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Abstract :

A new technique for the finite element modelling of elastic-plastic fatigue crack growth with frictional contact on
the crack faces is presented. The eXtended Finite Element Method (XFEM) is used to discretize the equations,
allowing for the modelling of arbitrary cracks whose geometry are independent of the finite element mesh. This
paper presents an augmented Lagrangian formulation in the X-FEM framework in order to simulate elastic-plastic
crack growth with treatment of contact and friction. The original formulation, which takes advantages of a coarse
and a fine discretization close to the crack tip, is presented. In a second time the numerical issues and numerical
integration are adressed, and finally numerical examples are shown to validate the method.

Résumé :

Cet article présente une nouvelle technique de modélisation éléments finis de la propagation de fissure en élasto-
plasticité avec prise en compte du contact-frottement le long des lèvres de la fissure. La méthode des éléments
finis étendus X-FEM est utilisée pour la discrétisation, ce qui permet de modéliser des géométries de fissures quel-
conques et ce indépendament du maillage. Une formulation detype Lagrangien augmenté adaptée au formalisme
X-FEM est proposée et permet de simuler la propagation avec prise en compte de la plasticité et du contact-
frottement. Cette formulation originale tire profit d’une modélisation à deux échelles : l’une grossière pour décrire
l’ensemble de la structure et l’autre fine à proximité de la pointe de fissure. Après avoir présenté celle-ci, on s’in-
téressera aux aspects numériques tels que l’intégration numérique et on présentera des exemples pour valider la
méthode.
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1 Introduction

The X-FEM uses the partition of unity in two ways: first to takeinto account the displacement
jump across the discontinuity far from the crack tip, and second to enrich the approximation
close to the front by considering the appropriate asymptotic fields Moës et al. (1999). Sev-
eral LEFM issues were treated with the X-FEM such as elastic fatigue crack growth, crack
growth with friction, arbitrary 3D fatigue crack growth with level set methods and dynamic
crack growth. In recent works the method has been applied to non-linear issues such as phase
transformation, large strain analysis of rubber like materials, and finally it has been modified
by the authors to deal with plasticity Elguedjet al. (2006). The main purpose of this contribu-
tion is, in the framework of the eXtended Finite Element Method, to treat the case of multiple
non-linearities with a two scale approach: a coarse description of the structure is assumed (the
X-FEM approach allows us to obtain an accurate solution without meshing the crack) and a fine
discretization close to the crack tip in order to accuratelydescribe the plastic and contact zone.
The presented method will focus on the case of plasticity combined with frictional contact and
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is applied to fatigue crack growth analysis. In the case of material non-linearities, several issues
have to be addressed.

2 The Coarse Scale: the X-FEM

In this paper, the coarse scale is linked to length scales of the order of the structure or the
crack (geometrical aspects). In this respect, one uses the eXtended Finite Element Method, first
introduced in Moëset al. (1999), in which an enrichment basis is added to the classical finite
element basis approximation. This is done using the Partition of Unity Method Babuškaet al.
(1997). The enriched basis shape functions are associated to new degrees of freedom and the
displacement field can be written:

U =
∑

i∈N

Ni(x)Ui +
∑

i∈Ncut

Ni(x)H(x)ai +
∑

i∈Nfront

∑

α

Ni(x)Bα(x)bi,α (1)

N is the set of the standard finite element nodes,Ncut the set of nodes whose support is com-
pletely cut by the crack andNfront the set of nodes whose support contains a crack front.Ni

are the standard finite element shape functions.
Following the work done in Hutchinson (1968); Riceet al. (1968) one has shown in Elguedj

et al. (2006) that, in the case of elastic plastic conditions, thetip enrichment basis given in Moës
et al. (1999) is not the most appropriate. It may be replaced by theone given in Equation 2
deriving from the Hutchinson-Rice-Rosengren elastic-plastic asymptotic fields, where a power-
law hardening materialε
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In Elguedj et al. (2006) the authors have shown that this plastic enrichmentbasis, coupled with a
Newton-Raphson iteration algorithm to compute equilibrium in conjunction with a radial return
mapping scheme to compute plastic irreversible strains, isable to model the cyclic behavior of
a cracked structure.

crack

front tip enriched nodes

discontinuous enriched nodes

mesh

subelements edges

Rsub

geometrical subdividing zone

Figure 1: Geometrical subdividing of the elements around the tip element. The elements whose center is
inside the disk are subdivided.

