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Abstract—In this article, non-uniformly sampled electrocardio-
gram (ECG) signals obtained from level-crossing analog-to-digital
converters (LC-ADCs) are analyzed for event-driven classification
and compression performance. The signal compression results
show that it is important to assess the distortion in event-
driven signals when simulating LC-ADC models, especially at
lower resolutions and larger quantization steps. The effects of
varying the LC-ADC parameters for the application of cardiac
arrhythmia classifiers are also assessed using an artificial neural
network (ANN) and the MIT-BIH Arrhythmia Database. In
comparison with uniformly-sampled data, it is possible to achieve
comparable classification accuracy at a much lower complexity
with event-driven ECG signals. The results show the best event-
driven model achieves over 97% accuracy with 79% reduction in
ANN complexity with signal-to-distortion ratio (S/D)≥21dB. For
S/D<21dB, the best event-driven model achieves 93% accuracy
with a 96% reduction in ANN complexity. An open-source event-
driven arrhythmia database is also presented.

Index Terms—LC-ADC, cardiac arrhythmia classification, ar-
tificial neural networks, wearable sensors, event-driven data

I. INTRODUCTION

Long-term health monitoring using wireless biomedical
devices has been enabled by the evolution in the Internet
of Things (IoT) and is becoming increasingly ubiquitous in
recent times [1]. Studies have shown that the energy costs to
wirelessly transmit data in a standard biosensor is “orders of
magnitude greater than any other function” [2]. To prolong the
battery life of wireless sensors, feature extraction, compres-
sion techniques are typically incorporated on-chip after data
conversion using an analog-to-digital converter (ADC) [3],
[4]. In recent years, a new class of ADCs, called level-
crossing ADCs (LC-ADCs), has been developed which embed
compression into the data acquisition stage. They generate
non-uniformly sampled data that can reproduce the original
data, from inherently sparse signals, such as electrocardio-
gram (ECG) signals. LC-ADCs sample data based on the slope
of the signal, i.e., they only sample when the rate of change
of signal is above a pre-defined level, indicating a level-cross.
This keeps the ADC from sampling across low-activity regions
of the signal, thus reducing the data rate and saving power. LC-
ADCs have the advantage of built-in compression and lower
processing costs in comparison with Nyquist sampling ADCs.
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A recent study compared the power efficiency of an LC-ADC
with a traditional SAR ADC using various biosignals [5],
which showed that LC-ADCs are more power-efficient than
standard ADCs for low-to-medium resolution applications.

Many low-power LC-ADC designs have been proposed in
recent years for various biomedical applications [6] [7] [8].
LC-ADCs have also been used in low-power QRS-detection
of ECG signals [9] [10]. More recently, clinically acceptable
arrhythmia classification has been achieved using event-driven
data from LC-ADCs [11]. To the best of our knowledge,
performance analysis of various LC-ADC designs for event-
driven ECG classification has not yet been done. This arti-
cle aims to present a comparative analysis of several LC-
ADC designs in terms of compression ratio, percentage root-
mean-square difference, signal-to-distortion ratio, and their
performance on an event-driven cardiac arrhythmia classifier.
Finally, we intend to provide an insight into the best accuracy-
complexity trade-off for this application. The major contribu-
tions of this article are as follows: a) analysis of three level-
crossing ADC models in terms of compression parameters to
assess the limits of clinically acceptable event-driven ECG
signal b) proposed an ANN model for classification of cardiac
arrhythmia from event-driven ECG signal c) an open-source
event-driven ECG database derived from MIT-BIH database
using existing LC-ADC models with arrhythmia annotations.

The rest of the article is organized as follows: Section II
presents the compression performance of three LC-ADC de-
signs. Section III assesses in detail the performance of a car-
diac arrhythmia classifier using event-driven data from these
LC-ADCs designs. It also presents an event-driven arrhythmia
database. Finally, conclusions are drawn in Section IV.

