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Intrinsically disordered regions/proteins (IDRs/IDPs) are abundant across all the domains of life, where they perform important regulatory roles and supplement the biological functions of structured proteins/regions (SRs). Despite the multi-functionality features of IDRs, several interrogations on the evolution of viral genomic regions encoding IDRs in diverse viral proteins remain unreciprocated. To fill this gap, we benchmarked the findings of two most widely used and reliable intrinsic disorder prediction algorithms (IUPred2A, and ESpritz) to a dataset of 6,108 reference viral proteomes to unravel the multi-faceted evolutionary forces that shape the codon usage in the viral genomic regions encoding for IDRs and SRs. We found persuasive evidence that the natural selection predominantly governs the evolution of codon usage in regions encoding IDRs by most of the viruses. In addition, we confirm not only that codon usage in regions encoding IDRs is less optimized for the protein synthesis machinery (tRNAs pool) of their host than for those encoding SRs, but also that the selective constraints imposed by codon bias sustain this reduced optimization in IDRs. Our analysis also establishes that IDRs in viruses are likely to tolerate more translational errors than SRs. All these findings hold true irrespective of the disorder prediction algorithms used to classify IDRs. In conclusion, our study offers a novel perspective on the evolution of viral IDRs and the evolutionary adaptability to multiple taxonomically divergent hosts.

Introduction

By virtue of genetic code redundancy, more than one codon (synonymous codons) codes for the same amino acid. Increasing pieces of evidence suggest that in any given organism, synonymous codons are not used arbitrarily, a phenomenon called codon usage bias, and results in speciesspecific codon usage bias [START_REF] Clarke | Darwinian evolution of proteins[END_REF][START_REF] Hanson | Codon optimality, bias and usage in translation and mRNA decay[END_REF][START_REF] Ikemura | Codon usage and tRNA content in unicellular and multicellular organisms[END_REF][START_REF] Kumar | Evolution of Codon Usage Bias in Henipaviruses Is Governed by Natural Selection and Is Host-Specific[END_REF][START_REF] Plotkin | Synonymous but not the same: the causes and consequences of codon bias[END_REF][START_REF] Shabalina | Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity[END_REF][START_REF] Zhou | Nonoptimal codon usage influences protein structure in intrinsically disordered regions[END_REF]. The origin of the codon usage bias is mostly explained with the help of widely accepted 'selection-mutation-drift theory', which posits that the mutational bias and the natural selection are the two leading evolutionary forces that shape the codon usage bias in a species [START_REF] Bulmer | The selection-mutation-drift theory of synonymous codon usage[END_REF].

Mutational biases are likely to accrue certain types of mutations unevenly, resulting in interspecies differences in the complete genome. Such mutation biases may arise from errors during DNA replication [START_REF] Cui | Distinct contributions of replication and transcription to mutation rate variation of human genomes[END_REF][START_REF] Lobry | Asymmetric substitution patterns in the two DNA strands of bacteria[END_REF], transcription-mediated mutational biases [START_REF] Cui | Distinct contributions of replication and transcription to mutation rate variation of human genomes[END_REF][START_REF] Comeron | Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence[END_REF][START_REF] Green | Transcription-associated mutational asymmetry in mammalian evolution[END_REF], methylation of CpG dinucleotide to form 5-methylcytosine followed by deamination resulting in C-T substitution [START_REF] Kaufmann | DNA damage and cell cycle checkpoints[END_REF], and uneven DNA repair [START_REF] Roth | Measuring codon usage bias, in Codon Evolution: Mechanisms and Models[END_REF]. On the contrary, natural selection can influence the synonymous codon usage patterns by selecting specific codon subsets to match the most abundant host tRNAs (or translational selection) [START_REF] Dos Reis | Solving the riddle of codon usage preferences: a test for translational selection[END_REF][START_REF] Hershberg | Selection on codon bias[END_REF][START_REF] Kumar | Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses[END_REF]. This phenomenon is predominantly observed in highly expressed genes. Besides, other factors that may influence the codon usage bias include regulatory structural RNA elements, secondary RNA structure, and viral RNA packaging [START_REF] Marsh | Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging[END_REF][START_REF] Simmonds | Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: Implications for virus evolution and host persistence[END_REF][START_REF] Weill | A new type of IRES within gag coding region recruits three initiation complexes on HIV-2 genomic RNA[END_REF].

