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2 Sandrine Charles∗1 et al.

Abstract In the European Union, more than 100,000 man-made chemical8

substances are awaiting an environmental risk assessment (ERA). Simultane-9

ously, ERA of chemicals has now entered a new era. Indeed, recent recommen-10

dations from regulatory bodies underline a crucial need for the use of mechanis-11

tic effect models, allowing assessments that are not only ecologically relevant,12

but also more integrative, consistent and efficient. At the individual level,13

toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for14

the regulatory assessment of pesticide-related risks on aquatic organisms. In15

this paper, we first propose a brief review of classical dose-response models16

to put into light the on-line MOSAIC tool offering all necessary services in a17

turnkey web platform whatever the type of data to analyze. Then, we focus on18

the necessity to account for the time-dimension of the exposure by illustrating19

how MOSAIC can support a robust calculation of bioaccumulation factors. At20

last, we show how MOSAIC can be of valuable help to fully complete the EFSA21

workflow regarding the use of TKTD models, especially with GUTS models,22

providing a user-friendly interface for calibrating, validating and predicting23

survival over time under any time-variable exposure scenario of interest. Our24

conclusion proposes a few lines of thought for an even easier use of modelling25

in ERA.26

27

Keywords dose-response models · bioaccumulation factors · toxicokinetic-28

toxicodynamic model · uncertainty · accessibility29
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1 Introduction31

Effects of contaminants may occur at all levels of biological organization, from32

molecular to ecosystem-level responses (Clements, 2000). From one level to33

the next the answers to exposure may strongly differ, from DNA damage34

metabolism disorders to loss of biodiversity or changes in food web structures.35

Hence, an effective translation of information through increasing organization36

levels (e.g., from individual to population) will provide more ecologically rel-37

evant endpoints as stated by the adverse outcome pathway concept (Ankley38

et al., 2010), together with increased temporal and spatial scales of the un-39

derlying processes. At the opposite, going down at inferior levels of biological40

organisation is crucial to finely decipher the underlying mechanisms and their41

specificity (Preuss et al., 2009). From the molecular to the ecosystem scales,42

each individual, population and community levels may appear to be the best43

compromise between ecological relevance and understanding of mechanisms.44

This explains why the vast majority of mathematical models focus on a specific45

biological scale, while few allow for extrapolation between these levels.46

Whatever the level of biological organization, there are challenges for which47

mathematical models are or will be crucial. At the community level, we can48

mainly distinguish two categories of models. Some models consider a commu-49

nity as a set of species chosen to be representative of a given ecosystem without50

modelling the between-species interactions; this is the case with species sen-51

sitivity distributions (SSD), based on fitting probability distributions. They52

are used in ERA for extrapolating among species and across levels of bio-53
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Modelling in support of environmental risk assessment 5

logical organization, but they are overly simplistic and likely to lead to both54

over-estimates and under-estimates of risk (Forbes & Calow, 2002; Forbes &55

Galic, 2016). Other models, based on ordinary (ODE) or partial (PDE) differ-56

ential equations, will aim to describe the community functioning accounting57

for all types of ecological interactions as done for example by AQUATOX, the58

simulation model for aquatic systems from US EPA (Park et al., 2008).59

At the population level, the key issue is to include individual effect mod-60

els to refine the prediction of population dynamics. Indeed, effects of chem-61

ical substances do not depend only on exposure and toxicity, but also on62

factors such as life history characteristics and population structure. Popula-63

tion models are also helpful to identify critical demographic traits regarding64

given species-compound combinations. As reviewed in Schmolke et al. (2010),65

population models are mainly based on ODE/PDE, projection matrices or66

individual-based approaches. Although a broad range of these ecological mod-67

els is available in the scientific literature, they are still rarely used in support68

of regulatory ERA (Schmolke et al., 2010), probably due to their inherent69

complexity and a lack of easy tools in order to run them, except home-made70

computer codes rather designed for specialists.71

In this paper, we focus on the individual level, where modelling has been72

prominent for a long time already with dose-response (DR) models providing73

toxicity values (namely, standard lethal LCx or effective ECx concentrations)74

allowing to identify critical life history traits for given species-compound com-75

binations (Ritz, 2010). Nevertheless, scientific knowledge still remain poor re-76
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garding the physiological modes of action of compounds and how they vary77

across species and compounds (Ashauer & Jager, 2018). Additionally, authori-78

ties today recognize the need to account for the time-dependency of the effects79

to better assess risk under complex exposure situations (e.g., environmentally80

realistic concentrations, various exposure routes, biotransformation processes,81

