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Abstract :

A new technique for the finite element modelling of eladistft fatigue crack growth with frictional contact on
the crack faces is presented. The eXtended Finite ElemethiodléXFEM) is used to discretize the equations,
allowing for the modelling of arbitrary cracks whose geometre independent of the finite element mesh. This
paper presents an augmented Lagrangian formulation in #&X1 framework in order to simulate elastic-plastic
crack growth with treatment of contact and friction. Thegimial formulation, which takes advantages of a coarse
and a fine discretization close to the crack tip, is presentec second time the numerical issues and numerical
integration are adressed, and finally numerical examplessimown to validate the method.

Résumeé :

Cet article présente une nouvelle technique de modélis&i@ments finis de la propagation de fissure en élasto-
plasticité avec prise en compte du contact-frottement ihg Ides Ievres de la fissure. La méthode des éléments
finis étendus X-FEM est utilisée pour la discrétisation, cepggrmet de modéliser des géométries de fissures quel-
conques et ce indépendament du maillage. Une formulatidppdelagrangien augmenté adaptée au formalisme
X-FEM est proposée et permet de simuler la propagation avise gn compte de la plasticité et du contact-
frottement. Cette formulation originale tire profit d’'unedélisation a deux échelles : I'une grossiére pour décrire
I'ensemble de la structure et I'autre fine a proximité de lanpe de fissure. Aprés avoir présenté celle-ci, on s'in-
téressera aux aspects numériques tels que l'intégrationémigue et on présentera des exemples pour valider la
méthode.
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1 Introduction

The X-FEM uses the partition of unity in two ways: first to tak& account the displacement
jump across the discontinuity far from the crack tip, andoseicto enrich the approximation
close to the front by considering the appropriate asympfatids Moés et al. (1999). Sev-
eral LEFM issues were treated with the X-FEM such as elastigie crack growth, crack
growth with friction, arbitrary 3D fatigue crack growth Witevel set methods and dynamic
crack growth. In recent works the method has been appliedreinear issues such as phase
transformation, large strain analysis of rubber like matsy and finally it has been modified
by the authors to deal with plasticity Elguedj al. (2006). The main purpose of this contribu-
tion is, in the framework of the eXtended Finite Element Methto treat the case of multiple
non-linearities with a two scale approach: a coarse desmmipf the structure is assumed (the
X-FEM approach allows us to obtain an accurate solutionautimeshing the crack) and a fine
discretization close to the crack tip in order to accuratidgcribe the plastic and contact zone.
The presented method will focus on the case of plasticitylioed with frictional contact and
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is applied to fatigue crack growth analysis. In the case denel non-linearities, several issues
have to be addressed.

2 The Coarse Scale: the X-FEM

In this paper, the coarse scale is linked to length scalebebtder of the structure or the
crack (geometrical aspects). In this respect, one usetiea@ed Finite Element Method, first
introduced in Moéset al. (1999), in which an enrichment basis is added to the clakBrate
element basis approximation. This is done using the Rartaf Unity Method BabusSkaet al.
(1997). The enriched basis shape functions are assoc@tesiut degrees of freedom and the
displacement field can be written:

U=> Ni(z)Ui+ > Ni(x)H(z)a;+ Y Y Ni(2)Ba(2)bin (1)

1EN 1€Ncut 2-E-/V-f'r'ont @

N is the set of the standard finite element nod€s, the set of nodes whose support is com-
pletely cut by the crack andls,,,.; the set of nodes whose support contains a crack frat.
are the standard finite element shape functions.

Following the work done in Hutchinson (1968); Rietal. (1968) one has shown in Elgued;
et al. (2006) that, in the case of elastic plastic conditionstifmenrichment basis given in Moés
et al. (1999) is not the most appropriate. It may be replaced byttegiven in Equation 2
deriving from the Hutchinson-Rice-Rosengren elastisiitaasymptotic fields, where a power-

law hardening materiai =t (fo)n is considered.