2



18 èmeCongrès Français de Mécanique Grenoble, 27-31 août 2007

3 The Fine Scale

3.1 Integration of the plastic model

The fine scale is devoted to material aspects: confined plasticity and contact behaviour. The
fatigue crack growth is highly dependent on the plastic and contact behaviour close to the crack
tip, and in particular during the propagation. In this respect, a fine representation of the plastic
behaviour is implemented, and it appears quite useful to have a fine knowledge of the stress
state in an element that will contain the crack tip at the nextcomputational step. One pro-
poses to subdivide several elements (that are not cut by the crack at the step considered) around
the element containing the crack tip. This idea will be referred subsequently as geometrical
subdividing (Figure 1).

As one would expect this technique to be independant of the mesh density, the size of the
geometrical subdivided zone must be physically based. One can see on Figure 1 that the el-
ements whose center is inside a disk centered on the crack tipare subdivided with the same
subquadrangles as proposed in Elguedjet al. (2006). Following the hypothesis of confined
plasticity, the radiusRsub of the disk can be defined using the elastic estimations of theradius of
the plastic zone. Using the Dugdale-Barenblatt formula forthe radius of the plastic zone, Rsub
is defined by the following equation in mode I:

Rsub = β ×
π

16

K2
I

σ2
y

(3)

WhereKI is the mode I stress intensity factor andσy is the yield stress andβ a proportionality
coefficient. With this technique, considering an element that is not subdivided at stepn and
that is subdivided at stepn + 1, the internal variables defined at the Gauss quadrature points
of its subquadrangles are initialized easily (since this element is not yet in plastic at stepn).
Therefore, no projection is needed as the internal variables are null in elastic conditions.

3.2 Contact treatment

To be able to take into account contact and friction between the crack faces, it is necessary to
discretize the interface. Due to the fact that the crack doesnot conform a priori to the finite
element mesh, the interface is subdivided into one-dimensional segments. For each segment,
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Figure 2: (a) zoom on a finite element with interface elements(b) definition of the pairs (t+,w+) and
(t−,w−) associated with Gauss quadrature points on each side of thecrack (Γ+ andΓ

−).
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one determines the intersection of these segments with the sub-element mesh, which results in
a set of one-dimmensional sub-elements also called interface elements (see Figure 2). In order
to numerically integrate the different terms on the interface, Gauss quadrature points are used
along each of the one-dimensionnal interface elements. Theinterface displacement fieldw and
traction fieldt are then discretely interpolated on each side of the crack asshown on Figure
2(b).

4 Global Formulation

Consider the bodyΩ ⊂ R2 containing an internal boundaryΓ representing a crack. The crack
faces are denoted byΓ+ andΓ− such thatΓ = Γ+ ∪ Γ−.. The boundary ofΩ is denoted by
∂Ω and can be split in two sets:∂1Ω on which the displacement fieldud is enforced (Dirichlet
boundary conditions) and∂2Ω on which the surface tractionFd is enforced (Neumann boundary
conditions). One assumes quasi-static loading of the body and absence of body forces. The
stress and displacement fields are denoted byσ andu respectively. One also introduces the
equivalent quantities on the crack faces: tractiont and displacementw denoted by+ on Γ+

(t+,w+) and− on Γ− (t−,w−). For convenience the notationsw (respectivelyt) will be used
when referring to bothw+ andw− (respectivelyt+ andt−).