mixture effects). To this end, the toxicokinetics (TK) and the toxicodynamics82

(TD) of the effects require to be modelled. The TK part relates the exposure83

concentration to the internal concentration within organisms, considering var-84

ious processes such as accumulation, depuration, metabolization and excretion85

(ADME). TK models are typically used to calculate bioaccumulation factors86

from data collected in standard bioaccumulation tests (OECD, 2012) and new87

perspectives are offered by a recent modelling approach (Ratier et al., 2019) as-88

sociated with a ready-to-use tool (Ratier et al., 2020). The TD part makes the89

link between damages suffered by organisms due to internal bioaccumulated90

concentrations with observable effects on life history traits such as an increased91

mortality or a reduced growth. Combined TKTD models are recommended by92

EFSA to refine Tier-2 risk assessment, especially for plant protection products93

acting on aquatic organisms when exposed to time-variable exposure profiles94

(European Commission, 2013; Ockleford et al., 2018; Brock et al., 2020). In95

particular, the EFSA already considers ready-to-use for ERA the TKTD mod-96

els dedicated to the prediction of survival over time, and the EFSA encourages97

more research for the other types of TKTD models, namely those based on98

the Dynamic Energy Budget (DEB) theory for growth and reproduction of ec-99
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Modelling in support of environmental risk assessment 7

totherm species and those for macrophytes. The reason why General Unified100

Threshold models for Survival (GUTS models) are already operable in sup-101

port of the daily work of regulators is the availability of a general framework102

that unify all of survival models, as well as easily accessible, user-friendly and103

transparent turnkey tools, allowing to run them with only several user actions.104

Tools for GUTS models are also known to provide reproducible results, with-105

out the need for the users to invest in underlying mathematical and statistical106

aspects (Jager & Ashauer, 2018).107

Among available modelling tools dedicated to ecotoxicity, the MOSAIC108

platform proposes a suite of services within an all-in-one web site. MOSAIC is109

an acronym for MOdelling and StAtistical tools for ecotoxICology, that can be110

accessed through any Internet browser at https://mosaic.univ-lyon1.fr/111

(MOSAIC, 2013). Available since 2013, MOSAIC first proposed a service112

for SSD analyses via MOSAICSSD (Kon Kam King et al., 2014; MOSAIC-113

ssd, 2013). In 2014, two additional services, namely MOSAICsurv (MOSAIC-114

surv, 2014) and MOSAICrepro (MOSAICrepro, 2014) (details in Charles et al.115

(2018)), were offered to estimate classical toxicity values from standard sur-116

vival and reproduction data, respectively, providing LCx and ECx. In 2018, a117

new facility was integrated allowing to calibrate, validate and predict survival118

from GUTS models under time-variable exposure profiles: MOSAICGUTS−fit119

(MOSAICguts-fit, 2018) in combination with MOSAICGUTS−predict (MOSAICguts-120

predict, 2018; Baudrot et al., 2018b). At last, in 2020, two last services were121

offered: (i) MOSAICgrowth (MOSAICgrowth, 2020) delivering ECx estimates122
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8 Sandrine Charles∗1 et al.

from standard continuous data (such as length, weight, growth rate,...), mak-123

ing then available a full suite of services for standard analyses whatever the124

type of data collected via standard toxicity tests (Charles et al., 2021); (ii)125

MOSAICbioacc (MOSAICbioacc, 2020) fitting a variety of TK models account-126

ing for several routes of exposure, several elimination processes and several127

phase-I metabolites from one parent compound (Ratier et al., 2019), from128

which bioaccumulation factors are automatically derived (Ratier et al., 2020).129

All MOSAIC modules make available a collection of example data sets, allow-130

ing new users to practice using the various features.131

The purpose of this article is to present all the features of MOSAIC in or-132

der to guide academics, manufacturers and regulators to benefit from advanced133

and sound models in ERA in support of their daily work, meeting all expec-134

tations in terms of regulatory requirements. The first section gives insights on135

classical DR analyses, focusing on the last new-born service MOSAICgrowth.136

The second section illustrates how to get bioaccumulation factors from TK137

models, with a focus on the selection of different models to be compared, and138

how to fulfil the EFSA workflow regarding the use of GUTS models for ERA139

(Ockleford et al., 2018). The last section aims at convincing the reader of the140

added-value of GUTS models for Tier-1 risk assessment when LCx are re-141

quired. Finally, the conclusion proposes concrete lines of thought to make the142

use of modelling in environmental risk assessment even easier.143
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Modelling in support of environmental risk assessment 9