II. COMPRESSION ANALYSIS OF LC-ADC DESIGNS FOR
ECG APPLICATIONS

A. Level-Crossing Sampling

Fig. 1 presents the basic architecture of an LC-ADC and the
analog ECG signal with the event-driven output. The ECG
signal range is divided into a fixed number of quantization
levels. The LC-ADC takes a sample based on two in-process
quantization levels: upper quantization level (U QL) and
lower quantization level (L QL). The distance between these



Fig. 1. (a) LC-ADC architecture (b) ECG analog signal, the LC-ADC output
and the RR intervals.

quantization levels is defined by the LSB, also known as the
quantization step:

LSB =
AFS

2M
(1)

where AFS is the full-scale voltage range of the ECG signal,
M is the resolution of the LC-ADC and 2M is the total number
of quantization levels. In some LC-ADC designs, the full-
scale range AFS is often multiplied by a factor of 2. The
input analog signal must always be surrounded by the two
in-process quantization levels in an LC-ADC. Whenever the
signal crosses U QL, a sample is taken and both in-process
quantization levels are increased by one LSB. Similarly, when-
ever L QL is crossed, both in-process quantization levels are
decreased by one LSB. The control logic block in Fig. 1 man-
ages this update. This way, an LC-ADC creates continuous-in-
time discrete-in-amplitude ECG signals. To monitor the time
between two LC-ADC samples, a local timer is used, which
passes the time information at each sample and then resets.
Often, the distance between the in-process quantization levels
can be multiplied by a factor k, which is defined as:

k = ku ∗ LSB (2)

where ku is an integer greater than or equal to 1. For higher
resolution LC-ADCs, k is often chosen as 2LSB or greater.

B. LC-ADC Models

Three different LC-ADC design models have been chosen
for the compression analysis. The models will be assessed
using the MIT-BIH Arrhythmia dataset [12], which has been
sampled at 360Hz with an input voltage range of [-5mV, 5mV]
and an 11-bit ADC resolution. The LC-ADC models are
defined as follows:

1) MDL1: The LC-ADC model 1, hereby named MDL1,
has been taken from the LC-ADC design in [11]. In this
model, the MIT-BIH Arrhythmia database is converted
to event-driven ECG using the LSB definition in (1)

multiplied by a factor of 2. The ECG data is not up-
sampled before the event-driven sampling.

2) MDL2: The LC-ADC model 2, hereby named MDL2,
is designed as in [10]. In this model, the database is
first up-sampled to 5.67kHz and uses the LSB definition
in (1).

3) MDL3: The LC-ADC model 3, hereby named MDL3,
has been designed as in [8]. In this model, the database
is first up-sampled to 10kHz and uses the LSB definition
in (1).

C. Performance Metrics

To measure the signal distortion in the LC-ADC output, its
output samples are interpolated using linear interpolation to
reconstruct the ECG signal, as in [8]. The three performance
parameters are as follows:

1) Compression Ratio (CR): The compression ratio pro-
vides information about the degree of compression be-
tween the compressed and uncompressed signal. It is
defined as:

CR =
m

n
(3)

where m and n are the number of bits in the original
and compressed signal, respectively.

2) Percentage Root Mean Squared Difference (PRD): The
PRD measure evaluates the distortion between the orig-
inal signal and the reconstructed signal. The normalized
PRD is defined as:

PRD =

√√√√ΣN
n=1

(x[n] − x̂[n])2

ΣN
n=1

(x[n] − x̄[n])2
∗ 100 (4)

where x[n] ,x̂[n], and x̄[n] are the original signal,
reconstructed signal and the mean of the signal x[n],
respectively. N is the total number of samples that model
the input analog signal.

3) Signal-to-Distortion Ratio (S/D): Another metric to mea-
sure distortion is the temporal signal-to-distortion ratio
defined as:

S/D = 10log10

(
ΣN

n=1
(x[n] − x̄[n])2

ΣN
n=1

(x[n] − x̂[n])2

)
(5)

In [13], the clinically acceptable values for PRD and S/D in
ECG signal reconstruction are also reported. ”Good” quality
signals must follow the following criteria:

PRD ≤ 9% or S/D ≥ 21dB (6)

D. Compression Performance of LC-ADC Models

The three LC-ADC models are designed and simulated
using MATLAB. To match the MIT-BIH Arrhythmia database
voltage range, AFS in (1) is chosen as 10mV. The resolution
of the LC-ADC, M , is varied from 7 bits to 11 bits and
k in (2) is varied from 1LSB to 4LSB. Table I shows the
average compression results for all models calculated over



TABLE I
COMPRESSION PERFORMANCE OF LC-ADC MODELS

LC-ADC Model M k CR PRD(%) S/D(dB)

MDL1

11

1 1.574 1.886 35.029
2 2.722 3.595 29.471
3 4.026 5.255 26.179
4 5.277 6.901 23.809

10

1 2.722 3.595 29.471
2 5.277 6.901 23.809
3 7.382 10.387 20.263
4 9.269 14.221 17.535