Defying the classical structure-function paradigm, intrinsically disordered regions (IDRs, i.e. regions that fail to acquire a defined secondary or tertiary structure under physiological conditions) perform important biological functions such as signaling, recognition and regulation [START_REF] Dunker | The unfoldomics decade: an update on intrinsically disordered proteins[END_REF][START_REF] Dyson | Intrinsically unstructured proteins and their functions[END_REF][START_REF] Habchi | Introducing protein intrinsic disorder[END_REF][START_REF] Uversky | Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling[END_REF][START_REF] Xue | Structural disorder in viral proteins[END_REF]. IDRs are abundant in nature, and their prevalence among the three kingdoms of life (i.e., bacteria, archaea, and eukaryotes) differs significantly, with IDRs being enriched in eukaryotes and in complex life forms [START_REF] Dunker | The unfoldomics decade: an update on intrinsically disordered proteins[END_REF][START_REF] Dunker | Intrinsic protein disorder in complete genomes[END_REF][START_REF] Peng | Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life[END_REF][START_REF] Uversky | The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome[END_REF][START_REF] Ward | Prediction and functional analysis of native disorder in proteins from the three kingdoms of life[END_REF][START_REF] Xue | Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life[END_REF]. Viral proteins have been reported to possess distinct structural features such as a high occurrence of IDRs and lower van der Waals contact densities [START_REF] Tokuriki | Do viral proteins possess unique biophysical features?[END_REF][START_REF] Xue | Viral disorder or disordered viruses: do viral proteins possess unique features?[END_REF]. Furthermore, increasing evidences suggest that IDRs in viruses also play important roles in both virus replication and adaptation to the host [START_REF] Dyson | Intrinsically unstructured proteins and their functions[END_REF][START_REF] Xue | Structural disorder in viral proteins[END_REF][START_REF] Xue | Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life[END_REF][START_REF] Charon | First Experimental Assessment of Protein Intrinsic Disorder Involvement in an RNA Virus Natural Adaptive Process[END_REF][START_REF] Goh | Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids[END_REF][START_REF] Goh | Protein intrinsic disorder and influenza virulence: the 1918 H1N1 and H5N1 viruses[END_REF][START_REF] Kakisaka | Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2[END_REF][START_REF] Mishra | Molecular Recognition Features in Zika Virus Proteome[END_REF][START_REF] Redwan | Structural disorder in the proteome and interactome of Alkhurma virus (ALKV)[END_REF][START_REF] Uversky | Flexible Viruses: Structural Disorder in Viral Proteins[END_REF]. These unique features of viral proteins might provide increased structural malleability needed for interaction with various components of the host immune system and quickly adapt to the host environment [START_REF] Charon | First Experimental Assessment of Protein Intrinsic Disorder Involvement in an RNA Virus Natural Adaptive Process[END_REF][START_REF] Davey | How viruses hijack cell regulation[END_REF][START_REF] Dyson | How Do Intrinsically Disordered Viral Proteins Hijack the Cell?[END_REF][START_REF] Walter | Comparative analysis of mutational robustness of the intrinsically disordered viral protein VPg and of its interactor eIF4E[END_REF]. Since a defined structure is not a prerequisite for IDRs function, IDRs are more tolerant of mutations. As such, IDRs might provide a unique strategy for tolerating the typically high mutation rates observed in viruses, and especially in RNA viruses [START_REF] Xue | Structural disorder in viral proteins[END_REF][START_REF] Walter | Comparative analysis of mutational robustness of the intrinsically disordered viral protein VPg and of its interactor eIF4E[END_REF].

While the functional importance of IDRs in viruses has already been established, to date, there is a limited understanding of the evolutionary forces shaping viral IDRs. Herein, we benchmarked the findings of two most widely used and accurate intrinsic disorder predictors (IUPred2A and ESpritz, both of which utilizes distinct algorithms for the prediction of IDRs, viz., IUPred2A estimates total pairwise interaction energy from the amino acid compositions, while the latter employs bi-directional recursive neural networks for the predictions for IDRs) to a dataset comprising 6,108 reference viral proteomes encompassing 283,000 viral proteins. In addition, a systematic analysis of the evolutionary forces (natural selection and mutational bias) that shape the codon usage bias in virus genomic regions encoding IDRs and structural regions (SRs) was performed using selective bioinformatics tools to measure the effective number of codons (ENc) plots [START_REF] Wright | The 'effective number of codons' used in a gene[END_REF], neutrality plots [START_REF] Sueoka | Directional mutation pressure and neutral molecular evolution[END_REF], and tRNA adaptation index (tAI) [START_REF] Dos Reis | Solving the riddle of codon usage preferences: a test for translational selection[END_REF]. Our results suggest that the codon usage in regions encoding IDRs are strongly influenced by the natural selection in most of the viruses. Moreover, IDRs contribute significantly to viral protein functionality and evolutionary adaptability to multiple taxonomically divergent hosts.

Materials and Methods

Sequence Dataset

The reference viral proteomes (n = 6,108) used in this study were retrieved from the UniProt database Release 2018_1 [START_REF] Consortium | UniProt: the universal protein knowledgebase[END_REF]. The viral proteomes considered in the present study account for more than 283,000 viral proteins. The categorization of the viral genomes corresponding to the viruses in reference proteomes was performed on the basis of the Baltimore Classification that relies on the nature of the viral nucleic acid to group them. The categorization resulted in splitting the reference viruses into 10 groups, viz. ssDNA (n = 741), dsDNA (n = 2,596), dsDNA-RT (n = 76), ssRNA(-) (n = 413), ssRNA(+) (n = 597), dsRNA (n = 189), ssRNA-RT (n = 55), virophage (n = 7), satellite (n = 59), and unclassified (n = 1,375) viruses. The taxonomy of all the viruses and their associated hosts were retrieved from the UniProt database and further cross-checked from virus-host DB [START_REF] Mihara | Linking Virus Genomes with Host Taxonomy[END_REF]. The hosts were classified based on the RH Whittaker five kingdom classification system [START_REF] Whittaker | Protist classification and the kingdoms of organisms[END_REF] as shown in Table S1.

Identification of Intrinsically Disordered Regions (IDRs)

Two different disorder predictors (IUPred2A, and ESpritz) were employed for the prediction of IDRs across the diverse virus proteomes. Since these two prediction algorithms are using principally different attributes and approaches for disorder prediction, this allowed us to capture flavors of disorder in our dataset. Not only do these two disorder predictors depend on very distinct ID prediction algorithms, they have also been shown to provide robust predictions with a favorable trade-off between speed and accuracy [START_REF] Dosztányi | IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content[END_REF][START_REF] Peng | Comprehensive comparative assessment of in-silico predictors of disordered regions[END_REF][START_REF] Walsh | Comprehensive large-scale assessment of intrinsic protein disorder[END_REF][START_REF] Necci | A comprehensive assessment of long intrinsic protein disorder from the DisProt database[END_REF], being also able to outperform several other disorder predictors [START_REF] Necci | MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins[END_REF][START_REF] Fan | Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus[END_REF][START_REF] Almog | Tuning Intrinsic Disorder Predictors For Virus Proteins[END_REF]. Therefore, we utilized these two prediction algorithms to provide information about disorder in our dataset.

