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Abstract—In the context of autonomous keyword spotting
and sound detection, this paper proposes a low power feature
extraction unit generating spectrograms that represent a unique
signature allowing the classification of audio signals. This system
is composed of a continuous-time digital signal processing feature
extractor combined with a convolutional neural network engine.
The study evaluates the hardware requirements to implement
the feature extraction unit using an advanced CMOS process.
Furthermore, a simulation of the complete system using Matlab®

reveals that the recognition accuracy remains higher than 90%
while offering a power consumption 4000X lower than a conven-
tional discrete time system.

I. INTRODUCTION

The increasing need of online sensing and autonomous
recognition Internet-of-Things (IoT) devices pushes towards
the development of embedded near-sensor processing units
for applications such as sound detection and keyword spot-
ting. However, dealing with real-world audio signals requires
always-on power-hungry operations that cannot withstand low
power and long battery lifetime constraints. In that regard, it
is preferable to use a low-power selective audio processing,
activating high-performance units only when a relevant signal
is present at the input. Fig.1 shows an architecture where an
audio signal is firstly analyzed by a keyword spotting unit,
that generates a wake-up signal responsible of triggering the
main processing elements. Inside the latter unit, a feature
extractor performs the spectral division of the input signal into
multiple frequency bands and extracts the per-band energies
to be able to construct the spectrograms i.e. graphs displaying
the energy in every band as function of time. Then, a classifier
carries out the analysis by mapping the input spectrograms to
some predefined classes, to decide or not to wake up the next
processing blocks.

In such systems, the problem appears to be the imple-
mentation of the feature extraction unit with low hardware
complexity level, ultra-low energy consumption as well as a
reduced number of extracted features to simplify the classifi-
cation mechanism [1]. In literature, several methods have been
proposed to design the feature extractor. The filter bank can
be built fully analog as in [2] and [3], where the audio signal
is parallelly filtered using a 16 Gm-C bandpass filter bank,
but this approach led to an architecture unable to scale with
technologies or to ensure a certain configurable architecture to
be adaptable for other audio applications. The spectrograms
can also be generated using integrated FFT algorithms, as in

[4] and [5]. This method appears to resolve the configurability
issue, but still generates an excessive number of features that
induce an increase in the latency, which will affect the system
speed i.e. number of classifications per second.

In order to merge the advantages of both previous strate-
gies, this work proposes an event-driven feature extraction
unit based on continuous-time digital signal processing (CT-
DSP) to implement the filtering in digital-friendly processes,
as introduced in [6]. The event-driven operation builds a
proportionality between dynamic power consumption and the
activity of the input signal, what makes the system suitable
for the recognition of keywords present in audio signals
with long silence periods. The principal hardware-oriented
parameters (such as number of bands, ADC resolution and
energy quantizer resolution), are optimally chosen to scale
down the system complexity while maintaining a recognition
accuracy of 90%, as proposed in [1] for a discete-time digital
system. Since in CT-DSP systems, only finite impulse response
(FIR) filters with a limited number of taps are feasible [6], this
paper proposes to study the implementation of a filter bank
composed of 8 CT FIR filters, with a maximum of 16 delay
taps each. In this configuration, low center frequencies are
hardly reachable and the target frequency range is then reduced
to 840Hz-6.25kHz. Moreover, the out-of-band attenuation of
the filters will be limited. Even under these severe constraints,
this study reveals that a recognition accuracy larger than 90%
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Figure 1. Structure of the pre-processing unit in the context of audio pattern
recognition. The feature extraction block generates the spectrograms from the
audio input signal.
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Figure 2. Structure of the continuous-time feature extraction block.

for 10-keyword spotting is still achievable when the produced
spectrograms are classified with a state-of-the-art classifier
relying on convolutional neural networks (CNN). Besides
achieving high recognition accuracy, the system improves the
power efficiency by a gain factor that can increase up to 4000
compared to a discrete-time system.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of the entire CT processing chain.
Section III details the operation and hardware implementation
of the different components of the system. Section IV presents
the results from simulations coupling the feature extraction
with a CNN classifier and Section V concludes the paper.

II. CT PROCESSING CHAIN FOR AUDIO RECOGNITION

A. Audio recognition context

Conventional DT systems generate a constant number of
events set by the sampling frequency, even if the input signal
corresponds to a recording of a silent environment without any
interesting information. However, CT systems avoid blind pro-
cessing of the audio signals and generates samples only with
the existence of a significant information-holding input. Thus,
the advantage of CT processing system is that its performance
changes with different audio scenarios. This work proposes
the study of 3 different scenarios. Scenario #1 corresponds
to a background noise inside a private room with no spoken
keywords to test the system performance when no significant
information is present at the input. Scenario #2 is about the
recognition of 3 keywords per minute in the same background
noise as before. Finally, the third scenario correspond to the
recognition of 150 keywords per minute corresponding to
conversational speech inside a noiseless environment.