9

1 5.277 6.901 23.809
2 9.269 14.221 17.535
3 13.070 22.799 13.432
4 17.050 32.146 10.496

8

1 9.269 14.221 17.535
2 17.050 32.146 10.496
3 25.502 50.849 6.598
4 36.028 70.560 3.759

MDL2

8

1 1.712 3.6957 29.281
2 2.408 5.938 25.143
3 2.665 8.624 21.946
4 2.867 11.758 19.274

7

1 3.435 7.116 23.560
2 5.332 12.548 18.643
3 6.110 19.099 15.026
4 6.824 26.232 12.356

MDL3

8

1 1.712 3.697 29.285
2 2.407 5.957 25.170
3 2.665 8.652 21.974
4 2.866 11.797 19.303

7

1 3.433 7.119 23.563
2 5.330 12.576 18.663
3 6.108 19.161 15.026
4 6.822 26.330 12.356

Fig. 2. Proposed artificial neural network for event driven classification

44 records of the MIT-BIH Arrhythmia database (excluding
the 4 paced records as recommended by AAMI standards
[14]). As observed in [8], we found that for M> 8, the
LC-ADC produces more samples than a standard uniform
ADC for MDL2 and MDL3. Therefore, these models have
only been tested at M=7 and 8. For higher resolutions in
MDL2 and MDL3, k must be increased beyond 4LSB to attain
compression, which is not tested in this study.

Both MDL2 and MDL3, pass the ”good” signal criteria de-
fined in (6) at M=8 (k=1-3LSB) or M=7 (k=1LSB). Whereas,
MDL1 passes the criteria with M=11 (k=1-4LSB), M=10
(k=1-3LSB) or M=9(k=1LSB).

III. ARRHYTHMIA CLASSIFICATION USING
EVENT-DRIVEN ECG DATA

A. Artificial Neural Network Based Classifier

We designed an ANN with 5 hidden layers consisting of
128 neurons each as shown in Fig. 2 for patient-specific (PS)
arrhythmia classification using Python. The size of the input

TABLE II
ARRHYTHMIA CLASSIFICATION USING EVENT-DRIVEN DATA

Model M k FS ACC(%) SE(%) +P(%) FPR(%)
MDL0 - - 302 98.41 91.32 92.24 1.82

MDL1

11

1 76 97.95 86.89 88.92 3.68
2 76 97.91 87.71 89.96 3.10
3 76 97.91 86.88 88.12 3.75
4 76 97.60 83.78 88.42 4.48

10

1 76 98.21 87.68 90.10 3.48
2 76 97.83 84.35 89.19 4.14
3 62 97.05 81.75 85.79 5.60
4 34 96.64 82.99 83.20 5.77

9

1 62 97.45 83.56 86.81 4.42
2 34 96.64 80.94 82.84 5.37
3 26 95.83 78.42 80.12 7.53
4 26 95.80 78.04 79.23 7.69

8

1 34 96.63 81.57 83.62 5.98
2 20 95.20 76.06 77.28 8.46
3 16 94.25 73.87 77.83 9.78
4 12 92.95 70.28 72.01 10.40

MDL2

8

1 172 96.66 84.24 82.72 5.22
2 152 95.77 80.88 80.36 6.87
3 142 94.93 78.27 77.70 7.36
4 132 94.60 78.81 75.62 8.08

7

1 86 95.96 79.46 80.18 6.47
2 82 94.91 77.36 77.11 7.94
3 78 94.60 76.03 75.14 8.43
4 72 94.57 74.10 73.24 9.40

MDL3

8

1 152 96.52 82.54 82.86 5.06
2 136 95.04 80.71 78.34 6.87
3 136 94.42 78.10 78.38 8.49
4 132 94.21 77.93 74.70 8.39

7

1 102 96.47 81.24 81.91 5.79
2 78 94.78 76.11 76.50 8.14
3 74 94.38 74.94 74.50 8.84
4 64 93.03 73.18 71.21 9.89

layer varies for each model based on the number of features.
The output layer classifies each beat into one of the following 4
categories: normal beat (N), supraventricular ectopic beats (S),
ventricular ectopic beats (V), and fusion beats (F). The promi-
nent morphological features of an ECG beat is contained in
an 800ms window [11] centered around the QRS peak as
shown in Fig. 1(b). For every LC-ADC model, samples that
lie within 400ms on each side of the QRS peak are used as
the first feature vector. The pre-RR and post-RR intervals for
each beat are used as the last two features. The conditional
grouping scheme defined in [11] is applied in this design,
which excludes 14 records from evaluation, in addition to the
4 paced records. To handle the inherent class imbalance in
the dataset, the output layer uses a weighted cross-entropy
loss, which balances the loss based on the effective number

Fig. 3. MDL1 Accuracy at different LC-ADC resolutions (M) & varying k.