IUPred2A is one of the commonly used methods for predicting protein disorder and it is based on capturing the basic biophysical properties of IDRs. This predictor is based on the assumption that IDRs have a specific amino acid composition that does not allow the formation of enough favorable inter-residue interactions to stabilize a well-defined structural state, with said interaction capacity of each residue being captured by an energy estimation scheme [START_REF] Mészáros | IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding[END_REF][START_REF] Dosztányi | The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins[END_REF]. In addition, IUPred2A offers two prediction types, long and short regions of disorder, with the former being an acclaimed option for predicting biologically relevant disordered regions, and the latter being recommended for short proteins, such as those of viruses. The long and short disorder prediction types allow predicting IDRs of at least 30 and 10 consecutive residues, respectively. These two prediction types additionally contribute to the flavors of disorders in our dataset. IUPred2A provides a per residue ID probability score for the protein sequence that ranges from 0 to 1. Residues having an ID probability score ≥ 0.5 are defined as disordered, and the content in IDRs for each protein is calculated as the ratio between the number of predicted disordered residues and the total number of residues in the protein. A similar approach is used for the calculation of the content of IDRs in a viral proteome, calculated as the ratio between the total number of residues predicted to be disordered in a given proteome and the total number of residues in that proteome.

The second disorder predictor, ESpritz is an ensemble of protein disorder predictors based on bidirectional recursive neural networks and trained on three different flavors of disorder (DisProt disorder, X-ray disorder, and NMR mobility) [START_REF] Walsh | ESpritz: accurate and fast prediction of protein disorder[END_REF]. Similar to IUPred2A, ESpritz can produce fast and accurate sequence-only disorder predictions and therefore is suitable for disorder annotation of large datasets. A short-disorder prediction (trained on the missing atoms from the Protein Data Bank X-ray crystallography structures) with a 5% false positive rate implemented in ESpritz, was run on the dataset of the reference viral proteomes. Like IUPred2A, ESpritz provides a per residue ID probability score and an approach similar to that described above was used for the calculation of the content of IDRs in a viral proteome.

In addition, we assessed and validated the performance of two distinct disorder predictors (IUPred2A, and ESpritz) used in our study against the experimental disorder content information of viral proteins. To achieve this, we retrieved viral proteins (n = 79) whose disordered region annotations have been achieved experimentally from the Disprot database Version: 8.1 (https://www.disprot.org/) and estimated the sensitivity and specificity of disorder content prediction. The summary of viral proteins dataset retrieved from the Disprot database is provided in Table S2A.

Assessing the factors driving the evolution of codon usage in IDRs and SRs of viral proteins

The nucleotide sequences encoding viral IDRs and SRs, as predicted by IUPred2A, were extracted separately from the reference virus genomes derived from the NCBI GenBank Release 230.0 (n = 6,108). The virus nucleotide sequences (n = 646) containing either internal stop codons or non-translatable codons or both, were discarded and the remaining sequences from 5,462 reference viruses were used for further analysis.

ENc-GC3s plots

The effective number of codons (ENc) represents the magnitude of codon usage bias within a gene. The ENc values range from 20 to 61, where the smaller the ENc value the greater the extent of codon usage bias and vice-versa. The plotting of ENc values against the GC3s (frequency of either a guanine or cytosine at the third codon position of the synonymous codons, excluding Met, Trp, and stop codons) provides a qualitative estimation of the driving factors (mutation bias and natural selection) that shape the codon usage patterns [START_REF] Wright | The 'effective number of codons' used in a gene[END_REF]. In the codon usage table, there are two amino acids (Met, and Trp) with only one codon choice (AUG, and UGG, respectively), nine amino acids with two codon choices, one with three, five with four, and three with six codon choices that make up five distinct synonymous families (1, 2, 3, 4, and 6). The overall contributions made by each synonymous family to codon usage bias thus make up the ENc. The ENc values were calculated for IDRs and SRs coding sequences using the formula described in equation [START_REF] Clarke | Darwinian evolution of proteins[END_REF].

̅̅̅ ̅̅̅ ̅ ̅̅̅ (1) 
where F (i = 2,3,4,6) is the mean of F i (homozygosity frequency) values for the i-fold (synonymous family type) degenerate amino acid. The F i values were calculated using equation [START_REF] Hanson | Codon optimality, bias and usage in translation and mRNA decay[END_REF].
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where n represents the total number of occurrences of the codons for that amino acid and n j is the total number of occurrences of the j th codon for that amino acid.

In the ENc-GC3s plot, the ENc values occupy the ordinate, while the GC3s values (frequency of either a guanine or cytosine at the third codon position of the synonymous codons, excluding Met, Trp, and stop codons) occupy the abscissa [START_REF] Wright | The 'effective number of codons' used in a gene[END_REF]. In those cases where the calculated ENc (
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where, 's' is the frequency of G + C at the third codon position of synonymous codons (i.e.
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Neutrality plots

The role of the mutational bias in shaping the evolution of synonymous codon usage has been shown to be related to a higher or lower GC content of the genomes. GC content changes have been observed more frequently in GC3 (nucleotides G + C at the third codon position), one of the most neutral nucleotides of the genome [START_REF] Sueoka | Directional mutation pressure and neutral molecular evolution[END_REF]. Therefore, the quantitative contributions of the mutational bias and the natural selection that influenced the codon usage patterns of the IDR/SR coding sequences of a virus was assessed by using neutrality plots.

