N
N

N

HAL

open science

Taking full advantage of modelling to better assess
environmental risk due to xenobiotics
Sandrine Charles, Aude Ratier, Virgile Baudrot, Gauthier Multari, Aurélie
Siberchicot, Dan Wu, Christelle Lopes

» To cite this version:

Sandrine Charles, Aude Ratier, Virgile Baudrot, Gauthier Multari, Aurélie Siberchicot, et al.. Taking
full advantage of modelling to better assess environmental risk due to xenobiotics. Environmental

Science and Pollution Research, In press, 10.1007/s11356-021-15042-7 . hal-03362566

HAL Id: hal-03362566
https://hal.science/hal-03362566v1

Submitted on 2 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03362566v1
https://hal.archives-ouvertes.fr

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436474; this version posted April 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Environmental Science and Pollution Research manuscript No.
(will be inserted by the editor)

1 Taking full advantage of modelling to better assess

» environmental risk due to xenobiotics

s Sandrine Charles*! - Aude Ratier*! -
+ Virgile Baudrot! - Gauthier Multari -
s Aurélie Siberchicot! - Dan Wu -

s Christelle Lopes!

7 Received: date / Accepted: date

This work was performed using the computing facilities of the CC LBBE/PRABI. This work
benefited from the French GDR “Aquatic Ecotoxicology” framework which aims at foster-
ing stimulating scientific discussions and collaborations for more integrative approaches.
This work is part of the ANR project APPROve (ANR-18-CE34-0013) for an integrated
approach to propose proteomics for biomonitoring: accumulation, fate and multi-markers

(https://anr.fr/Projet-ANR-18-CE34-0013).

*

These two authors equally contributed.

Université de Lyon, Université Lyon 1, CNRS UMRA5558, Laboratoire de Biométrie et Bi-

ologie Evolutive, 69100 Villeurbanne, France. E-mail: sandrine.charles@univ-1lyonl.fr


sandrine.charles@univ-lyon1.fr
https://doi.org/10.1101/2021.03.24.436474
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.03.24.436474; this version posted April 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

2 Sandrine Charles*! et al.

s Abstract In the European Union, more than 100,000 man-made chemical
o substances are awaiting an environmental risk assessment (ERA). Simultane-
10 ously, ERA of chemicals has now entered a new era. Indeed, recent recommen-
u dations from regulatory bodies underline a crucial need for the use of mechanis-
12 tic effect models, allowing assessments that are not only ecologically relevant,
13 but also more integrative, consistent and efficient. At the individual level,
11 toxicokinetic-toxicodynamic (TKTD) models are particularly encouraged for
15 the regulatory assessment of pesticide-related risks on aquatic organisms. In
16 this paper, we first propose a brief review of classical dose-response models
7 to put into light the on-line MOSAIC tool offering all necessary services in a
18 turnkey web platform whatever the type of data to analyze. Then, we focus on
19 the necessity to account for the time-dimension of the exposure by illustrating
20 how MOSAIC can support a robust calculation of bioaccumulation factors. At
a1 last, we show how MOSAIC can be of valuable help to fully complete the EFSA
»  workflow regarding the use of TKTD models, especially with GUTS models,
;3 providing a user-friendly interface for calibrating, validating and predicting
2 survival over time under any time-variable exposure scenario of interest. Our
s conclusion proposes a few lines of thought for an even easier use of modelling

» in ERA.

27

s Keywords dose-response models - bioaccumulation factors - toxicokinetic-

2 toxicodynamic model - uncertainty - accessibility
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s 1 Introduction

s Effects of contaminants may occur at all levels of biological organization, from
13 molecular to ecosystem-level responses (Clements, 2000)). From one level to
u the next the answers to exposure may strongly differ, from DNA damage
35 metabolism disorders to loss of biodiversity or changes in food web structures.
3 Hence, an effective translation of information through increasing organization
s levels (e.g., from individual to population) will provide more ecologically rel-
;s evant endpoints as stated by the adverse outcome pathway concept (Ankley
s let al., 2010), together with increased temporal and spatial scales of the un-
w0 derlying processes. At the opposite, going down at inferior levels of biological
a1 organisation is crucial to finely decipher the underlying mechanisms and their
»  specificity (Preuss et al., [2009)). From the molecular to the ecosystem scales,
s each individual, population and community levels may appear to be the best
« compromise between ecological relevance and understanding of mechanisms.
s This explains why the vast majority of mathematical models focus on a specific
s biological scale, while few allow for extrapolation between these levels.

a Whatever the level of biological organization, there are challenges for which
s mathematical models are or will be crucial. At the community level, we can
s mainly distinguish two categories of models. Some models consider a commu-
s nity as a set of species chosen to be representative of a given ecosystem without
51 modelling the between-species interactions; this is the case with species sen-
2 sitivity distributions (SSD), based on fitting probability distributions. They

53 are used in ERA for extrapolating among species and across levels of bio-
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Modelling in support of environmental risk assessment 5

s« logical organization, but they are overly simplistic and likely to lead to both
s over-estimates and under-estimates of risk (Forbes & Calow, 2002; Forbes &
s |Galicl 2016). Other models, based on ordinary (ODE) or partial (PDE) differ-
sz ential equations, will aim to describe the community functioning accounting
s for all types of ecological interactions as done for example by AQUATOX, the

5o simulation model for aquatic systems from US EPA (Park et al.l 2008).