2 Classical dose-response modelling144

2.1 Few words about modelling145

When performing standard analyses of toxicity test data in MOSAIC, the146

mean tendency of the relationship between the observed endpoints and the147

tested concentrations is first described by a 3-parameters log-logistic model148

written as follows:149

f(C) =
d

1 +
(
C
e

)b (1)

where C stands for the tested concentration, parameter b is a shape pa-150

rameter translating the intensity of the effect, d corresponds to the endpoint151

value in control data (i.e., in absence of contaminant) and e corresponds to152

the EC50, that is the C value leading to 50% of effect compared to the control153

(i.e., compared to parameter d): f(e) = d
2 . Equation (1) also assumes that154

limC→+∞ f(C) = 0.155

Then, depending on the endpoints that are observed, the variability around156

the mean tendency is described by an appropriately chosen probability dis-157

tribution. Quantal (or binary) data (e.g., survival data) are associated with158

a binomial distribution. Count data (e.g., reproduction data) are associated159

with a Poisson distribution, possibly combined with a Gamma distribution160

in case of over-dispersion. Quantitative continuous data, namely data with161

a unit such as length or weight for example, are associated with a Normal162
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(Gaussian) distribution. For example, in case of quantitative continuous data,163

the final model writes as follows:164

yobs(C) ∼ N
(
f(C), σ2

)
(2)

where yobs(C) stands for observations at concentration C, f(C) for the165

deterministic part (equation1) and σ for the standard deviation of the Normal166

law N .167

Such a writing means that a total of four parameters must be estimated168

from observed data: b, d, e and σ. Within MOSAIC, except in MOSAICSSD,169

all parameters are inferred under a Bayesian framework requiring to define170

prior distributions on parameters. These are automatically provided by MO-171

SAIC based on the experimental design associated with the data as uploaded172

by the user. Prior distributions are then combined to the likelihood (whose173

writing depends on the probability law chosen to describe the variability174

within the data) to finally provide the joint posterior probability distribu-175

tion informing on parameter estimates, their uncertainty and their correla-176

tions. Both modelling and inference processes are run automatically in MO-177

SAIC without any action from the user to get the final results, except a178

single click. More information about modelling is available in Charles et al.179

(2018); Baudrot et al. (2018a); Charles et al. (2021); Ratier et al. (2020). MO-180

SAIC also provides detailed information via several links: a modelling tutorial181

for MOSAICsurv and MOSAICrepro at https://cran.r-project.org/web/182

packages/morse/vignettes/modelling.pdf, for MOSAICgrowth at http://183
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lbbe-shiny.univ-lyon1.fr/mosaic-growth/vignette.pdf and for MOSAICbioacc184

at http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/user_guide.185

pdf, respectively. The subsection below illustrates how to perform to a stan-186

dard DR analysis from MOSAICgrowth. MOSAICgrowth has been developed in187

R (R Core Team, 2021) within a Shiny environment (Chang et al., 2021)188

2.2 MOSAICgrowth189

Measuring growth of organisms (e.g., length of shoots, dry weight of plants,190

algal growth rate, size of daphnids) consists in collecting continuous quanti-191

tative data to be fitted with a DR model. MOSAICgrowth provides all useful192

outputs of the fitting process to check the relevance of the results, among193

which estimates of the effective concentration for several x% of interest, typi-194

cally a table of ECx (or x% Effective Rates in the field of non-target terrestrial195

plants). A total of 13 example data sets, concerning various species-compound196

combinations, are provided for new users to practice.197

MOSAICgrowth makes it possible to analyse one or several data sets si-198

multaneously (Figure 1.A), by default at the last exposure time. Regarding199

ECx estimates, MOSAICgrowth output is the posterior probability distribu-200

tion of the last ECx requested by the user, as well as a summary table of all201

ECx estimates if several of them have been requested by the user (1.B). This202

table includes not only the median and the 95% uncertainty interval of the203

ECx estimates, but also censored ECx values determined by taking into ac-204

count the uncertainty on the estimate relatively to the range of tested concen-205

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 13, 2021. ; https://doi.org/10.1101/2021.03.24.436474doi: bioRxiv preprint 

http://lbbe-shiny.univ-lyon1.fr/mosaic-growth/vignette.pdf
http://lbbe-shiny.univ-lyon1.fr/mosaic-growth/vignette.pdf
http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/user_guide.pdf
http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/user_guide.pdf
http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/user_guide.pdf
https://doi.org/10.1101/2021.03.24.436474
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 Sandrine Charles∗1 et al.