The neutrality plot was constructed with GC3 as abscissa and GC12 (a sum of nucleotides G + C at the first, GC1 and second, GC2 codon positions) as ordinate, where each dot represents an independent IDR/SR of a virus. The regression line slopes of this plot give an estimation of the evolutionary rates of the mutational bias -natural selection equilibrium. For example, a regression line with a slope of zero indicates an insignificant influence of the mutational bias in shaping the codon usage patterns, while a slope of one is indicative of complete neutrality [START_REF] Sueoka | Directional mutation pressure and neutral molecular evolution[END_REF].

tRNA adaptation index

The tRNA adaptation index (tAI) is a widely used tool to measure the translation efficiency which takes into account the adaptation of codons to the intracellular tRNA pool of the host and the efficiency of each codon-anticodon pairing [START_REF] Dos Reis | Solving the riddle of codon usage preferences: a test for translational selection[END_REF][START_REF] Ma | Multiple Evolutionary Selections Involved in Synonymous Codon Usages in the Streptococcus agalactiae Genome[END_REF]. The tAI for the IDRs and SRs coding sequences from 1637 viruses (the host tRNA genes information for the rest of the viruses are not available) with respect to their hosts was estimated (Table S3). The absolute adaptiveness value of the i th codon was calculated using equation ( 4)

∑( ) (4) 
where, n i is the number of tRNA isoacceptors that recognize the i th codon, tGCN ij is the gene copy number of the j th tRNA that identifies the i th codon, and S ij is a selective constraint on the efficiency of the interaction between the i th codon and the j th tRNA [START_REF] Dos Reis | Solving the riddle of codon usage preferences: a test for translational selection[END_REF].

The codon relative adaptiveness value (wi) was calculated by dividing each Wi by the maximum

Wi value over all codons [START_REF] Dos Reis | Solving the riddle of codon usage preferences: a test for translational selection[END_REF]. The tAI of a IDR/SR is the geometric mean of the wi values of its codons. The frequencies of host tRNA genes specific for each codon were retrieved from the GtRNAdb database [START_REF] Chan | GtRNAdb: a database of transfer RNA genes detected in genomic sequence[END_REF]. In the case of multiple hosts for a particular virus, a reservoir or clinical host was considered for the analysis.

Investigation of the factors driving the evolution of codon usage in the core and the noncore regions of the viral proteins

In order to gain insight into the viral proteins segments encoding for structured regions (SRs), we divided SRs into core regions (CRs) consisting of the α-helix and the β-sheet, and non-core regions (NCRs) forming random coils or loops. All the accessible experimentally solved protein structures (n = 1077) were downloaded from the Protein Databank (https://www.rcsb.org/) and filtered for redundant protein sequences (Table S4). The protein sequences and corresponding secondary structures (n = 737) were extracted using STRIDE secondary structure assignment tool [START_REF] Heinig | STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins[END_REF]. The nucleotide sequences corresponding to CRs and NCRs were extracted by mapping UniProt identifiers to respective gene identifiers. The same set of protein sequences (n = 737) was considered for IDRs prediction using IUPred2A and ESpritz. The factors driving the evolution of codon usage in the CRs, NCRs and IDRs of these viral protein sequences were investigated by using the selected genetic tools as described in the previous sections of the manuscript.

Statistical analyses

Statistical analyses were carried out using GraphPad Prism 7.01 (GraphPad Software, San Diego, CA, USA). One-Way Analysis of Variance (ANOVA) with Bonferroni correction was used to compare the differences between tAI and CpG dinucleotide contents of IDRs and SRs. While in the case of ENc-GC3s plots, which shows the functional relationship between ENc and GC3s, we first estimated the signed distances of each IDRs and SRs of every virus genome type from the standard curve and thereafter, employed the Wilcoxon signed rank test, a non-parametric test, to compute the differences between the mean distances of IDRs and SRs from the standard curve. In all the statistical analyses, a p-value less than 0.01 was considered statistically significant. Additionally, we calculated Cohen's term dcommonly used to measure the effect size that is independent of group sizefor each of the tAI values, CpG contents, and IDRs/SRs distances from the standard curve in the ENc-GC3s plots, and thereafter, classified the effect size as small (d = 0.2), medium (d = 0.5) and large (d ≥ 0.8) [START_REF] Sullivan | Using Effect Size-or Why the P Value Is Not Enough[END_REF]. In the case of linear regression analyses, the effect size was estimated by Cohen's ƒ 2 where ƒ 2 = 0.02, 0.15, and ≥ 0.35 denotes small, medium and large size effects, respectively [START_REF] Selya | A Practical Guide to Calculating Cohen's f(2), a Measure of Local Effect Size, from PROC MIXED[END_REF]. All the graphs were generated by using GraphPad Prism 7.01.

Results

The magnitude of mutational bias in shaping the codon usage in genomic regions encoding

IDRs in double-stranded viral genomes is significantly higher than in regions encoding SRs

Previous studies emphasized that the mutational bias and the natural selection are the key factors driving the evolution of codon usage patterns in viral genomes [START_REF] Kumar | Evolution of Codon Usage Bias in Henipaviruses Is Governed by Natural Selection and Is Host-Specific[END_REF]. Therefore, ENc plots were than that of SRs, whereas these differences are insignificant in other viral genomes (dsDNA, dsDNA-RT, dsRNA, ssRNA-RT, satellite, virophage, and unclassified) (Figure 1). These findings suggest that although the evolution of codon usage bias in IDRs of ssDNA, ssRNA(-), and ssRNA(+) viral genomes is primarily governed by the natural selection, nevertheless, the influence of mutational bias is not completely negligible. Furthermore, since the points falling on, or just below, the standard curve also indicate an optimal codon usage, the codon usage, especially in the IDRs of ssDNA, ssRNA(-), and ssRNA(+) viral genomes was found to be suboptimal as compared to that of SRs.