60 At the population level, the key issue is to include individual effect mod-
o1 els to refine the prediction of population dynamics. Indeed, effects of chem-
62 ical substances do not depend only on exposure and toxicity, but also on
63 factors such as life history characteristics and population structure. Popula-
e tion models are also helpful to identify critical demographic traits regarding
6 given species-compound combinations. As reviewed in [Schmolke et al.| (2010)),
s population models are mainly based on ODE/PDE, projection matrices or
e individual-based approaches. Although a broad range of these ecological mod-
6 els is available in the scientific literature, they are still rarely used in support
s of regulatory ERA (Schmolke et all [2010]), probably due to their inherent
7o complexity and a lack of easy tools in order to run them, except home-made

n computer codes rather designed for specialists.

7 In this paper, we focus on the individual level, where modelling has been
7z prominent for a long time already with dose-response (DR) models providing
7 toxicity values (namely, standard lethal LC, or effective EC, concentrations)
7 allowing to identify critical life history traits for given species-compound com-

7 binations (Ritz, [2010). Nevertheless, scientific knowledge still remain poor re-
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7 garding the physiological modes of action of compounds and how they vary
7 across species and compounds (Ashauer & Jager, 2018). Additionally, authori-
7 ties today recognize the need to account for the time-dependency of the effects
s to better assess risk under complex exposure situations (e.g., environmentally
a1 realistic concentrations, various exposure routes, biotransformation processes,
2 mixture effects). To this end, the toxicokinetics (TK) and the toxicodynamics
s (TD) of the effects require to be modelled. The TK part relates the exposure
s concentration to the internal concentration within organisms, considering var-
s 1ous processes such as accumulation, depuration, metabolization and excretion
s (ADME). TK models are typically used to calculate bioaccumulation factors
& from data collected in standard bioaccumulation tests (OECD)] |[2012)) and new
s perspectives are offered by a recent modelling approach (Ratier et al.,|2019)) as-
s sociated with a ready-to-use tool (Ratier et al.,[2020). The TD part makes the
o link between damages suffered by organisms due to internal bioaccumulated
o1 concentrations with observable effects on life history traits such as an increased
oo mortality or a reduced growth. Combined TKTD models are recommended by
o3 EFSA to refine Tier-2 risk assessment, especially for plant protection products
e acting on aquatic organisms when exposed to time-variable exposure profiles
o (European Commission, 2013; (Ockleford et al.l [2018; Brock et al., [2020)). In
o particular, the EFSA already considers ready-to-use for ERA the TKTD mod-
or  els dedicated to the prediction of survival over time, and the EFSA encourages
¢ more research for the other types of TKTD models, namely those based on

o the Dynamic Energy Budget (DEB) theory for growth and reproduction of ec-
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w0 totherm species and those for macrophytes. The reason why General Unified
w1 Threshold models for Survival (GUTS models) are already operable in sup-
102 port of the daily work of regulators is the availability of a general framework
103 that unify all of survival models, as well as easily accessible, user-friendly and
s transparent turnkey tools, allowing to run them with only several user actions.
105 Tools for GUTS models are also known to provide reproducible results, with-

s out the need for the users to invest in underlying mathematical and statistical

wr  aspects (Jager & Ashauer} |2018).

108 Among available modelling tools dedicated to ecotoxicity, the MOSAIC
10 platform proposes a suite of services within an all-in-one web site. MOSAIC is
uo an acronym for MOdelling and StAtistical tools for ecotoxICology, that can be
wm  accessed through any Internet browser at https://mosaic.univ-1lyonl.fr/
112 . Available since 2013, MOSAIC first proposed a service
us  for SSD analyses via MOSAICgsp (Kon Kam King et al., 2014 MOSAIC-|
114 2013). In 2014, two additional services, namely MOSAIC,y,
115 and MOSAIC,.cpr, (MOSAICrepro, [2014)) (details in w

us  (2018)), were offered to estimate classical toxicity values from standard sur-

u7  vival and reproduction data, respectively, providing LC, and EC,. In 2018, a
us  new facility was integrated allowing to calibrate, validate and predict survival

uo  from GUTS models under time-variable exposure profiles: MOSAICqurs— fit

10 (MOSAICguts-fit,[2018)) in combination with MOSAICcu1s—predice (MOSAICguts-

1 |predict} 2018; Baudrot et al. [2018b]). At last, in 2020, two last services were

2 offered: (i) MOSAIC j,outn, (MOSAICgrowth| 2020) delivering EC,, estimates
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123 from standard continuous data (such as length, weight, growth rate,...), mak-
122 ing then available a full suite of services for standard analyses whatever the
s type of data collected via standard toxicity tests (Charles et al., 2021); (ii)
126 MOSAICp;0qcc (MOSAICDioacc2020) fitting a variety of TK models account-
127 ing for several routes of exposure, several elimination processes and several
128 phase-I metabolites from one parent compound (Ratier et al., 2019)), from
120 which bioaccumulation factors are automatically derived (Ratier et al.| 2020).
10 All MOSAIC modules make available a collection of example data sets, allow-

w1 ing new users to practice using the various features.