trations (see Charles et al. (2021) for details, or http://lbbe-shiny.univ-206

lyon1.fr/mosaic-growth/vignette.pdf). These censored ECx values can207

further be used for SSD analyses with MOSAICSSD (Kon Kam King et al.,208

2014).209

MOSAICgrowth also provides a visualization of the DR fit at the chosen210

exposure time (1.C). A table summarizes parameter estimates given as me-211

dian values and their 95% uncertainty interval. In addition, goodness-of-fit212

criteria are provided (1.D) associated with short explanations on what is ex-213

pected, in order to guide the user in checking the relevance of its results. A214

full tutorial is also available at http://lbbe-shiny.univ-lyon1.fr/mosaic-215

growth/Tutorial.pdf, especially the appendix where ”no ideal” situations216

are presented in support of this check. In order to ensure full transparency217

and reproducibility of analyses, MOSAICgrowth offers the possibility of down-218

loading various types of document, including the entire R code (1.E).219

Finally, MOSAICgrowth offers a prediction tool to simulate a DR model220

and predict the expected relationship between a range of concentrations that221

the users may choose and what they can potentially achieve as effect at the222

final time of their experiment (1.F). Such a tool can be particularly helpful in223

designing future experiments for a given species-compound combination.224

3 Accounting for the time-dependency of the effects225

From a modelling point of view, the better way to account for the time-226

dependency of the effects is the use of TKTD models relating the exposure227
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B

3

D

F

C

E

A

Fig. 1 Selected pieces from the MOSAICgrowth web interface during DR analysis with the
data set plant07: (A) upload of experimental data and visualization; (B) ECx estimates for
x = 5, 10, 25, 50, 75 and 90% obtained from the results of the DR model fit and graphical
representation of the probability distribution of the EC90; (C) fitted model superimposed
to the observed data: median curve (solid orange line) and its uncertainty (gray area de-
limited by orange dotted lines) with a summary of the estimated parameters; (D) example
of two model fit criteria provided by the web interface (left: ‘Posterior Predictive Check’
(PPC); right: priors and posteriors); (E) result downloading; and (F) examples with the
prediction tool for a series of concentrations (40, 80, 160, 320 and 640) (left: parameters not
distributed; right: distributed parameters obtained from a previous DR analysis performed
with MOSAICgrowth).

concentration to effects on individual life history traits via a more or less re-228

fined description of the internal damages within organisms. TKTD models229

allow to understand rather than to describe effects as built from underlying230

mechanisms. TKTD models provide time-independent toxicity parameters (as231

for example a no effect concentration), with outputs independent on both the232

experimental design and the exposure duration. TKTD models also allow to233
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deal with time-varying exposure and to make predictions for untested situa-234

tions. Above all, TKTD models allow to account for all collected data over235

time, while standard DR analyses only focus on a given target time (usu-236

ally, the last exposure time). Section 4 will show how this may be of crucial237

importance for ERA.238

All TKTD models can be presented according to a general scheme (Figure239

2). Their specificities are related to the way both TK and TD parts are de-240

fined. Regarding TK models, all are compartment models based on ordinary241

differential equations, with one (the organism as a whole) or more compart-242

ments depending on their refinement. When several compartments are involved243

in TK models, different types are considered: either fictitious compartments244

(TK compartment models) or each compartment corresponding to a specific245

organ (physiologically-based (PB) TK models). Regarding the TD part, the246

type of models depends on the described endpoints: effects on survival (lethal247

effects) may be described by GUTS models, effects on plant growth (e.g., on248

macrophyte growth rate) may be described by plant models, while effects on249

growth and reproduction may simultaneously be described by toxicity mod-250

els derived from the Dynamic Energy Budget (DEB) theory, that is DEBtox251

models (Ockleford et al., 2018).252
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Fig. 2 A general scheme of toxicokinetic (TK) and toxicodynamic (TD) models; GUTS
stands for the General Unified Threshold model of Survival, while DEBtox stands for toxicity
models derived from the Dynamic Energy Budget (DEB) theory (from Ockleford et al.
(2018)).

3.1 TK models253

3.1.1 Few words about TK modelling254

Chemicals are becoming potentially toxic if they bioaccumulate into the body255

of organisms and after being transported to a target site where they will exert256

effects. Chemicals may also undergo biotransformation into metabolites, which257

may be more or less toxic themselves. And chemicals may be eliminated from258

the body of organisms, for example by faeces or a phenomenon of dilution259

by growth. All compartment TK models assume that chemicals are evenly260

distributed within the compartment(s) what simplifies equations.261

The most complete and complex TK models are PBTK models associating262

compartments to organs or physiological fluids (e.g., blood) and describing263

in very details all chemical fluxes between compartments; they are mostly264

available for aquatic species such as fish species and a number of chemical265

classes including plant protection products, metals, persistent organic pollu-266
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tants, nano-particles (see Grech et al. (2017) for a review). The simplest TK267

model has one compartment that corresponds to one organism, in which chem-268

icals enter (at rate ku) and from which chemicals are eliminated (at rate ke).269

