Surface modes in plasmonic stubbed structures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Surface modes in plasmonic stubbed structures

Résumé

We present an analytical and numerical study about the existence of surface localized modes, known as Tamm states, in a one-dimensional (1D) comb-like plasmonic band gap structure. Surface plasmon polaritons (SPPs) waveguides with coupled resonators have been widely studied in recent years, because of their potential applications in highly integrated optical circuits. The system studied here is composed of an infinite 1D waveguide, along which stubs of length d1are grafted periodically with spacing period d2. The analytical study has been performed by means of the Green's function method which allows the calculation of the dispersion relations of the bulk, surface states of the plasmonic structure and the transmission coefficient. The band structure, as well as the transmission spectrum exhibit passbands separated by stopbands. The surface modes inside the gaps of the semi-infinite structure can be introduced by a defect at its surface. The analytical results are confirmed by numerical simulation using finite element method via Comsol Multiphysics software. These structures can be used to realize highly sensitive plasmonic sensors.
Fichier non déposé

Dates et versions

hal-03362272 , version 1 (01-10-2021)

Identifiants

Citer

Y. Rezzouk, M. Amrani, S. Khattou, E.H. El Boudouti, Bahram Djafari-Rouhani. Surface modes in plasmonic stubbed structures. 4th International Conference on Materials and Environmental Science, ICMES 2020, Nov 2020, Oujda, Morocco. pp.7752-7755, ⟨10.1016/j.matpr.2021.03.438⟩. ⟨hal-03362272⟩
32 Consultations
0 Téléchargements

Altmetric

Partager

More