We next employed the neutrality plots to explain the magnitude of mutational bias and natural selection in driving the codon usage bias. In these plots, a significant correlation between GC12 and GC3 coupled with a regression slope close to 1 indicates the prominent role of mutational bias while a non-significant or negative correlation with a regression slope close to zero indicates the predominant influence of natural selection in governing the codon usage patterns. It is clear from Figure 1 and Table S5 that the contribution of the mutational bias in influencing the codon usage in IDRs of dsDNA (r = 0.843, p < 0.0001, ƒ 2 = 0.168, 28.3%), dsDNA-RT (r = 0.653, p < 0.0001, ƒ 2 = 0.234, 47.1%), and dsRNA (r = 0.669, p < 0.0001, ƒ 2 = 0.713, 45.4%) is remarkably high. By contrast, in the rest of the viral genome types, a non-significant contribution of mutational bias in influencing the codon usage in IDRs was observed. These results are in concordance with ENc-GC3s plots. IDRs, as predicted by ESpritz, also experienced a prominent influence of mutational bias in governing the codon usage of double-stranded viral genomes (Table S6). We also investigated the magnitude of mutational bias and natural selection in driving the codon usage bias in the viral genomic segments encoding for core regions (CRs), and non-core regions (NCRs). We noted that the contribution of natural selection in dictating the evolution of codon usage in the NCRs (80.2%) is higher than that of CRs (75.7 %) (p < 0.01) (Figures S1A andS1B). 2B). This consistency is also maintained when a different IDRs predictor, e.g. ESpritz, was used, which showed a highly significant correlation between the computed tAIs of IDRs (r = 0.921, p < 0.0001) and SRs (r = 0.998, p < 0.0001), with the IUPred2A short disorder type (Figures S2A andS2B). The calculations revealed that the mean tAIs of viral genome regions encoding IDRs is lower than that of the regions encoding SRs (0.289±0.115, and 0.373±0.112, respectively, p < 0.0001).

These results indicate that the codon usage is less optimized in the regions encoding IDRs than in those encoding SRs. In order to check whether this phenomenon depends on the virus genome type, we further investigated the tAIs in different viral genomes. Importantly, the mean tAIs of the regions encoding IDRs was found to be significantly lower than those of the regions encoding SRs in dsDNA, ssDNA, ssRNA(+), ssRNA(-) and unclassified viruses (d = 0.594 to 0.880, p < 0.001 to < 0.0001), while no significant difference was observed in dsRNA, dsDNA-RT and ssRNA-RT viruses (Figure 2C). These results were consistently obtained irrespective of whether IDRs were predicted by the IUPred2A short disorder type or by ESpritz (Figures S2C and S2D, respectively). In addition, we noted that reduced codon optimization in the viral genomic regions encoding IDRs was maintained even when compared to the viral genomic regions encoding CRs (p < 0.01) and NCRs (p < 0.001) (Figure S1C).

To investigate whether the reduced optimization in IDRs comes actually from codon bias or an intrinsic bias due to the amino acid bias associated with IDRs, we generate a synthetic dataset (by shuffling or randomizing codons) encoding IDRs and SRs where the amino acid composition is held fixed [START_REF] Rice | EMBOSS: the European Molecular Biology Open Software Suite[END_REF]. By doing this, it is possible to study the constraints associated with real and randomized coding sequences. We found that the randomized coding sequence in IDRs is significantly optimized (increased tAI) as compared to the real coding sequence (d = 0.375, p < 0.0001) (Figure 2D). Conversely, in the case of SRs, the randomized coding sequence is sub-optimized (reduced tAI) in comparison to the real coding sequence (d = 0.282, p < 0.0001).

These results imply that the selective constraints imposed by codon bias maintain the reduced optimization in IDRs.

It is known that the expression level of proteins rich in IDRs is tightly controlled and codons of poorly expressed proteins tend to be less optimized [START_REF] Ikemura | Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system[END_REF][START_REF] Vavouri | Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity[END_REF]. If this is the case, then IDRs in IDR rich-proteins are expected to be less codon-optimized. To test this hypothesis, we divided the viral proteomes into two large categories, i.e. those that are enriched in IDRs (> 30%), and those that are poor in IDRs (< 20%). We showed that the reduced optimization in IDRs compared to that of SRs is a common trend in both IDRs-rich and IDRs-poor viral proteomes (d = 0.553-0.643, p < 0.0001) (Figure 2E). This finding is further supported by the non-significant difference in codon optimization (tAI) between the IDRs-rich and IDRs-poor viral proteomes.

Furthermore, we tested the aforementioned hypothesis on the viral proteins level, where we categorized them into two groups, i.e. those that are enriched in IDRs (> 50%), and those that are poor in IDRs (< 20%). We showed that the resultsreduced optimization of IDRs in comparison to that of SRs in both the IDRs-rich and IDRs-poor viral proteinsremained same (d = 0.572-0.857, p < 0.0001) (Figure S3). These results imply that, in comparison to SRs, the reduced optimization in IDRs is maintained irrespective of whether the viral proteins/proteomes are rich or poor in IDRs contents.