132 The purpose of this article is to present all the features of MOSAIC in or-
133 der to guide academics, manufacturers and regulators to benefit from advanced
13« and sound models in ERA in support of their daily work, meeting all expec-
135 tations in terms of regulatory requirements. The first section gives insights on
1 classical DR analyses, focusing on the last new-born service MOSAIC g, ouwih-
137 The second section illustrates how to get bioaccumulation factors from TK
1s  models, with a focus on the selection of different models to be compared, and
139 how to fulfil the EFSA workflow regarding the use of GUTS models for ERA
1o (Ockleford et al.| 2018). The last section aims at convincing the reader of the
w  added-value of GUTS models for Tier-1 risk assessment when LC, are re-
12 quired. Finally, the conclusion proposes concrete lines of thought to make the

13 use of modelling in environmental risk assessment even easier.
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s 2 Classical dose-response modelling

us 2.1 Few words about modelling

s When performing standard analyses of toxicity test data in MOSAIC, the
1wz mean tendency of the relationship between the observed endpoints and the
us  tested concentrations is first described by a 3-parameters log-logistic model

o written as follows:

d
fO)=——3 (1)
L+ (%)
150 where C' stands for the tested concentration, parameter b is a shape pa-

11 rameter translating the intensity of the effect, d corresponds to the endpoint
152 value in control data (i.e., in absence of contaminant) and e corresponds to
153 the ECsq, that is the C value leading to 50% of effect compared to the control

s (i.e., compared to parameter d): f(e) = 4. Equation also assumes that

155 1imc_)+oo f(C) =0.

156 Then, depending on the endpoints that are observed, the variability around
157 the mean tendency is described by an appropriately chosen probability dis-
s tribution. Quantal (or binary) data (e.g., survival data) are associated with
10 a binomial distribution. Count data (e.g., reproduction data) are associated
w0 with a Poisson distribution, possibly combined with a Gamma distribution
11 in case of over-dispersion. Quantitative continuous data, namely data with

12 a unit such as length or weight for example, are associated with a Normal
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163 (Gaussian) distribution. For example, in case of quantitative continuous data,

s the final model writes as follows:

Yovs (C) ~ N (£(C),0?) (2)

165 where yops(C) stands for observations at concentration C, f(C) for the
166 deterministic part (equatio and o for the standard deviation of the Normal
w law N

168 Such a writing means that a total of four parameters must be estimated
1o from observed data: b, d, e and o. Within MOSAIC, except in MOSAICgssp,
o all parameters are inferred under a Bayesian framework requiring to define
1w prior distributions on parameters. These are automatically provided by MO-
2 SAIC based on the experimental design associated with the data as uploaded
w3 by the user. Prior distributions are then combined to the likelihood (whose
s writing depends on the probability law chosen to describe the variability
s within the data) to finally provide the joint posterior probability distribu-
e tion informing on parameter estimates, their uncertainty and their correla-
w7 tions. Both modelling and inference processes are run automatically in MO-
s SAIC without any action from the user to get the final results, except a
179 single click. More information about modelling is available in [Charles et al.
10 (2018)); [Baudrot et al. (2018a)); |(Charles et al.| (2021); [Ratier et al.[(2020). MO-
w1 SAIC also provides detailed information via several links: a modelling tutorial
12 for MOSAICg,,,, and MOSAIC,.cp,, at https://cran.r-project.org/web/

1.3 [packages/morse/vignettes/modelling.pdf} for MOSAIC oy at http://
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184 |lbbe-shiny.univ-1lyonl.fr/mosaic-growth/vignette.pdf|and for MOSAICy;sqce
15 athttp://1bbe-shiny.univ-1lyonl.fr/mosaic-bioacc/data/user_guide.
186 [pdf), respectively. The subsection below illustrates how to perform to a stan-
17 dard DR analysis from MOSAICy,owtn. MOSAIC growen, has been developed in

s R (R Core Team, |2021)) within a Shiny environment (Chang et al., [2021)

180 2.2 MOSAICgrowth

10 Measuring growth of organisms (e.g., length of shoots, dry weight of plants,
1 algal growth rate, size of daphnids) consists in collecting continuous quanti-
12 tative data to be fitted with a DR model. MOSAIC, ¢y, provides all useful
13 outputs of the fitting process to check the relevance of the results, among
1« which estimates of the effective concentration for several 2% of interest, typi-
105 cally a table of EC,, (or 2% Effective Rates in the field of non-target terrestrial
s plants). A total of 13 example data sets, concerning various species-compound
17 combinations, are provided for new users to practice.