This only-one compartment TK model will basically consider one exposure270

route and one elimination process. In the regulatory ERA, such models are271

fitted to data collected during bioaccumulation tests, which consists in an ac-272

cumulation phase followed by a depuration phase. Estimates of parameters ku273

and ke are then used to calculate bioaccumulation factors (OECD, 2012).274

Nevertheless, even if the most complex TK models are not always required,275

the very simple one reveals very limited when chemicals are present in several276

media, so that organisms may be exposed via several routes, and/or when277

several processes of elimination need to be accounted for, especially when a278

parent compound may biotransform into metabolites. Such situations today279

benefit from both a unified modelling framework (Ratier et al., 2019) and280

a ready-to-use tool, MOSAICbioacc (Ratier et al., 2020). The section below281

illustrates the use of the last updated version of MOSAICbioacc.282

3.1.2 MOSAICbioacc283

MOSAICbioacc is a newly offered service in MOSAIC since 2020 which has been284

developed in R (R Core Team, 2021) within a Shiny environment (Chang285

et al., 2021). It allows the estimation of bioaccumulation factors associated286

with their uncertainty from the fit of a TK model, with only one compartment287

corresponding to the whole organism but several exposure routes and several288
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elimination processes may be accounted for1. The model is automatically built289

according to the accumulation-depuration data uploaded by the user (Figure290

3.A). By a single click, the user first obtains the posterior probability distri-291

bution of the kinetic bioaccumulation factor (Figure 3.B), summarized with292

its median and its 95% uncertainty interval (bounded by the 2.5% and 97.5%293

percentiles of the posterior distribution, Figure 3.C). The uploaded data may294

come from different types of experiments in which different routes of expo-295

sure are considered (e.g., surface water, pore water, sediment, food), as well as296

different elimination processes (e.g., excretion, biotransformation and growth297

dilution). Fitting results are plotted (Figure 3.D) superimposed to the data298

for the parent and its metabolites (if concerned). TK model parameters (e.g.,299

ku and ke in the most simple situation) are also provided as medians and300

95% uncertainty intervals (Figure 3.E). Then automatically come a number301

of goodness-of-fit criteria to guide the users in checking the relevance of their302

results (Figure 3.F). MOSAICbioacc provides the same goodness-of-fit criteria303

as MOSAICgrowth, also with a short description of the expected outputs and304

cross-references to the tutorial illustrating and explaining what to do in non-305

ideal situations. To ensure the reproducibility and the transparency of the306

TK analyses, MOSAICbioacc allows downloading all outputs under different307

formats, as well as the entire R code used (Figure 3.G).308

Several updates were recently implemented in MOSAICbioacc. First, it is309

now possible to account for the lipid fraction within organisms in calcula-310

1 To access to the very last version of MOSAICbioacc that is regularly updated and tested
before to be deployed on the official server, please go to https://scharles-univlyon1.

shinyapps.io/mosaic-bioacc-gamma/.
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Fig. 3 Selected pieces from MOSAICbioacc when performing a TK analysis on two sample
data sets: Oncorhynchus two and Male Gammarus seanine: (A) upload of experimental data
and simplified summary of the TK model and its parameters (automatically delivered); (B)
graphical representation of bioaccumulation factors (here the kinetic BCF with example
Oncorhynchus two); (C) the corresponding statistical summary of the BCF distribution; (D)
TK model fit (concentration in the body as a function of time): median curve (solid colored
line) and its uncertainty (gray area delimited by colored dotted lines); (E) estimation of
model parameters fitted to bioaccumulation data; (F) various model goodness-of-fit criteria;
(G) result downloading the results.

tions; users just need to enter their measured value. Secondly, MOSAICbioacc311

allows users to fit several nested TK models on a same data set. In practice,312

users just need to choose the parameters they want to appear in sub-models.313

According to the experimental conditions, several sub-models can indeed be314

considered and compared depending on the hypotheses to test either on the315

exposure routes or on the elimination processes. As illustrated in a case study316

in supplementary information (see full report in SI), organisms may have been317

exposed via several media (water and sediment in the case study in SI). By318
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default, MOSAICbioacc fits the full TK model. Then users can test different319