CpG dinucleotide content in viral genomic regions encoding IDRs is higher than in regions encoding SRs

The frequency of the CpG dinucleotide in IDRs and SRs of different viral genome types was estimated by dividing the number of CpG dinucleotides by that of total dinucleotides from the genome base compositions. The reverse transcribing (dsDNA-RT, and ssRNA-RT) and ssRNA(-) viruses showed the most severe CpG depletion among all the viruses (Figure 3A). The viruses infecting Animalia, Plantae, and Protista showed a comparatively high CpG depletion with respect to viruses infecting Archaea, Fungi, and Bacteria (p < 0.01 to < 0.0001). Interestingly, the abundance of the CpG dinucleotide in regions encoding IDRs is significantly higher compared to that of regions encoding SRs, a finding consistent for all virus genome types except dsDNA-RT, ssRNA-RT, virophage and satellite viruses (d = 0.390-1.63, p = 0.0003 to < 0.0001). Even, the CpG dinucleotide content in the IDRs is substantially higher compared to the viral genomic segments encoding for core (CRs, p < 0.0001) and non-core regions (NCRs, p < 0.0001) of SRs (Figure S1D). A higher content in the CpG dinucleotide in regions encoding IDRs compared to SRs is observed in viruses infecting Bacteria (d = 1.56, p < 0.0001), Animalia (d = 0.948, p < 0.0001), Plantae (d = 0.676, p < 0.0001), and Archaea (d = 0.323, p < 0.001), while no significant difference was observed for viruses infecting Fungi, Protista and isolated from the environment (Figure 3B). Although the CpG dinucleotide contents in the IDRs predicted by ESpritz show a minor discrepancy as compared to those predicted by IUPred2A

(Figures S4A andS4B), the overall results do not affect the interpretations.

Discussion

Despite the functional importance of IDRs in viruses, a deep understanding of the evolutionary forces acting on them is lacking so far. To fill this gap in knowledge, we herein performed a comprehensive analysis of the abundance of IDRs in 6,108 proteomes from representative viruses belonging to 10 different genome types. We explored IDRs in these viral proteomes from multiple perspectives using selected genetic tools that enabled us to assess the evolutionary forces that shape the codon usage bias in IDRs/SRs.

Intrinsic disorder (ID) in proteins, in fact, is not a single state, but rather a set of biophysical features that lead to a variety of conformational states (known as flavors of disorder) [START_REF] Vucetic | Flavors of protein disorder[END_REF]. As a result, IDPs/IDRs are characterized by high spatiotemporal heterogeneity and exist as dynamic structural ensembles. As a consequence, despite the fact that structure and disorder are often treated as binary states, they actually sit on a structural continuum [START_REF] Deforte | Order, Disorder, and Everything in Between[END_REF]. Therefore, a correlation between protein structure and function is described by a "protein structure-function continuum" model, where a given protein exists as a dynamic conformational ensemble containing multiple proteoforms characterized by a broad spectrum of structural features and possessing various functional potentials [START_REF] Uversky | Protein intrinsic disorder and structure-function continuum[END_REF]. ID in proteins can be precisely defined in terms of conformational ensembles and can be captured by various experimental methods. Since only a small number of viral proteins have been characterized experimentally to capture the conformational ensembles, computational tools continue to be methods of choice that have allowed the large-scale disorder predictions.

Our study has a few limitations, since it depends on the disorder predictions, accuracies of which are not perfect. However, scarcity of the experimentally proven disorder information in viral proteins precludes the development of dedicated and the most precise disorder predictors specific for viruses. Furthermore, although viral disordered proteins are expected to undergo functionrelated structural transitions in their host's diverse and complex microenvironments, currently available disorder predictors are not entirely capable of relating to such biological microenvironments. Therefore, in the absence of accurate tools for unambiguous evaluation of intrinsic disorder in viral proteins, we can only rely on the careful use of currently available disorder predictors.

We accept the fact that none of the disorder predictors is perfect, and the resulting mispredictions might affect the reliability of the subsequent analyses and mislead the results for the evolutionary forces acting on IDRs. Therefore, we designed and conducted our experiments based on the utilization of two different disorder predictors (IUPRed2A, and ESpritz) for the analysis of the diverse virus proteomes. The benchmarking of these two disorder predictors against the experimentally validated disorder content information of viral proteins has also shown that the performance of IUPred2A (Specificity = 86.72%, and Sensitivity = 62.71%) and ESpritz (Specificity = 89.90%, and Sensitivity = 69.10%) is considerably high (Table S2B). Therefore, these tools are frequently used as stand-alone predictors or in combination with other tools to provide information about disorder. Nevertheless, by evaluating the three key components of the findings, the magnitude of mutational bias in shaping the codon usage, translation efficiency and CpG dinucleotide content, we showed that our results remain consistently the same on a set of IDRs predicted by two principally different disorder predictors. These results also support the robustness and reliability of our findings and interpretations. Therefore, we consider that this approach allows us to create a more reliable depiction of the evolutionary forces acting on IDRs.

In the first place, we investigated the contribution of mutational bias and natural selection in the evolution of codon usage in the virus genomic regions encoding IDRs and SRs, using selected genetic tools, such as the ENc-plot, and the neutrality plot. The results showed that the codon usage in regions encoding IDRs of viruses possessing a single-stranded genome (ssDNA, ssRNA(-), and ssRNA(+)) is sub-optimal and primarily governed by the natural selection. Of note, a significantly higher mutational bias was observed in regions encoding IDRs of viruses possessing a double-stranded genome (dsDNA, dsDNA-RT, and dsRNA). Overall, the natural selection dictates the evolution of codon usage in regions encoding IDRs in all viruses, with the notable exception of viruses with a double-stranded genome. In addition, the evolution of codon bias in the segments encoding the core (composed of α-helix and β-sheet) and non-core (random coils or loops) regions of viral proteins are primarily governed by the natural selection, however, degree of extent varies. Previous studies have shown that both purifying selection and mutational bias are primarily responsible for the rapid evolution of IDRs in comparison to globular proteins, which is in concordance with our findings [START_REF] Afanasyeva | Human long intrinsically disordered protein regions are frequent targets of positive selection[END_REF][START_REF] Brown | Evolution and disorder[END_REF][START_REF] Forcelloni | Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome[END_REF][START_REF] Nilsson | Proteome-wide evidence for enhanced positive Darwinian selection within intrinsically disordered regions in proteins[END_REF][START_REF] Schlessinger | Protein disorder--a breakthrough invention of evolution?[END_REF][START_REF] Xue | Intrinsically disordered regions of p53 family are highly diversified in evolution[END_REF].