108 MOSAIC g, win makes it possible to analyse one or several data sets si-
1o multaneously (Figure A)7 by default at the last exposure time. Regarding
w0 EC, estimates, MOSAIC o1, output is the posterior probability distribu-
s tion of the last EC, requested by the user, as well as a summary table of all
20 EC, estimates if several of them have been requested by the user B). This
23 table includes not only the median and the 95% uncertainty interval of the
s EC, estimates, but also censored FC, values determined by taking into ac-

25 count the uncertainty on the estimate relatively to the range of tested concen-
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206 trations (see [Charles et al.| (2021) for details, or http://1bbe-shiny.univ-
27 |[lyonl.fr/mosaic-growth/vignette.pdf). These censored EC, values can
28 further be used for SSD analyses with MOSAICgsp (Kon Kam King et al.,
200 [2014)).

210 MOSAIC g 0wt also provides a visualization of the DR fit at the chosen
a1 exposure time C). A table summarizes parameter estimates given as me-
22 dian values and their 95% uncertainty interval. In addition, goodness-of-fit
a3 criteria are provided D) associated with short explanations on what is ex-
as pected, in order to guide the user in checking the relevance of its results. A
215 full tutorial is also available at http://1lbbe-shiny.univ-1lyonl.fr/mosaic—
26 |growth/Tutorial.pdf, especially the appendix where "no ideal” situations
a7 are presented in support of this check. In order to ensure full transparency
28 and reproducibility of analyses, MOSAIC g,y¢h offers the possibility of down-
20 loading various types of document, including the entire R code E)

220 Finally, MOSAIC,ow:n offers a prediction tool to simulate a DR model
a1 and predict the expected relationship between a range of concentrations that
222 the users may choose and what they can potentially achieve as effect at the
23 final time of their experiment F) Such a tool can be particularly helpful in

24 designing future experiments for a given species-compound combination.

»s 3 Accounting for the time-dependency of the effects

2 From a modelling point of view, the better way to account for the time-

27 dependency of the effects is the use of TKTD models relating the exposure
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Fig. 1 Selected pieces from the MOSAIC .4t Web interface during DR analysis with the
data set plant07: (A) upload of experimental data and visualization; (B) ECy estimates for
z = 5, 10, 25, 50, 75 and 90% obtained from the results of the DR model fit and graphical
representation of the probability distribution of the ECyg; (C) fitted model superimposed
to the observed data: median curve (solid orange line) and its uncertainty (gray area de-
limited by orange dotted lines) with a summary of the estimated parameters; (D) example
of two model fit criteria provided by the web interface (left: ‘Posterior Predictive Check’
(PPC); right: priors and posteriors); (E) result downloading; and (F) examples with the
prediction tool for a series of concentrations (40, 80, 160, 320 and 640) (left: parameters not
distributed; right: distributed parameters obtained from a previous DR analysis performed
with MOSAIC guth)-

concentration to effects on individual life history traits via a more or less re-
fined description of the internal damages within organisms. TKTD models
allow to understand rather than to describe effects as built from underlying
mechanisms. TKTD models provide time-independent toxicity parameters (as

for example a no effect concentration), with outputs independent on both the

experimental design and the exposure duration. TKTD models also allow to
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2u deal with time-varying exposure and to make predictions for untested situa-
25 tions. Above all, TKTD models allow to account for all collected data over
26 time, while standard DR analyses only focus on a given target time (usu-
2 ally, the last exposure time). Section |4| will show how this may be of crucial

28 importance for ERA.

239 All TKTD models can be presented according to a general scheme (Figure
20 . Their specificities are related to the way both TK and TD parts are de-
an fined. Regarding TK models, all are compartment models based on ordinary
22 differential equations, with one (the organism as a whole) or more compart-
23 ments depending on their refinement. When several compartments are involved
2s in TK models, different types are considered: either fictitious compartments
25 (TK compartment models) or each compartment corresponding to a specific
26 organ (physiologically-based (PB) TK models). Regarding the TD part, the
27 type of models depends on the described endpoints: effects on survival (lethal
us  effects) may be described by GUTS models, effects on plant growth (e.g., on
29 macrophyte growth rate) may be described by plant models, while effects on
0  growth and reproduction may simultaneously be described by toxicity mod-
1 els derived from the Dynamic Energy Budget (DEB) theory, that is DEBtox

»2  models (Ockleford et al., [2018)).
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Fig. 2 A general scheme of toxicokinetic (TK) and toxicodynamic (TD) models; GUTS
stands for the General Unified Threshold model of Survival, while DEBtox stands for toxicity
models derived from the Dynamic Energy Budget (DEB) theory (from |Ockleford et al.

(2018)).

»3 3.1 TK models

s 3.1.1 Few words about TK modelling

»s  Chemicals are becoming potentially toxic if they bioaccumulate into the body
»s  of organisms and after being transported to a target site where they will exert
»7  effects. Chemicals may also undergo biotransformation into metabolites, which
s may be more or less toxic themselves. And chemicals may be eliminated from
0 the body of organisms, for example by faeces or a phenomenon of dilution
%0 by growth. All compartment TK models assume that chemicals are evenly
s distributed within the compartment(s) what simplifies equations.