TK sub-models, for example sub-models with only one exposure route (water320

or sediment in the case study in SI), and compare them to the full model based321

on both the Deviance Information Criteria (DIC) and the Watanabe–Akaike322

information criterion (WAIC) delivered by MOSAICbioacc. Users can also test323

different TK sub-models ignoring some of the elimination processes even if324

they have been measured (e.g., neglecting the dilution by growth). Hence, users325

have now the possibility to choose the most appropriate TK model regarding326

their data. Third, a collection of more than 80 data sets is made available to327

support all features of MOSAICbioacc. More than 95% of these data sets are328

published in the scientific literature. They encompass more than 25 species329

(aquatic, terrestrial, insect), more than 66 chemical substances, different ex-330

posure routes (water, sediment, soil, food) and several elimination processes331

(biotransformation and growth dilution). This data collection is presented as332

a table that summarises the main characteristics of the data (genus, category,333

substance, accumulation duration, exposure routes, number of data and repli-334

cates), as well as a direct link to the reference, and direct links to download335

the raw data and the full report provided by MOSAICbioacc. In addition, the336

table also gives the kinetic bioaccumulation factor estimate (as a median and337

a 95% uncertainty interval).338
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3.2 GUTS models339

3.2.1 Few words about GUTS modelling340

All GUTS models are today unified within a theoretical framework describ-341

ing stressor effects on survival over time, based on hypotheses related to the342

stressor quantification, the compensatory processes (such as recovery), and343

the nature of the death process (Jager & Ashauer, 2018). In support of ERA,344

EFSA considers that both reduced versions of GUTS models (GUTS-RED345

models) are ready-to-use (Ockleford et al., 2018). To write it simple, these346

two reduced versions can only be used with standard toxicity test data, that347

is without measurements of internal damages within organisms. The SD ver-348

sion (the GUTS-RED-SD model) assumes that all individuals are identically349

sensitive to the chemical substance by sharing a common internal threshold350

concentration and that death is a stochastic process once this threshold is ex-351

ceeded. The GUTS-RED-SD model then describes the instantaneous hazard352

rate as a threshold function of the damages, themselves described by a very353

simple TK model. The IT version (the GUTS-RED-IT model) is using the354

same TK part as the GUTS-RED-SD version. For its TD part, it is based355

on the critical body residue approach, which assumes that individuals differ in356

their tolerance threshold when exposed to a chemical compound according to a357

probability distribution. The GUTS-RED-IT model also assumes that individ-358

uals die as soon as their internal concentration reaches their individual-specific359
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threshold. By default, the between-individual variability is described by a log-360

logistic probability distribution.361

In its recent scientific opinion (Ockleford et al., 2018), EFSA clearly states362

its support for the use of TKTD models at Tier-2 of ERA according to a363

specific workflow. Applied in particular for GUTS-RED models, this workflow364

consists in the following three steps: (1) Calibration, which consists in fitting365

both GUTS-RED models to toxicity test data collected at constant concentra-366

tion under a standard protocol, in order to get parameter estimates associated367

with their uncertainty; (2) Validation, which consists in simulating the num-368

ber of survivors over time, using both GUTS-RED models and the previously369

estimated parameters, but for time-variable exposure profiles under which data370

have also been collected. The simulated numbers of survivors for both models371

are then compared to observed ones and the prediction-observation adequacy is372

checked according to one visual validation criterion together with three quanti-373

tative validation criteria. These validation criteria were defined by EFSA with374

the perspective to choose the most appropriate model for the next step; (3)375

Prediction, which consists in simulating the survival probability over time376

with the previously chosen model and the parameter estimates obtained in step377

(1), for environmentally realistic exposure scenarios in order to assess risk on378

how far is the exposure profile from causing a pre-defined effect. Namely, this379

third step aims at determining the x% Lethal Profile (denoted LPx), that is380

the multiplication factor leading to an additional x% of reduction in the final381
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survival rate at the end of the exposure. The next subsection guides the reader382

step by step to perform the EFSA workflow directly using MOSAIC.383

3.2.2 MOSAICGUTS−fit384

MOSAIC offers two services related to the use of GUTS-RED models to an-385

alyze standard survival data as function of both time and exposure concen-386

tration: MOSAICGUTS−fit for step (1) and MOSAICGUTS−predict for steps387

(2) and (3). All features of MOSAICGUTS−fit have already been detailed in388

Baudrot et al. (2018b). We just recall here the main highlights: a facilitated up-389

loading of data (either from example data files or from the users themselves),390

an automatic GUTS fitting analysis for either GUTS-RED-SD and GUTS-391

RED-IT models, all useful fitting outputs to check the relevance of the results392

(parameter estimates, fitting curve with its uncertainty, posterior predictive393

check), and a collection of LCx calculations associated with their uncertainty394