Many viruses possess the ability to infect multiple taxonomically divergent hosts for their efficient transmission in nature [START_REF] Ebel | Promiscuous viruses-how do viruses survive multiple unrelated hosts?[END_REF]. However, maintaining and adopting a multiple-host cell cycle strategy seems to be intrinsically challenging for a virus, because these taxonomically divergent hosts do possess species-specific codon usage reflecting differences in intracellular tRNA pools. Our study has shown that codon usage in the viral genomic regions encoding IDRs is less optimized to the tRNA pool of their corresponding hosts than that of regions encoding SRs including the CRs and NCRs. This peculiar feature, however, is not limited to viruses, but has also been detected in eukaryotic genomic regions coding for IDRs [START_REF] Zhou | Nonoptimal codon usage influences protein structure in intrinsically disordered regions[END_REF][START_REF] Homma | Codon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains[END_REF]. In eukaryotes, the reduced optimization of IDRs or reduced IDR translation efficiency (primarily due to nonoptimal codons usage) has been shown to be important for both protein structure and biological function(s), where delaying the translation of IDRs may allow sufficient time for the proper folding of SRs or structured domains (SDs) [START_REF] Zhou | Nonoptimal codon usage influences protein structure in intrinsically disordered regions[END_REF]. Furthermore, protein expansion in the hosts is largely due to indels in regions encoding IDRs rather than in regions encoding SRs [START_REF] Light | Protein expansion is primarily due to indels in intrinsically disordered regions[END_REF]. Because IDRs tend to arise later than SRs in the evolution of modern proteins, the codons in the genetic regions encoding IDRs tend to be less optimized than those encoding SRs [START_REF] Homma | Codon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains[END_REF].

Additionally, to examine whether the low optimization of the codon usage in the regions encoding IDRs arises from codon bias or from an intrinsic bias due to the amino acid bias associated with IDRs, we generated a synthetic dataset by shuffling the codons encoding IDRs and SRs while keeping the amino acid compositions fixed. In line with previous studies [START_REF] Forcelloni | Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome[END_REF][START_REF] Homma | Codon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains[END_REF],

we showed that the poor codon usage optimization of regions encoding IDRs is pronounced in viruses because the codon usage patterns in regions encoding IDRs are more selectively constrained than in those encoding SRs. Furthermore, the codons in regions encoding IDRs are less optimized in both IDRs-rich and IDRs-poor viral proteins, thus ruling out the hypothesis that the regions encoding IDRs in IDRs-rich proteins tend to be less codon-optimized. We next investigated whether the low codon usage optimization in the regions encoding IDRs depends on the lengths of the latter. To this end, we have compared disorder prediction results provided by the long disorder method of IUPred2A, conceived to identify IDRs longer than 30 amino acids, to those provided by the short disorder method (conceived for the identification of IDRs of 10 amino acids). The strong correlation between the short and long disorder prediction types indicates that the length of IDRs does not affect the results. The consistency in the results is conserved even when using a different IDRs predictor. Taken together, based on these findings, we speculate that the sub-optimal codon usage likely provides an opportunity to use divergent host species-specific tRNA pools, with this being especially true for the regions encoding IDRs of RNA viruses that typically have a broad host-specificity (i.e. they can infect multiple hosts).

Concomitantly, this sub-optimal codon usage, with ensuing delayed translation of IDRs, would also ensure proper folding and function of viral SRs/SDs. This sub-optimal adaptation to the codon usage of the host would help the virus to be maintained among the multiple taxonomically divergent hosts (Figure S5).

Certain dinucleotides, such as CpG, are known to be over-and under-represented in the genomes of living organisms, thus creating distinct nucleotide compositional patterns or codon usage patterns [START_REF] Zu | Genome-wide evolution analysis reveals low CpG contents of fast-evolving genes and identifies antiviral microRNAs[END_REF]. The genomes of organisms, especially of the Animalia and Plantae, where the DNA methylation is extensive, employ a unique enzymatic mechanism to suppress CpG [START_REF] Bird | DNA methylation and the frequency of CpG in animal DNA[END_REF][START_REF] Fros | CpG and UpA dinucleotides in both coding and non-coding regions of echovirus 7 inhibit replication initiation post-entry[END_REF].

In such organisms, including the Human, the methylated cytosine in a CpG dinucleotide is more prone to mutate into thymines through spontaneous deamination, creating mutation hotspots, and thus contributes to shaping the codon usage bias [START_REF] Forcelloni | Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome[END_REF]. Furthermore, the regulatory activity of histone methyltransferases (which catalyze the methylation of histones and thus contribute to the regulation of gene transcription) has been shown to be mediated by their IDRs [START_REF] Yang | Regulating the Activation of Ash1/Ash1L Histone Methyltransferase by Intrinsically Disordered Regions[END_REF]. In contrast, although Prokaryotes and Archaea genomes do undergo methylation, such methylation frequently occurs at a different site, i.e. N6-methyladenine, thereby explaining why these genomes show little CpG dinucleotide depletion [START_REF] Mohapatra | DNA Methylation in Prokaryotes: Regulation and Function, in Cellular Ecophysiology of Microbe. Handbook of Hydrocarbon and Lipid Microbiology[END_REF].