262 The most complete and complex TK models are PBTK models associating
%3 compartments to organs or physiological fluids (e.g., blood) and describing
% in very details all chemical fluxes between compartments; they are mostly
s available for aquatic species such as fish species and a number of chemical

x%s  classes including plant protection products, metals, persistent organic pollu-
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%7 tants, nano-particles (see [Grech et al.| (2017) for a review). The simplest TK
268 model has one compartment that corresponds to one organism, in which chem-
0 icals enter (at rate k,) and from which chemicals are eliminated (at rate k).
o0 This only-one compartment TK model will basically consider one exposure
on route and one elimination process. In the regulatory ERA, such models are
a fitted to data collected during bioaccumulation tests, which consists in an ac-
a3 cumulation phase followed by a depuration phase. Estimates of parameters k,,
2 and k. are then used to calculate bioaccumulation factors (OECD) 2012).

215 Nevertheless, even if the most complex TK models are not always required,
a6 the very simple one reveals very limited when chemicals are present in several
o7 media, so that organisms may be exposed via several routes, and/or when
s several processes of elimination need to be accounted for, especially when a
a9 parent compound may biotransform into metabolites. Such situations today
20 benefit from both a unified modelling framework (Ratier et all [2019) and
s a ready-to-use tool, MOSAICy;qc. (Ratier et all 2020). The section below

22 illustrates the use of the last updated version of MOSAICy; qcc-

w3 3.1.2 MOSAICh;pacc

s8a MOSAICp;0qcc is a newly offered service in MOSAIC since 2020 which has been
x5 developed in R (R Core Team, 2021) within a Shiny environment (Chang
25 et all 2021). It allows the estimation of bioaccumulation factors associated
27 with their uncertainty from the fit of a TK model, with only one compartment

2s  corresponding to the whole organism but several exposure routes and several
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20 elimination processes may be accounted fOIE The model is automatically built
20 according to the accumulation-depuration data uploaded by the user (Figure
201 A). By a single click, the user first obtains the posterior probability distri-
22 bution of the kinetic bioaccumulation factor (Figure [3|B), summarized with
203 its median and its 95% uncertainty interval (bounded by the 2.5% and 97.5%
2 percentiles of the posterior distribution, Figure C). The uploaded data may
25 come from different types of experiments in which different routes of expo-
26 sure are considered (e.g., surface water, pore water, sediment, food), as well as
207 different elimination processes (e.g., excretion, biotransformation and growth
28 dilution). Fitting results are plotted (Figure D) superimposed to the data
200 for the parent and its metabolites (if concerned). TK model parameters (e.g.,
s ky and ke in the most simple situation) are also provided as medians and
s 95% uncertainty intervals (Figure E) Then automatically come a number
s of goodness-of-fit criteria to guide the users in checking the relevance of their
w03 results (Figure F) MOSAICh;pqce provides the same goodness-of-fit criteria
s as MOSAIC,owtn, also with a short description of the expected outputs and
as  cross-references to the tutorial illustrating and explaining what to do in non-
ss ideal situations. To ensure the reproducibility and the transparency of the
s TK analyses, MOSAICy;oqcc allows downloading all outputs under different
xe  formats, as well as the entire R code used (Figure 3| G).

300 Several updates were recently implemented in MOSAICy;oqcc. First, it is

a0 now possible to account for the lipid fraction within organisms in calcula-

1 To access to the very last version of MOSAICp;0qcc that is regularly updated and tested
before to be deployed on the official server, please go to https://scharles-univlyonl.
shinyapps.io/mosaic-bioacc-gamma/.
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Fig. 3 Selected pieces from MOSAICy;qcc when performing a TK analysis on two sample
data sets: Oncorhynchus_two and Male Gammarus_seanine: (A) upload of experimental data
and simplified summary of the TK model and its parameters (automatically delivered); (B)
graphical representation of bioaccumulation factors (here the kinetic BCF with example
Oncorhynchus_two); (C) the corresponding statistical summary of the BCF distribution; (D)
TK model fit (concentration in the body as a function of time): median curve (solid colored
line) and its uncertainty (gray area delimited by colored dotted lines); (E) estimation of
model parameters fitted to bioaccumulation data; (F) various model goodness-of-fit criteria,;
(G) result downloading the results.