[B,] = P [sin 4 cos 4 sin 4 sinf, cos —sin#, sin —sin 360, cos — sin 360 (2)
o 27 T T2 T T T )

In Elguedj et al. (2006) the authors have shown that this plastic enrichivesis, coupled with a
Newton-Raphson iteration algorithm to compute equilibrin conjunction with a radial return
mapping scheme to compute plastic irreversible strairelis to model the cyclic behavior of
a cracked structure.
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Figure 1: Geometrical subdividing of the elements arouedifhelement. The elements whose center is
inside the disk are subdivided.
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3 The Fine Scale

3.1 Integration of the plastic model

The fine scale is devoted to material aspects: confined glsstéind contact behaviour. The

fatigue crack growth is highly dependent on the plastic antact behaviour close to the crack
tip, and in particular during the propagation. In this redpa fine representation of the plastic
behaviour is implemented, and it appears quite useful te laafme knowledge of the stress
state in an element that will contain the crack tip at the mexhputational step. One pro-

poses to subdivide several elements (that are not cut bydlok at the step considered) around
the element containing the crack tip. This idea will be nefdrsubsequently as geometrical
subdividing (Figure 1).

As one would expect this technique to be independant of th&hrdensity, the size of the
geometrical subdivided zone must be physically based. @nesee on Figure 1 that the el-
ements whose center is inside a disk centered on the craekdipubdivided with the same
subquadrangles as proposed in Elguatjal. (2006). Following the hypothesis of confined
plasticity, the radius,,;, of the disk can be defined using the elastic estimations atithels of
the plastic zone. Using the Dugdale-Barenblatt formulaHerradius of the plastic zone, Rsub
is defined by the following equation in mode I:

K2
Rsub = ﬁ X 1 —1L (3)

16 02

WhereK] is the mode | stress intensity factor amglis the yield stress and a proportionality
coefficient. With this technique, considering an elemeat th not subdivided at step and
that is subdivided at step + 1, the internal variables defined at the Gauss quadraturespoin
of its subquadrangles are initialized easily (since thésrant is not yet in plastic at stey).
Therefore, no projection is needed as the internal varsadnle null in elastic conditions.

3.2 Contact treatment

To be able to take into account contact and friction betwberctack faces, it is necessary to
discretize the interface. Due to the fact that the crack dmésonform a priori to the finite
element mesh, the interface is subdivided into one-dinoerasisegments. For each segment,

Enriched node Nodal support
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Figure 2: (a) zoom on a finite element with interface eleménysefinition of the pairst(™,w™) and
(t~,w™) associated with Gauss quadrature points on each side ofablke (" andI'™).
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one determines the intersection of these segments withutirelement mesh, which results in
a set of one-dimmensional sub-elements also called icegiements (see Figure 2). In order
to numerically integrate the different terms on the integfaGauss quadrature points are used
along each of the one-dimensionnal interface elementsintedace displacement field and
traction field¢ are then discretely interpolated on each side of the cradhasn on Figure
2(b).

4 Global Formulation

Consider the body? c R? containing an internal boundafyrepresenting a crack. The crack
faces are denoted Hy" andI'~ such thatl' = I'* U T'~.. The boundary of? is denoted by
02 and can be split in two set#$); {2 on which the displacement field, is enforced (Dirichlet
boundary conditions) ang: (2 on which the surface tractiafy; is enforced (Neumann boundary
conditions). One assumes quasi-static loading of the badya#sence of body forces. The
stress and displacement fields are denoted laynd « respectively. One also introduces the
equivalent quantities on the crack faces: tractiaand displacement denoted by+ on I'*
(tt,wt)and— onT~ (¢~,w™). For convenience the notations(respectivelyt) will be used
when referring to botlw* andw™ (respectivelytt andt ™).

