He received in 2007 the Julio Rey Pastor National Prize. Zuazua
got two ERC advanced grants (NUMERIWAVES, 2010–2014 & DYCON-Dynamic Control 2016-2021). He got
the “Best article prize” of the Annales de l’IHP for [3]. He was invited during two consecutive years to give
CIME lectures, which is exceptional. He is a member of the Academy Jakiunde, Eusko Ikaskuntzaren Zientzia,
Arte eta Letren Akademia and of the Academia Europaea, Mathematics. He receives honorary doctorate from
the University of Lorraine in 2014 and an important grant from the ANR (2016–2020). Enrique is presently a
Humboldt Professor at Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, a prestigious position. He
assumes the chair in “Dynamics, Control and Numerics”, which is designed to build a bridge between theory
and practice and thus drive forward innovative, interdisciplinary research projects. As a result of Enrique’s
international activities he established strong stable collaborations with many foreign teams, as, for example,
SCU in Chengdu and LJLL in Paris.

4.3. A constructive leadership and mentoring

His administrative experience and his leadership abilities are also remarkable. For example

– Enrique Zuazua has been and is still in the editorial board of many journals. In particular, he has been Cor-
responding Editor of SIAM J. Control Optimization and Editor-in-Chief of ESAIM: Control, Optimisation
and Calculus of Variations. He is the founder of the collection of books SpringerBriefs in Mathematics,
which aims is to publish contributions in Applied Mathematics, Finance, Statistics and Computer Science.
He is presently Editor-in-Chief of Mathematical Control & Related Fields.

– He has accepted to give numerous summer schools on control theory, which have stimulated research of
many mathematicians. When he is a speaker at a summer school, one can be sure that there will a lot of
audiences.

– In few years Zuazua built an excellent research center (Basque Center for Applied Mathematics, BCAM)
for applied mathematics. BCAM permitted the return to Spain of many scientists.

– Enrique Zuazua always paid particular attention to the cooperation with developing countries, generating
new opportunities for those that, without his help, probably would never had one.

Enrique Zuazua has been the advisor of over 28 Ph.D. students and more than 40 postdocs: https://www.
genealogy.math.ndsu.nodak.edu/id.php?id=88528. All of them hold academic or industrial research positions
and most of them have developed fruitful careers in Chile, China, France, Italy, Mexico, Romania, Spain, USA,
etc. Among them:

Ph.D. students:

– Ana Carpio, Ph.D. 1993, Full Professor at Universidad Complutense de Madrid.
– Luz de Teresa, Ph.D. 1995, Full Professor at UNAM, Mexico; regular member of the Mexican Academy

of Sciences since 2011 and President of Mexican Mathematical Society 2018–2020.
– Carlos Castro, Ph.D. 1996, Full Professor at Universidad Politécnica de Madrid.
– Sorin Micu, Ph.D. 1996, Full Professor at University of Craiova.
– Jaime Ortega, Ph.D. 1997, Full Professor at University of Chile.
– Liviu Ignat, Ph.D., 2006, Full Professor at University of Bucharest.
– Francisco Palacios, Ph.D. 2008, Senior Program Engineer en el 777 ALIT -Airplane Level Integration

Team, Boeing, Seattle.
– Chuang Zheng, Ph.D. 2008, Associate Professor at Beijing Normal University.
– Alejandro Pozo, Ph.D. 2014, Researcher at Sherpa ai, Bilbao.
– Umberto Biccari, Ph.D. 2016, Assistant Professor at University of Deusto, Bilbao.
– Dario Pighin, Ph.D. 2020, Researcher at Sherpa ai, Bilbao.
– Borjan Geshkovski, Ph.D. 2021, Researcher at Sherpa ai, Bilbao.

https://www.genealogy.math.ndsu.nodak.edu/id.php?id=88528
https://www.genealogy.math.ndsu.nodak.edu/id.php?id=88528
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Post-Docs:

– Karine Beauchard, Full Professor at Ecole Normale Supérieure, Rennes, France; member of Institut
Universitaire de France.

– Thomas Duyckaerts, Full Professor at Université Sorbonne Paris Nord, France; member of Institut
Universitaire de France.

– Francesco Fanelli, Full Professor at Claude Bernard University Lyon 1, France.
– Dongnam Ko, Full Professor at Catholic University of Korea.
– Thibault Liard, Assistant Professor at Université de Limoges, France.
– Qi Lü, Full Professor at Sichuan University, China; invited speaker at ICM 2022.
– Arnaud Münch, Full Professor at Université de Clermont-Ferrand, France.
– Francesco Rossi, Full Professor at Università di Padova, Italy.
– Louis Tebou, Full Professor at Florida International University, USA.
– Xu Zhang, Full Professor at Sichuan University, China; invited speaker at ICM 2010.
– Julie Valein, Assistant Professor at Univ. Lorraine, France.

5. A promising future

The bridge between theory and practice was always the scientific “credo” (if any) of Jacques-Louis Lions
which built an extremely robust and powerful group which celebrated its 50 years of existence in 2019. The
main qualities which made this group not only robust, but more and more influential, are precisely the ones that
Enrique decided to put forward in his approach to Mathematics: hardwork almost without limits, openness to
new ideas, flexibility of mind and versatility of the methods in order to enlarge their field of applicability when-
ever possible. He used critical thinking to transform the problems into more understandable ones, a philosophy
taught to us by Jacques-Louis Lions who always said, in substance: “if a problem looks too hard to be attacked
upfront, try to encircle it and come back to the main point at the end”. No doubt, it is with these intellectual
choices that Enrique will use his present position as a Humboldt Professor to tackle new problems with direct
implications in science and technology.
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[8] R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact boundary controllability of the wave equation. I.

Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76.
[9] A. Haraux, Semi-linear hyperbolic problems in bounded domains. Math. Rep. 3 (1987) i–xxiv and 1–281.

[10] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems. Arch. Ratl. Mech. Anal. 100
(1988) 191–206.

[11] A. Haraux and E. Zuazua, Super-solutions of eigenvalue problems and the oscillation properties of second order evolution
equations. J. Differ. Equ. 74 (1988) 11–28.

[12] L.I. Ignat and E. Zuazua, Convergence of a two-grid algorithm for the control of the wave equation. J. Eur. Math. Soc. (JEMS)
11 (2009) 351–391.

[13] J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-D wave equation. ESAIM:
M2AN 33 (1999) 407–438.



ON ENRIQUE 9

[14] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69
(1990) 33–54.

[15] G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ratl. Mech. Anal.
148 (1999) 179–231.
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[23] Y. Privat, E. Trélat and E. Zuazua, Actuator design for parabolic distributed parameter systems with the moment method.
SIAM J. Control Optim. 55 (2017) 1128–1152.

[24] L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation.
Adv. Comput. Math. 26 (2007) 337–365.
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