(Figure 4.A). In the following subsection, MOSAICGUTS−predict is presented395

in details, in support of the validation and the prediction steps of the EFSA396

workflow.397

3.2.3 MOSAICGUTS−predict398

MOSAICGUTS−predict has been developed in R (R Core Team, 2021) within399

a Shiny environment (Chang et al., 2021). It is available at https://mosaic.400

univ-lyon1.fr/guts-predict and performed using the computing facilities401

of the CC LBBE/PRABI. Both steps (2) and (3) of the EFSA workflow require402
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Fig. 4 Selected pieces from MOSAIC for GUTS models: (A) GUTS calibration results:
model predictions superimposed to the data, parameter estimates and the way to download
the joint posterior distribution, from file Ring-test Dataset B-cst; (B) GUTS-predict first
panel to enter the exposure profile for the simulation (EFSA steps (2) and (3), from file
conc-ringtest-B-varA.txt), as well as to choose the model to use and how to consider
its parameters (distributed or not, from file mcmc-ringtest-B-SD.txt); (C) outputs of the
EFSA validation step (2) where the predicted number of survivors is compared to observed
data (from file Nsurv-ringtest-B-varA.txt), together with EFSA validation criteria values;
(D) outputs of the EFSA prediction step (3) where two options are proposed to quantify
how far is the exposure profile from causing an x% effect: fixing the multiplication factor
and simulating the predicted survival over time, or fixing x and getting the corresponding
multiplication factor; and (E) downloading panel of MOSAICGUTS−predict.

a time-variable exposure profile that needs to be uploaded first (Figure 4.B).403

Then the user can perform simulations with one or both GUTS-RED models,404

for which parameter values need to be entered (Figure 4.B). Regarding pa-405

rameter values, two options are proposed: only point values (such as means,406

medians...) or distributed parameters, namely coming from MOSAICGUTS−fit407

as the joint posterior distribution, downloadable in advance (Figure 4.A). From408

here, users can perform validation step (2) to predict the number of survivors409

over time to be compared with observed data (’Validation’ tab). For this step,410
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MOSAICGUTS−predict expects to receive as input both distributed parameters411

(in order to propagate the uncertainty all along the simulation) and a data412

file with observations under the uploaded exposure profile (typically a pulsed413

exposure, Figure 4.C). MOSAICGUTS−predict returns EFSA validation criteria414

values together with the simulation superimposed to the observed data and415

the posterior predictive check (PPC) graph. In the following or independently,416

the prediction step (3) can be performed to predict the survival probability417

over time as a function of time under the previously (or a new one) uploaded418

exposure profile. Usually, for step (3), users are using realistic scenarios, for419

example predicted environmental concentrations of active substances of plant420

protection products (European Food Safety Authority, 2017). This prediction421

step (’Prediction’ tab) also requires the use of distributed parameters (namely422

according to their joint posterior distribution, as delivered in step (1)). From423

here, users have two options: (i) to fix a multiplication factor (MF) to apply424

on the uploaded exposure profile and get the prediction as a curve (the median425

tendency and its uncertainty) associated with the predicted survival probabil-426

ity at final time; (ii) to fix a percentage of additional reduction on survival at427

final time (e.g., 20% as on Figure 4.D, left) and ask MOSAICGUTS−predict to428

return the corresponding MF that could be applied with a x% of risk in terms429

of survival probability for the species-compound combination under interest;430

this MF is exactly the newly concept of the x% Lethal Profile (LPx) as defined431

by EFSA (Ockleford et al., 2018). Finally, users can download selected pieces432

of results (Figure 4.D, right).433
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4 New perspectives for Tier-1 in ERA434

As detailed above, TKTD models allow to account for both time and concen-435

tration in predicting effects due to chemical exposure. In essence, based on436

standard protocols, TKTD models benefit from all collected data, while dose-437

response models only rely on data at a fixed target time, that is one of the438

time points in the experimental design, the most often the end of the experi-439

ment. Starting from the hypothesis that the gain in knowledge in using TKTD440

models allow a better precision (or, equivalently, a reduced uncertainty) on pa-441

rameter estimates, this section highlights the added-value of GUTS models for442

the estimation of lethal concentration as required for Tier-1 in ERA.443

As detailed in Baudrot & Charles (2019), the lethal concentration can be444

obtained from a GUTS model as a continuous function of both the chosen per-445

centage x and the exposure duration t according to model parameter estimates.446

Hence, the calculation of any LC(x,t) can be associated to its uncertainty, by447

propagating the uncertainty associated to model parameter estimates as acces-448

sible from the joint posterior distribution after performing Bayesian inference.449