Fig. 4. The accuracy and compression performance of different LC-ADC
models over varying k. (a) MDL1 at M=10 bit, (b) MDL2 at M=8bit, and (c)
MDL3 at M=8bit

of samples in each class [15].

B. Classification Performance

For all records, there is 70:30 data split for training and
testing the ANN classifier. First, the training data from all
records are used for global training of the ANN. It is then
retrained on the PS training data and evaluated on every
individual subject’s data. For a fair comparison, we have also
tested the classifier on uniformly-sampled data using the MIT-
BIH database as is, named MDL0 from here on. The MIT-
BIH database is sampled at 360Hz using an 11-bit ADC. The
accuracy (ACC), sensitivity (SE), positive predictivity (+P),
and false positive rate (FPR) are used to assess the classifier
performance as in [11]. The average results overall beat types
(N, S, V, F) using each LC-ADC model and MDL0 are shown
in Table II. Here, FS refers to the input feature size of the
neural network. It can be observed that MDL1 at 11 bit,
k=2LSB gives the closest performance to MDL0, with almost
75% fewer features. Fig. 3 shows the MDL1 average accuracy
over all beats as M is varied for different k values. At M=11,
all LC-ADC resolutions have similar accuracy. However, as
M is decreased, the difference between accuracy at various k
values increases with the lowest accuracy at k=4LSB for M=8.
Fig. 4 shows a comparison of CR with accuracy over varying
k. In Fig. 4(a) MDL1 at M=10 has the best accuracy over
the range of k, also achieving higher CR as k is increased.
In Fig.4(b)-(c) for MDL2 and MDL3 at M=8, the accuracy
range, and CR are a little lower in comparison with MDL1.

Fig. 5. Accuracy Vs CR Vs Complexity for different sampling schemes

C. Finding the Ideal Accuracy-Complexity Tradeoff

Input feature size (FS) of the ANN model is a good
parameter to estimate the computational and hardware com-
plexity of the classifier. MDL0, which uses uniformly sampled
data from a standard 360Hz 11-bit ADC, requires an FS of
302. For event-driven classification to be effective, all other
models should attain a significantly lower FS with similar
or slightly lower accuracy. To understand the ideal trade-
off between these parameters (i.e., accuracy, S/D, CR, and
the complexity of the ANN), we picked the best models
from Table II. Fig. 5 shows a bubble chart of the top 12
models. Among the LC-ADC models whose signal can be
reconstructed with good quality (as in (6)), MDL1 at M=9,
k=1LSB gives the highest CR (5.277) and lowest complexity
(FS=62) with over 97% accuracy. MDL1 at M=11, k=2LSB
offers the next best tradeoff with FS=76 and 98% accuracy
at CR (2.722). If reconstructing the original ECG signal is
considered not essential, then MDL1 at M=8, k=4LSB has the
highest compression (36.03) and lowest complexity (FS=12)
with an acceptable 93% accuracy. Similarly, MDL1, M=8,
k=3LSB offers slightly lower compression (25.5) with over
94% accuracy and FS=16.

D. Open-Source Event-Driven ECG Dataset

To the best of our knowledge, there is no publicly available
non-uniformly sampled ECG dataset with arrhythmia labels
for researching event-driven data processing and classifica-
tion. Therefore, in this study, we used the popular MIT-BIH
arrhythmia database and three different LC-ADC models to
derive a non-uniformly sampled event-driven ECG dataset.
The dataset is generated using a MATLAB script and can
generate LC-ADC data at different bit resolutions and k values.
The event-driven ECG dataset with arrhythmia annotations and
corresponding MATLAB scripts is open-sourced in authors’
website1 to enable further research on the topic.

IV. CONCLUSIONS

Detailed performance analysis of three different LC-ADC
designs was presented. It was observed that increasing the
quantization step size in an LC-ADC results in higher com-
pression at the cost of lower signal-to-distortion ratios. There-
fore, the signal quality of event-driven signals must always
be assessed to ensure that the ECG beats are of clinically
acceptable quality. Further, a 5-layer ANN architecture with
class-balanced cross-entropy loss was proposed for the classi-
fication of event-driven ECG data. For the event-driven ECG
arrhythmia classification, we achieved comparable classifica-
tion accuracy to that of uniformly-sampled signals, whilst
significantly decreasing the ANN complexity. Finally, we
developed an open-source event-driven ECG database with
arrhythmia annotations for enabling further research on non-
uniformly sampled data processing.