tions; users just need to enter their measured value. Secondly, MOSAICy;00ce
allows users to fit several nested TK models on a same data set. In practice,
users just need to choose the parameters they want to appear in sub-models.
According to the experimental conditions, several sub-models can indeed be
considered and compared depending on the hypotheses to test either on the
exposure routes or on the elimination processes. As illustrated in a case study
in supplementary information (see full report in SI), organisms may have been

exposed via several media (water and sediment in the case study in SI). By
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si0  default, MOSAICy;oqce fits the full TK model. Then users can test different
20  TK sub-models, for example sub-models with only one exposure route (water
s or sediment in the case study in SI), and compare them to the full model based
322 on both the Deviance Information Criteria (DIC) and the Watanabe-Akaike
23 information criterion (WAIC) delivered by MOSAIC;pacc. Users can also test
s different TK sub-models ignoring some of the elimination processes even if
w5 they have been measured (e.g., neglecting the dilution by growth). Hence, users
3 have now the possibility to choose the most appropriate TK model regarding
a7 their data. Third, a collection of more than 80 data sets is made available to
s support all features of MOSAICy;pqc.. More than 95% of these data sets are
39 published in the scientific literature. They encompass more than 25 species
a0 (aquatic, terrestrial, insect), more than 66 chemical substances, different ex-
s posure routes (water, sediment, soil, food) and several elimination processes
s (biotransformation and growth dilution). This data collection is presented as
133 a table that summarises the main characteristics of the data (genus, category,
s substance, accumulation duration, exposure routes, number of data and repli-
15 cates), as well as a direct link to the reference, and direct links to download
35 the raw data and the full report provided by MOSAICy;pace. In addition, the
s table also gives the kinetic bioaccumulation factor estimate (as a median and

s a 95% uncertainty interval).
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30 3.2 GUTS models

uo  3.2.1 Few words about GUTS modelling

s All GUTS models are today unified within a theoretical framework describ-
w2 ing stressor effects on survival over time, based on hypotheses related to the
w3 stressor quantification, the compensatory processes (such as recovery), and
sis the nature of the death process (Jager & Ashauer} |2018]). In support of ERA,
us EFSA considers that both reduced versions of GUTS models (GUTS-RED
us  models) are ready-to-use (Ockleford et al., [2018). To write it simple, these
a7 two reduced versions can only be used with standard toxicity test data, that
us is without measurements of internal damages within organisms. The SD ver-
a0 sion (the GUTS-RED-SD model) assumes that all individuals are identically
350 sensitive to the chemical substance by sharing a common internal threshold
1 concentration and that death is a stochastic process once this threshold is ex-
s ceeded. The GUTS-RED-SD model then describes the instantaneous hazard
3 rate as a threshold function of the damages, themselves described by a very
s« simple TK model. The IT version (the GUTS-RED-IT model) is using the
s same TK part as the GUTS-RED-SD version. For its TD part, it is based
36 on the critical body residue approach, which assumes that individuals differ in
37 their tolerance threshold when exposed to a chemical compound according to a
s probability distribution. The GUTS-RED-IT model also assumes that individ-

30 uals die as soon as their internal concentration reaches their individual-specific
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w0 threshold. By default, the between-individual variability is described by a log-

361 logistic probability distribution.

362 In its recent scientific opinion (Ockleford et al. [2018), EFSA clearly states
3 its support for the use of TKTD models at Tier-2 of ERA according to a
e specific workflow. Applied in particular for GUTS-RED models, this workflow
sss  consists in the following three steps: (1) Calibration, which consists in fitting
w6 both GUTS-RED models to toxicity test data collected at constant concentra-
7 tion under a standard protocol, in order to get parameter estimates associated
s with their uncertainty; (2) Validation, which consists in simulating the num-
w0 ber of survivors over time, using both GUTS-RED models and the previously
s estimated parameters, but for time-variable exposure profiles under which data
sn  have also been collected. The simulated numbers of survivors for both models
s are then compared to observed ones and the prediction-observation adequacy is
sz checked according to one visual validation criterion together with three quanti-
s tative validation criteria. These validation criteria were defined by EFSA with
w5 the perspective to choose the most appropriate model for the next step; (3)
s Prediction, which consists in simulating the survival probability over time
s with the previously chosen model and the parameter estimates obtained in step
s (1), for environmentally realistic exposure scenarios in order to assess risk on
;9 how far is the exposure profile from causing a pre-defined effect. Namely, this
0 third step aims at determining the 2% Lethal Profile (denoted LFP,), that is

s the multiplication factor leading to an additional 2% of reduction in the final
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s survival rate at the end of the exposure. The next subsection guides the reader

3 step by step to perform the EFSA workflow directly using MOSAIC.

e 3.2.2 MOSAICquTs-— it

s MOSAIC offers two services related to the use of GUTS-RED models to an-
s alyze standard survival data as function of both time and exposure concen-
se7 tration: MOSAICqyrs— i for step (1) and MOSAICGUTS—predict for steps
s (2) and (3). All features of MOSAICgyrs—sit have already been detailed in
s |Baudrot et al.| (2018b). We just recall here the main highlights: a facilitated up-
w0 loading of data (either from example data files or from the users themselves),
s an automatic GUTS fitting analysis for either GUTS-RED-SD and GUTS-
2 RED-IT models, all useful fitting outputs to check the relevance of the results
33 (parameter estimates, fitting curve with its uncertainty, posterior predictive
s check), and a collection of LC, calculations associated with their uncertainty
w5 (Figure A). In the following subsection, MOSAICGu75—predict is presented
w6 in details, in support of the validation and the prediction steps of the EFSA

37 workflow.