Due to the part associated with contact, and since the rahtam be non-linear as well,
an iterative strategy is necessary to solve the problem. ¥ediiormulation is obtained from
the principle of virtual power where the supersc(igtcorresponds to the i-th iteration and the
subscript: corresponds to the—th computational time step. Following the work done in Simo
et al. (1992), a penalty regularization of the contact problemiase, leading to the following
equation:

_ / N0+ [ . *dS+/A(’ * |1 dS
9202

—l—/ (21+0zwll w*dS — / +aw )w*dS

-gAA#ug|F—wlms (i, w*) € Uy, YA* € Lo )
5 Propagation Strategy

In Moés et al. (1999), the authors use the X-FEM to simulate fatigue cigrckvth in lin-
ear elastic bodies. Within this condition each computaticstep (i.e. each time the crack
is growing) is a calculation independent of the previoussofexcept the crack update).

the presented method, as the material non-linearitiesa&entinto account, the history of the
quantities, especially the stresses, contact and intgemalbles, have not to be forgotten be-
tween two computational steps. Following these obsematiloe strategy used in the presented
method is comparable to the one proposed in Réttadral. (2005) in the framework of linear
elastic dynamic crack propagation. One considers whatdregpgduring a “pseudo time step”
from computational time: ton + 1.

Change of discretization Equilibrium computation n+1

Al > Al > A

a b

Figure 3: Calculation strategy

As presented on Figure 3, one has to perform two steps: chiheghscretization (denoted

4
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by a on Figure 3) and compute the equilibrium (denotedlyn Figure 3). Changing the dis-
cretization (ste) requires the determination df*** (the vector of unknown at computational
time n written on the set of shape functions/subelements Gausgspai computational time
n + 1). In the stepb the equilibrium is computed in order to obtaitj'{] with the method
presented in the previous sections.

6 Numerical Examples

A mode | SE(T) specimen was submitted to a cyclic tension g¢esgion loading with a ratio
R = —1. The contact consitutive law on the crack faces is choseretittionless for this
example. The aim of this example is therefore to show theenfte of the plasticity at the
crack tip on the contact behaviour under a compressive. State can notice on Figure 4 that
the crack remains open near the tip due to plasticity whielifs are closed far from the tip
due to the global compressive state.
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Figure 4: Amplified deformed configuration of the specimen@@splacement jump across the crack
faces (b).

A mode | CT specimen was submitted to a cyclic tension loadiity loading ratios from
R =0.1t0o R = 0.7 . Itis well known from Elber (1970) that crack closure apeander
global cyclic tension for loading ratios smaller than 0.&da the plasticity at the crack tip.
One can see on Figure 5 the deformed configuration of therspecit the maximum load. One
can notice the bumps on the crack faces after propagatiotodte stress redistribution at the
back of the succeding tips. Depending on the load ratio etlhesnps will be responsible for
possible crack closure as presented in Elber (1970), andlgfine the well known opening
stress intensity factor that governs Paris law based fatigack growth.

Figure 5: Norm of the displacement field plotted on the angdifleformed configuration & = F},,;,,
after several growing steps.
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7 Conclusions

A method has been presented to improve finite elements appatgns in the framework of
Elastic Plastic with contact and friction Fracture MecltaniThe main hypothesis of this study
is that one only considers the case of confined plastiagty one only enriches the element
containing the crack front. A plastic enrichment basist tteptures well the Hutchinson-
Rice-Rosengren plastic singularities, is used in the fuaonk of the eXtended Finite Element
Method, coupled with an augmented Lagrangian Newton l&eative algorithm and a radial
return mapping scheme to compute contact / friction andtiplisw. In this approach, the
formulation takes advantage of a global coarse mesh linkéldet X-FEM strategy, and a fine
discretization which allows to account for confined plastiand contact between the crack
faces. Indeed, the fine model is linked to the fact that thgudatcrack growth is highly depen-
dent on the plastic and contact behaviour close to the ciiackhe new partitioning integration
strategy is developed to avoid the projection of internaialdes as the crack propagates. The
main idea is to partition a bigger set of elements that sunddbe crack tip, in order to initialize
internal variables while in elastic conditions. As a consate, this two scale strategy allows
to obtain a fine description for fatigue plastic crack grawah an example, one can model the
bumps on the crack faces after propagation due to the stdgdribution at the back of the
succeeding tips. Finally, depending on the load ratio, we®ffects can be observed with a
high influence on fatigue crack growth.
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