Based on a battery of 20 data sets, the classical LC50 value at final time, as esti-450

mated by a 3-parameters log-logistic model (equation (2)) is compared to the451

corresponding calculations obtained from both GUTS-RED-SD and GUTS-452

RED-IT models. The 20 data sets are standard survival data sets with a first453

set for 10 different species exposed to chlorpyriphos (Rubach et al., 2012),454

a second for species Daphnia magna exposed to seven veterinary antibiotics455

(Wollenberger et al., 2000) and three other data sets (Forfait-Dubuc et al.,456
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2012). Each data set was fitted with the three models thanks to the R package457

morse (Baudrot et al., 2021). Note that the entire analysis can be identically458

reproduced using the MOSAIC platform. For each data set, goodness-of-fit459

criteria were good enough to support the relevance of the results (see example460

on Figure 5.A for the data set of D. magna exposed to potassium dichromate).461

So, for each data set, the LC(x,t) estimates (as medians and 95% uncertainty462

intervals) were collected for x = 50% and at the end of the experiment, directly463

from parameter estimates when using the 3-parameters log-logistic model (pa-464

rameter e in equation (1) above), or asking for the calculation after predicting465

the dose-response curve with both GUTS-RED models (Figure 5.B).466

Because of different orders of magnitude between LC50 estimates among467

data sets, the three LC50 estimates were compared by normalizing them to468

the classical LC50 median estimate obtained with the 3-parameters log-logistic469

model; this latter having thus a median of 1 (Figure 5.C). Focusing on the only470

data set of D. magna exposed to potassium dichromate (Figure 5.A-C), the471

starting hypothesis is confirmed with a better precision for both GUTS-RED472

estimates of the LC50, while both GUTS-RED estimates with a similar preci-473

sion are not significantly different from the classical calculation (overlapping474

95% uncertainty intervals). On the basis of this first finding, three questions475

deserve particular attention: (1) does the better precision depend on the x476

(first fixed at 50%)?; (2) does the better precision depend on the exposure477

duration (first fixed as the experiment duration)? (3) does the better precision478

depend on the data set, that is on the species? and/or on the compound? As479
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shown on Figure 5.D for the combination D. Magna-potassium dichromate,480

the better precision does not depend neither on x nor on the time at which the481

LC(x,t) is calculated. Figure 5.D also illustrates that LC(x,t) estimates given482

by both GUTS-RED models can continuously be obtained whatever t between483

0 and the exposure duration, but only at time points within the experimental484

design for the classical estimates with the 3-parameters log-logistic model.485

Question (3) was answered in two steps. Figure 5.E first shows a slight486

dependency on the species exposed to chlorpyriphos of the LC50 precision,487

with a similar precision whatever the model for species 03 and 07, while both488

GUTS-RED estimates are different for species 03, 06 and 08. Secondly, Figure489

5.F shows a slight dependency again, without high differences between both490

GUTS-RED estimates, but sometime different from the classic one (compound491

03 and 09). These results need further investigation for example by looking at492

the phylogenetic proximity of the 10 compared species as well as at the mode493

of action of the seven compounds given that our knowledge is still poor in494

describing how effects vary across both species and compounds (Ashauer &495

Jager, 2018). Nevertheless, for most of the data set, both GUTS-RED models496

provide more precise LC50 estimates than a classical dose-response approach.497

Given that all facilities are today available to use GUTS models on standard498

data sets, the regulatory risk assessment should really consider the possibility499

to use them even at Tier-1.500
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Fig. 5 (A) GUTS-RED-SD fitting results for Daphnia magna exposed to potassium dichro-
mate; (B) the corresponding predicted dose-response curve; (C) the three LC50 estimates
with the 3-parameters log-logistic model (in black), the GUTS-RED-SD model (in red) and
the GUTS-RED-IT model (in green); (D) LCx,t calculations for various x (upper panel)
and various exposure time (lower panel); (E) comparison of LC50 estimates between species
exposed to chlorpyriphos; (F) comparison of LC50 estimates between compound for D.
magna.

5 Conclusions501

Although tools are existing to use TKTD models, and although regulatory502

bodies strongly recommend their use for ERA (especially to facilitate the con-503

sideration of realistic exposure scenarios), practitioners struggle in appropriate504

them for reasons mostly attributable to modelers themselves. These reasons505

mainly come from lack of support: (1) to easily quantify uncertainties, and506

consequently their propagation to model outputs and subsequent predictions;507

(2) to better accept changing paradigm using new modelling approaches often508

appearing as black boxes, together with lack of support to fully perceive the509

concrete added-value of these novelties for their daily work; (3) to easily inter-510

pret goodness-of-fit criteria and therefore trust model results in their ability511
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to support decisions from predictions; (4) to appropriate recent user-friendly512

turn-key facilities, while already recognized as automatically providing toxi-513

city indices of interest in full compliance with regulatory guidelines and risk514

assessment decision criteria. The Bayesian inference framework is clearly the515

direction to take to facilitate the quantification of the uncertainties. In addi-516

tion, practitioners will be most likely able to accept advanced modelling for517

ERA if accessibility of modelling is improved in terms of step-by-step support,518

reproducibility and transparency, founding principles of the web platform MO-519

SAIC.520
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