s 3.2.8 MOSAICGUTS—predict

99 MOSAICGuTS—predict has been developed in R (R Core Team, [2021]) within
wo & Shiny environment (Chang et al., 2021)). It is available at https://mosaic.
s [univ-lyonl.fr/guts-predict and performed using the computing facilities

w2 of the CC LBBE/PRABI. Both steps (2) and (3) of the EFSA workflow require


https://mosaic.univ-lyon1.fr/guts-predict
https://mosaic.univ-lyon1.fr/guts-predict
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Fig. 4 Selected pieces from MOSAIC for GUTS models: (A) GUTS calibration results:
model predictions superimposed to the data, parameter estimates and the way to download
the joint posterior distribution, from file Ring-test Dataset B-cst; (B) GUTS-predict first
panel to enter the exposure profile for the simulation (EFSA steps (2) and (3), from file
conc-ringtest-B-varA.txt), as well as to choose the model to use and how to consider
its parameters (distributed or not, from file mecmc-ringtest-B-SD.txt); (C) outputs of the
EFSA validation step (2) where the predicted number of survivors is compared to observed
data (from file Nsurv-ringtest-B-varA.txt), together with EFSA validation criteria values;
(D) outputs of the EFSA prediction step (3) where two options are proposed to quantify
how far is the exposure profile from causing an % effect: fixing the multiplication factor
and simulating the predicted survival over time, or fixing  and getting the corresponding
multiplication factor; and (E) downloading panel of MOSAICGuTs—predict-

a time-variable exposure profile that needs to be uploaded first (Figure B).
Then the user can perform simulations with one or both GUTS-RED models,
for which parameter values need to be entered (Figure [4/B). Regarding pa-
rameter values, two options are proposed: only point values (such as means,
medians...) or distributed parameters, namely coming from MOSAICcurs— fit
as the joint posterior distribution, downloadable in advance (Figure A). From
here, users can perform validation step (2) to predict the number of survivors

over time to be compared with observed data ("Validation’ tab). For this step,
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m MOSAICGuUTs—predict €xpects to receive as input both distributed parameters
a2 (in order to propagate the uncertainty all along the simulation) and a data
sz file with observations under the uploaded exposure profile (typically a pulsed
as  exposure, Figure C). MOSAICGuTS—predict returns EFSA validation criteria
a5 values together with the simulation superimposed to the observed data and
a6 the posterior predictive check (PPC) graph. In the following or independently,
sz the prediction step (3) can be performed to predict the survival probability
as  over time as a function of time under the previously (or a new one) uploaded
a0 exposure profile. Usually, for step (3), users are using realistic scenarios, for
20 example predicted environmental concentrations of active substances of plant
= protection products (European Food Safety Authority, 2017)). This prediction
2 step ("Prediction’ tab) also requires the use of distributed parameters (namely
w23 according to their joint posterior distribution, as delivered in step (1)). From
o4 here, users have two options: (i) to fix a multiplication factor (MF) to apply
«s on the uploaded exposure profile and get the prediction as a curve (the median
»2s tendency and its uncertainty) associated with the predicted survival probabil-
w7 ity at final time; (ii) to fix a percentage of additional reduction on survival at
«s final time (e.g., 20% as on Figure D, left) and ask MOSAICGurs—predict tO
w29 return the corresponding MF that could be applied with a 2% of risk in terms
a0 of survival probability for the species-compound combination under interest;
a this MF is exactly the newly concept of the % Lethal Profile (LFP,,) as defined
2 by EFSA (Ockleford et al.l |2018])). Finally, users can download selected pieces

a of results (Figure [4/D, right).
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s 4 New perspectives for Tier-1 in ERA

a5 As detailed above, TKTD models allow to account for both time and concen-
a6 tration in predicting effects due to chemical exposure. In essence, based on
s7 standard protocols, TKTD models benefit from all collected data, while dose-
as  response models only rely on data at a fixed target time, that is one of the
s  time points in the experimental design, the most often the end of the experi-
wo  ment. Starting from the hypothesis that the gain in knowledge in using TKTD
w1 models allow a better precision (or, equivalently, a reduced uncertainty) on pa-
w2 rameter estimates, this section highlights the added-value of GUTS models for
w3 the estimation of lethal concentration as required for Tier-1 in ERA.

aaa As detailed in [Baudrot & Charles| (2019)), the lethal concentration can be
ws  obtained from a GUTS model as a continuous function of both the chosen per-
wus  centage x and the exposure duration ¢ according to model parameter estimates.
a7 Hence, the calculation of any LC, ;) can be associated to its uncertainty, by
ws  propagating the uncertainty associated to model parameter estimates as acces-
wo  sible from the joint posterior distribution after performing Bayesian inference.
w0 Based on a battery of 20 data sets, the classical LC5q value at final time, as esti-
1 mated by a 3-parameters log-logistic model (equation ) is compared to the
2 corresponding calculations obtained from both GUTS-RED-SD and GUTS-
3 RED-IT models. The 20 data sets are standard survival data sets with a first
wa set for 10 different species exposed to chlorpyriphos (Rubach et all [2012),
s a second for species Daphnia magna exposed to seven veterinary antibiotics