B. CT processing chain architecture

Continuous-time digital signal processing (CT-DSP) sys-
tems provide the highest flexibility and scalability margins for
digital systems, keeping the architecture clockless. The CT
DSP is triggered to start the processing whenever a relevant
event is present at the input, thus the power consumption
will be strongly dependent on the input activity. Consequently,
for signals with long silence periods and few sparse events,
the consumption of CT DSP systems is drastically reduced
compared to conventional sampled systems. The continuous-
time processing chain starts with a level-crossing ADC (LC-
ADC) that encodes asynchronously the input into a pair
of bits (CHANGE, UPDN) indicating the crossing of some
predefined threshold levels i.e. quantization levels, and the
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Figure 3. Illustration of the sample generation from an analog input signal
in the LC-ADC. After each crossing, the comparison window is updated by
±1 LSB.

crossing direction, respectively. In that context, the events are
defined as the crossings, thus the number of generated events
directly depends on the number of threshold levels i.e. ADC
resolution.

Afterwards, a CT digital filter bank receives the pair
(CHANGE, UPDN) at its input to decompose the spectral
content of the audio signal into the frequency bands of interest.
The filters outputs are then propagated along with CHANGE
pulses towards the next block that performs energy estimation.
This energy extractor block operates by squaring the values
of the outputs of each filter, then accumulates these squared
values over a precise time window defined by the period of
a low frequency clock, as detailed in Fig.2. The window or
frame duration is set to 25ms. This block is the boundary
between the CT and the low-frequency DT domains.

III. HARDWARE IMPLEMENTATION OF CT-DSP

A. Level-crossing ADC

The LC-ADC is an asynchronous delta encoder composed
of two analog comparators continuously comparing the input
signal to a predefined set of high and low amplitude thresh-
olds, to generate the CHANGE and UPDN signals. Then,
the generated pair of bits is injected into a digital unit that
refreshes the values of the low and high thresholds defining
the comparison window [6], [7]. The operation principle of
the LC-ADC is shown in Fig.3, where a sample is taken
whenever the input signal fulfills the following conditions:
input ≥ Upper threshold or input ≤ lower threshold. The
thresholds are updated by ±LSB, depending on the direction
of the change. Thus, signals with low amplitude generates
low number of events, which will decrease the system power
consumption. An inconvenient of such ADCs is the high
sensitivity to noisy signals, that generate a large number of
insignificant events, that degrades the power efficiency. A
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solution for this problem has been presented in [7], where
a single sample is generated per each comparison window.
Consequently, the upper and lower thresholds are separated
by 2LSB, as depicted in Fig.3.

B. Digital CT FIR filter bank

Thanks to the delta encoding of audio input, the CT
FIR filter structure is simplified compared to a conventional
structure, as depicted in Fig.4. The signals CHANGE and
UPDN are delayed using analog delay taps (TD) to maintain
the clockless operation. Then, the signal pair is fed into
the Multiplier/Accumulator (MAC) unit to perform successive
additions of the filter’s coefficients. During our investigations,
we found that 6-bit coefficients are suitable for providing a
decent selectivity and recognition accuracy. Finally, a multi-
bit adder receives the MAC results and generates the multibit
FIR output.

The main challenge faced in CT filtering is that low fre-
quency and high selective filters need to have high orders i.e.
high number of delay taps, which will increase the hardware
complexity as well as the number of generated combinatorial
events. The reduction of the frequency range as well as
the degradation of the selectivity i.e. out-of-band attenuation,
relaxes the complexity constraints. For speech recognition, it
has been demonstrated in [1] that 8 filters logarithmically
distributed between 75Hz and 7kHz can extract sufficient
features to recognize 10 keywords with 90% accuracy. Since
the human voice does not have a significant spectral content
below 800Hz (only information on voice intonation and accent
are present) [8], we propose to first restrict the frequency
range of interest from 75Hz-7kHz to 840Hz-6.25kHz to re-
duce hardware complexity. This range is similarly divided
into 8 logarithmically-distributed bands, using CT FIR filters.
Reducing bandwidth results in a degradation in the accuracy
lower than 2% compared to our initial setup in the 10-keyword
detection case. In a second step, decreasing the out-of-band
attenuation from 20dB to 5dB, reduces the accuracy from
93.1% down to 90.6%, when using a 6-bit LC-ADC. This
accuracy loss is balanced by the gain in hardware complexity,
enabling the implementation of the CT filters with a maximum
of 16 taps. The magnitude response of the proposed filter bank
is presented in Fig. 5.
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Figure 5. Magnitude response of the proposed bank of 8 digital CT 16-tap
FIR filters. The stop-band attenuation of -5dB releases the design constraints
to minimize the number of taps in each filter.
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C. Energy extraction

The filters outputs are squared and accumulated to extract
the energy in each band by the circuit shown in Fig. 6.
The combinatory squarer and the following accumulator are
clock-gated by the CHANGE signal, thus an energy value is
extracted only with the existence of an event at the input.
Then, the squared results are accumulated during the framing
clock period i.e. frame. Finally, the frames, lasting 25ms, are
concatenated to form the spectrograms.