1The open-source event-driven ECG dataset is available at https://github.
com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset

https://github.com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset
https://github.com/jedaiproject/Open-Source-Event-Driven-ECG-Dataset


REFERENCES

[1] D. L. T. Wong, J. Yu, Y. Li, C. J. Deepu, D. H. Ngo, C. Zhou, S. R.
Singh, A. Koh, R. Hong, B. Veeravalli, M. Motani, K. C. Chua, Y. Lian,
and C. Heng, “An integrated wearable wireless vital signs biosensor for
continuous inpatient monitoring,” IEEE Sensors Journal, vol. 20, no. 1,
pp. 448–462, 2020.

[2] F. Chen et al., “Design and Analysis of a Hardware-Efficient Com-
pressed Sensing Architecture for Data Compression in Wireless Sen-
sors,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 744–756,
March 2012.

[3] J. Li, A. Ashraf, B. Cardiff, R. C. Panicker, Y. Lian, and D. John, “Low
power optimisations for iot wearable sensors based on evaluation of nine
qrs detection algorithms,” IEEE Open Journal of Circuits and Systems,
vol. 1, pp. 115–123, 2020.

[4] C. J. Deepu, X. Y. Xu, D. L. T. Wong, C. H. Heng, and Y. Lian, “A 2.3
µ w ecg-on-chip for wireless wearable sensors,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1385–1389,
2018.

[5] J. Van Assche and G. Gielen, “Power Efficiency Comparison of
Event-Driven and Fixed-Rate Signal Conversion and Compression for
Biomedical Applications,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 14, no. 4, pp. 746–756, 2020.

[6] Y. Hou et al., “A 61-nW level-crossing ADC with adaptive sampling for
biomedical applications,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 66, no. 1, pp. 56–60, 2018.

[7] C. Weltin-Wu and Y. Tsividis, “An event-driven clockless level-crossing
ADC with signal-dependent adaptive resolution,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 9, pp. 2180–2190, 2013.

[8] M. Tlili, M. Ben-Romdhane, A. Maalej, F. Rivet, D. Dallet, and
C. Rebai, “Level-crossing ADC design and evaluation methodology
for normal and pathological electrocardiogram signals measurement,”
Measurement, vol. 124, pp. 413–425, 2018.

[9] X. Zhang and Y. Lian, “A 300-mV 220-nW Event-Driven ADC With
Real-Time QRS Detection for Wearable ECG Sensors,” IEEE Transac-
tions on Biomedical Circuits and Systems, vol. 8, no. 6, pp. 834–843,
2014.

[10] N. Ravanshad et al., “A Level-Crossing Based QRS-Detection Algorithm
for Wearable ECG Sensors,” IEEE Journal of Biomedical and Health
Informatics, vol. 18, no. 1, pp. 183–192, 2014.

[11] Y. Zhao, Z. Shang, and Y. Lian, “A 13.34 µW Event-Driven Patient-
Specific ANN Cardiac Arrhythmia Classifier for Wearable ECG Sen-
sors,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14,
no. 2, pp. 186–197, 2019.

[12] A. L. Goldberger et al., “Physiobank PhysioToolkit and PhysioNet
components of a new research resource for complex physiologic signals,”
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

[13] Y. Zigel et al., “The weighted diagnostic distortion (WDD) measure for
ECG signal compression,” IEEE transactions on biomedical engineer-
ing, vol. 47, no. 11, pp. 1422–1430, 2000.

[14] A.-A. EC57, A. for the Advancement of Medical Instrumentation et al.,
“Testing and reporting performance results of cardiac rhythm and ST
segment measurement algorithms,” Association for the Advancement of
Medical Instrumentation, Arlington, VA, 1998.

[15] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced
loss based on effective number of samples,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
9268–9277.


	Introduction
	Compression Analysis of LC-ADC Designs for ECG Applications
	Level-Crossing Sampling
	LC-ADC Models
	Performance Metrics
	Compression Performance of LC-ADC Models

	Arrhythmia Classification Using Event-Driven ECG Data
	Artificial Neural Network Based Classifier
	Classification Performance
	Finding the Ideal Accuracy-Complexity Tradeoff
	Open-Source Event-Driven ECG Dataset

	Conclusions
	References