Similarly, a CpG dinucleotide depletion has also been observed in viruses and appears to have functional roles in improving virus replication [START_REF] Atkinson | The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication[END_REF], escaping the host antiviral immune response [START_REF] Kumar | Revelation of Influencing Factors in Overall Codon Usage Bias of Equine Influenza Viruses[END_REF][START_REF] Lytras | Synonymous Dinucleotide Usage: A Codon-Aware Metric for Quantifying Dinucleotide Representation in Viruses[END_REF], and mimicking the hosts' CpG usage [START_REF] Cheng | CpG usage in RNA viruses: data and hypotheses[END_REF][START_REF] Greenbaum | Patterns of evolution and host gene mimicry in influenza and other RNA viruses[END_REF]. Consistent with these studies, the genomes of viruses infecting Prokaryotes and Archaea show little CpG dinucleotide depletion [START_REF] Lobo | Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts[END_REF][START_REF] Simmonds | Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla--selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses[END_REF][START_REF] Upadhyay | CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution[END_REF]. Of note, high CpG depletion, especially in reverse transcribing viruses (dsDNA-RT and ssRNA-RT), may be due to the host-driven methylation pressure as these viruses produce DNA intermediates during their genome replication [START_REF] Ellis | Retrovirus silencing by an epigenetic TRIM[END_REF][START_REF] Leung | Silencing of endogenous retroviruses: when and why do histone marks predominate?[END_REF]. Our results provide a link between virus CpG dinucleotide content and the methylation capabilities of the corresponding hosts.

In particular, the CpG dinucleotide depletion in RNA viruses provides them with an alternative mechanism to escape the host antiviral innate immune system. The unmethylated CpG is in fact a PAMP (Pathogen Associated Molecular Pattern) being recognized by Toll-like receptor 9

(TLR9), a type of intracellular pattern recognition receptor [START_REF] Greenbaum | Patterns of evolution and host gene mimicry in influenza and other RNA viruses[END_REF][START_REF] Vetsigian | Genome rhetoric and the emergence of compositional bias[END_REF]. In addition, dsRNA viruses that involve DNA intermediates during their viral genome replication seem to be affected primarily by the host methylation. Therefore, the host-driven CpG selective pressure on RNA viruses shapes their codon usage patterns. Nevertheless, the genomic regions encoding IDRs show significantly less CpG dinucleotide depletion compared to genomic regions encoding SRs including the CRs and NCRs. The less CpG dinucleotide depletion in the genome regions encoding IDRs is not only restricted to viruses, but it has also been observed in the human proteome [START_REF] Forcelloni | Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome[END_REF]. Overall, these findings suggest that the host-driven methylation (most likely in DNA viruses) or CpG selective pressure (most likely in RNA viruses) contribute more significantly in shaping the codon usage patterns in the regions encoding SRs than in those encoding IDRs.

Conclusion

Out study showed that the evolution of codon usage in viral IDRs is primarily dictated by the natural selection. The non-optimal codon usage (leading to poor optimization to host protein biosynthesis machinery) in viral IDRs seems to reflect the need to adapt to divergent host species-specific tRNA pools, while concomitantly allowing proper folding and function of viral SRs. Furthermore, the genomic regions encoding IDRs are comparatively more enriched in CpG than those encoding SRs, and therefore, experience comparatively less pressure imposed by the host-driven methylation or CpG selective pressure, making them hot-spots for mutations.

Therefore, IDRs in viruses likely accept more translational errors than SRs.

Key points

 The study offers benchmarking of two distinct disorder prediction algorithms on a dataset comprising 6,108 reference viral proteomes to unravel the evolutionary forces acting on intrinsically disordered regions (IDRs).

 The natural selection predominantly governs the evolution of codon usage in regions encoding IDRs.

 The codon usage in regions encoding IDRs is less optimized to the protein synthesis machinery of their host than in those encoding structured regions (SRs).

 The selective constraints imposed by codon bias maintain reduced codon optimization in IDRs. 

  values cluster on or just below the standard/expected curve (functional relation between expected ENc and GC3s), the codon usage is constrained only by G+C mutational bias. By contrast, clustering of the calculated ENc values far below the standard curve indicates a predominant role of natural selection in shaping the codon usage bias. Expected ENc values were calculated by using equation (3).

  generated to investigate the influence of these factors on the viral IDRs and SRs. In the ENc-GC3s plot, the clustering of points over the standard curve suggests the absolute role of the mutational bias in shaping the codon usage patterns, whereas the below-curve clustering is indicative of the foremost influence of natural selection. So, the signed distances of each IDRs and SRs of every virus genome type from the standard curves are considered to examine the influence of natural selection and mutational bias. The variable size of datasets in different virus groups are further taken care by performing statistical analysis for effect-size. The mean signed distances of IDRs in ssDNA (d = 1.012, p < 0.0001), ssRNA(+) (d = 0.529, p = 0.0014), and ssRNA(-) (d = 0.460, p < 0.0001) viral genomes from the standard curve are significantly greater

Figure 1 .

 1 Figure 1. ENc-GC3s and neutrality plots for viral genomic segments encoding for intrinsically disordered regions (IDRs) and structured regions (SRs). In the ENc-GC3s plots, the black dotted line represents the standard curve, where the codon usage bias was determined by the GC3s compositions only. In the case of neutrality plots, the linear regressions of GC12 against GC3 for both the IDRs and SRs are shown. The IDRs and SRs encoded from each virus genome type are color coded, i.e., blue and orange, respectively.The codon usage in genomic regions encoding IDRs in viruses is less optimized to the
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 2 Figure 2. tRNA adaptation index (tAI) analyses of viral genomic segments encoding for intrinsically disordered regions (IDRs) and structured regions (SRs). (A), and (B) represent the correlation analyses between the long and
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 3 Figure 3. Comparison of CpG dinucleotide contents in the regions encoding IDRs and SRs of different virus genome types (A) and in viruses infecting taxonomically divergent hosts (B). One-Way Analysis of Variance (ANOVA) with Bonferroni correction was used to compare the differences between CpG content of IDRs and SRs. The error bars correspond to the standard deviation.
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