IV. SIMULATION RESULTS

The CT processing chain has been simulated with the
Google Tensorflow® speech commands dataset (GSCD) [9]
and Librispeech dataset [10], using Matlab®.

Table I displays the number of generated events by the LC-
ADC for the three scenarios for an ADC resolution varying
from 5 to 9 bits. The number of generated samples scales with
signal activity . The values of generated events are compared
to a reference value of 960,000 events that corresponds to the
number of generated events in the conventional discrete-time
case using an ADC working with a sampling frequency equal
to 16kHz during 1 minute.

To validate the benefits of the system applied on low activity
signals, another simulation is proposed in Table I describ-
ing the evolution of the power consumption with the LC-
ADC resolution. The model used to estimate the consumption
calculates the number of logic gates and multiplies by a
typical power for each event, extracted using Spectre simulator
considering 28nm FDSOI technology. In this technology, a
delay tap consumes 15 fJ/event, as stated in [11], thus the delay
line dominates the CT system power consumption. For the DT
system, the MAC units are dominating the power consumption,



5 bits 6 bits 7 bits 8 bits 9 bits

12 198 1,707 19,326 88,431

5,436 15,357 38,022 105,660 267,705

7,044 29,092 118,240 783,340 1,762,600

0.003 0.071 0.96 34.19 301 

1.96 8.62 36.7 301 912.5

10.5 66.4 306.1 1,390 6,000

960,000

311.5

LC-ADC 
Resolution

No of events

No of events

No of events

Scenario #1
in CT system

Scenario #2
in CT system

Scenario #3
in CT system

No of events
DT system

Average
power (nW)

Average
power (nW)

Average
power (nW)

Average
power (nW)

Table I
NUMBER OF EVENT AND POWER CONSUMPTION IN CT CASE FOR THE

DIFFERENT SCENARIOS COMPARED TO DT CASE.

considering that the MAC is composed from a ripple carry
array multiplier. The reference power consumption is evaluated
as 311.5nW in the case of a DT system. From Table I, we can
observe that the CT system stays advantageous in terms of
power consumption for all the scenarios up to 7-bit resolution.

To evaluate the trade-off between power consumption
and system’s performance, the generated spectrograms, with
hardware-oriented optimized parameters, are classified using a
state-of-the-art CNN consisting of 6 filtering steps composed
of a 2-dimensional convolution layer and a rectifier liner
unit (ReLU) layer. Between 2 successive filtering stages, an
additional max-pooling layer is inserted. At the end, a fully
connected layer, with a size matching the number of target
keywords, is set after the last filtering step [1]. This kind
of CNN classifiers is compatible with low-power embedded
implementation [12]. To verify the relevance of the extracted
features, a simulation describing the variation of the system
recognition accuracy as a function of the number of target
words and LC-ADC resolution is presented in Fig.7. The
system naturally becomes more accurate with low number
of target keywords. The recognition of 1 and 2 keywords
is achieved with an accuracy higher than 99.1% and 98.1%,
respectively, compared to an accuracy of 97.1% @1word
and 94.6% @2words (black dots in Fig.7), with an average
consumption of 336.6nW, for feature extractor, in [5], which
is 5X higher than the CT system. Moreover, the system stays
accurate even for a higher number of keywords, as shown in
Fig.7, where the recognition of 10 keywords is achieved with
an accuracy varying from 88.6% up to 92%, depending on the
LC-ADC resolution, compared to an accuracy of 90.87% in [4]
for GSCD dataset. The grey column in Table I, corresponding
to 6-bit resolution, represents the best compromise between
power consumption and recognition accuracy, because the CT
system maintain an accuracy higher than 90% with reducing
the power consumption by a factor of 4000, 40 and 5 compared
to DT system for scenarios #1, 2 and 3, respectively.

V. CONCLUSION

An audio low-power continuous time feature extraction unit
targeting the recognition of up to 10 keywords is simulated
with different speech scenarios. This event-driven CT system
allows the recognition of 10 keywords with an accuracy higher
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Figure 7. Evolution of recognition accuracy as function of number of target
keywords for different ADC resolution. Comparison with accuracies from
state-of-the-art works, using GSCD dataset.

than 90% while being up to 4000X more power efficient than
an equivalent discrete-time system. The simulated classifica-
tion accuracy is at par or better than state of the art.
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