6 (Wollenberger et al., 2000) and three other data sets (Forfait-Dubuc et al.,
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7 [2012). Each data set was fitted with the three models thanks to the R package
s morse (Baudrot et all 2021). Note that the entire analysis can be identically
w0 reproduced using the MOSAIC platform. For each data set, goodness-of-fit
wo criteria were good enough to support the relevance of the results (see example
w1 on Figure A for the data set of D. magna exposed to potassium dichromate).
w2 So, for each data set, the LC(, ;) estimates (as medians and 95% uncertainty
w3 intervals) were collected for 2 = 50% and at the end of the experiment, directly
we  from parameter estimates when using the 3-parameters log-logistic model (pa-
w5 rameter e in equation above), or asking for the calculation after predicting

wo  the dose-response curve with both GUTS-RED models (Figure [5|B).

a67 Because of different orders of magnitude between LCjg estimates among
ws data sets, the three LC5q estimates were compared by normalizing them to
w0 the classical LC59 median estimate obtained with the 3-parameters log-logistic
o model; this latter having thus a median of 1 (Figure C). Focusing on the only
a  data set of D. magna exposed to potassium dichromate (Figure A—C), the
a2 starting hypothesis is confirmed with a better precision for both GUTS-RED
a3 estimates of the LCxq, while both GUTS-RED estimates with a similar preci-
«¢  sion are not significantly different from the classical calculation (overlapping
a5 95% uncertainty intervals). On the basis of this first finding, three questions
w6 deserve particular attention: (1) does the better precision depend on the z
ar (first fixed at 50%)7?; (2) does the better precision depend on the exposure
ws  duration (first fixed as the experiment duration)? (3) does the better precision

a9 depend on the data set, that is on the species? and/or on the compound? As
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w0 shown on Figure [5]D for the combination D. Magna-potassium dichromate,
w1 the better precision does not depend neither on x nor on the time at which the
w LC(, ) is calculated. Figure D also illustrates that LC'(, ;) estimates given
w3 by both GUTS-RED models can continuously be obtained whatever ¢ between
s 0 and the exposure duration, but only at time points within the experimental

s design for the classical estimates with the 3-parameters log-logistic model.

486 Question (3) was answered in two steps. Figure E first shows a slight
w7 dependency on the species exposed to chlorpyriphos of the LC5¢ precision,
w8 with a similar precision whatever the model for species 03 and 07, while both
w9 GUTS-RED estimates are different for species 03, 06 and 08. Secondly, Figure
wo []F shows a slight dependency again, without high differences between both
s GUTS-RED estimates, but sometime different from the classic one (compound
w2 03 and 09). These results need further investigation for example by looking at
w3 the phylogenetic proximity of the 10 compared species as well as at the mode
sa  of action of the seven compounds given that our knowledge is still poor in
w5 describing how effects vary across both species and compounds (Ashauer &
ws |Jager, |2018)). Nevertheless, for most of the data set, both GUTS-RED models
w7 provide more precise LC5 estimates than a classical dose-response approach.
w8 Given that all facilities are today available to use GUTS models on standard
w0 data sets, the regulatory risk assessment should really consider the possibility

s0  to use them even at Tier-1.
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Fig. 5 (A) GUTS-RED-SD fitting results for Daphnia magna exposed to potassium dichro-
mate; (B) the corresponding predicted dose-response curve; (C) the three LC5o estimates
with the 3-parameters log-logistic model (in black), the GUTS-RED-SD model (in red) and
the GUTS-RED-IT model (in green); (D) LC,; calculations for various x (upper panel)
and various exposure time (lower panel); (E) comparison of LC50 estimates between species
exposed to chlorpyriphos; (F) comparison of LCsq estimates between compound for D.
magna.

5 Conclusions

Although tools are existing to use TKTD models, and although regulatory
bodies strongly recommend their use for ERA (especially to facilitate the con-
sideration of realistic exposure scenarios), practitioners struggle in appropriate
them for reasons mostly attributable to modelers themselves. These reasons
mainly come from lack of support: (1) to easily quantify uncertainties, and
consequently their propagation to model outputs and subsequent predictions;
(2) to better accept changing paradigm using new modelling approaches often
appearing as black boxes, together with lack of support to fully perceive the
concrete added-value of these novelties for their daily work; (3) to easily inter-

pret goodness-of-fit criteria and therefore trust model results in their ability
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to support decisions from predictions; (4) to appropriate recent user-friendly
turn-key facilities, while already recognized as automatically providing toxi-
city indices of interest in full compliance with regulatory guidelines and risk
assessment decision criteria. The Bayesian inference framework is clearly the
direction to take to facilitate the quantification of the uncertainties. In addi-
tion, practitioners will be most likely able to accept advanced modelling for
ERA if accessibility of modelling is improved in terms of step-by-step support,
reproducibility and transparency, founding principles of the web platform MO-

SAIC.
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