Due to the part associated with contact, and since the material can be non-linear as well,
an iterative strategy is necessary to solve the problem. A mixed formulation is obtained from
the principle of virtual power where the superscript(i) corresponds to the i-th iteration and the
subscriptn corresponds to then−th computational time step. Following the work done in Simo
et al. (1992), a penalty regularization of the contact problem isdone, leading to the following
equation:

0 = −
∫

Ω
σ(i)

n : ε(u⋆)dΩ +
∫

∂2Ω
Fdn.u

⋆dS +
∫

Γ
Λ(i)

n .u⋆ |Γ dS

+
∫

Γ
(t(i−1)

n + αw(i−1)
n ).w⋆dS −

∫

Γ
(Λ(i)

n + αw(i)
n ).w⋆dS

+
∫

Γ
Λ⋆.(u(i)

n |Γ −w(i)
n )dS ∀(u⋆, w⋆) ∈ U0, ∀Λ⋆ ∈ L0 (4)

5 Propagation Strategy

In Moës et al. (1999), the authors use the X-FEM to simulate fatigue crackgrowth in lin-
ear elastic bodies. Within this condition each computational step (i.e. each time the crack
is growing) is a calculation independent of the previous ones (except the crack update). In
the presented method, as the material non-linearities are taken into account, the history of the
quantities, especially the stresses, contact and internalvariables, have not to be forgotten be-
tween two computational steps. Following these observations the strategy used in the presented
method is comparable to the one proposed in Réthoréet al. (2005) in the framework of linear
elastic dynamic crack propagation. One considers what happens during a “pseudo time step”
from computational timen to n + 1.

A n
n

A n+1
n+1

A n
n+1Change of discretization Equilibrium computation

ba

Figure 3: Calculation strategy

As presented on Figure 3, one has to perform two steps: changethe discretization (denoted
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by a on Figure 3) and compute the equilibrium (denoted byb on Figure 3). Changing the dis-
cretization (stepa) requires the determination ofAn+1

n (the vector of unknown at computational
time n written on the set of shape functions/subelements Gauss points at computational time
n + 1). In the stepb the equilibrium is computed in order to obtainAn+1

n+1 with the method
presented in the previous sections.

6 Numerical Examples

A mode I SE(T) specimen was submitted to a cyclic tension compression loading with a ratio
R = −1. The contact consitutive law on the crack faces is chosen to be frictionless for this
example. The aim of this example is therefore to show the influence of the plasticity at the
crack tip on the contact behaviour under a compressive state. One can notice on Figure 4 that
the crack remains open near the tip due to plasticity while the lips are closed far from the tip
due to the global compressive state.

Figure 4: Amplified deformed configuration of the specimen (a) Displacement jump across the crack
faces (b).

A mode I CT specimen was submitted to a cyclic tension loadingwith loading ratios from
R = 0.1 to R = 0.7 . It is well known from Elber (1970) that crack closure appears under
global cyclic tension for loading ratios smaller than 0.7 due to the plasticity at the crack tip.
One can see on Figure 5 the deformed configuration of the specimen at the maximum load. One
can notice the bumps on the crack faces after propagation dueto the stress redistribution at the
back of the succeding tips. Depending on the load ratio, these bumps will be responsible for
possible crack closure as presented in Elber (1970), and will define the well known opening
stress intensity factor that governs Paris law based fatigue crack growth.

disp880.pos

0.0092 0.01840

Figure 5: Norm of the displacement field plotted on the amplified deformed configuration atF = Fmin

after several growing steps.
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7 Conclusions

A method has been presented to improve finite elements approximations in the framework of
Elastic Plastic with contact and friction Fracture Mechanics. The main hypothesis of this study
is that one only considers the case of confined plasticityi.e. one only enriches the element
containing the crack front. A plastic enrichment basis, that captures well the Hutchinson-
Rice-Rosengren plastic singularities, is used in the framework of the eXtended Finite Element
Method, coupled with an augmented Lagrangian Newton like iterative algorithm and a radial
return mapping scheme to compute contact / friction and plastic flow. In this approach, the
formulation takes advantage of a global coarse mesh linked to the X-FEM strategy, and a fine
discretization which allows to account for confined plasticity and contact between the crack
faces. Indeed, the fine model is linked to the fact that the fatigue crack growth is highly depen-
dent on the plastic and contact behaviour close to the crack tip. The new partitioning integration
strategy is developed to avoid the projection of internal variables as the crack propagates. The
main idea is to partition a bigger set of elements that surround the crack tip, in order to initialize
internal variables while in elastic conditions. As a consequence, this two scale strategy allows
to obtain a fine description for fatigue plastic crack growth: as an example, one can model the
bumps on the crack faces after propagation due to the stress redistribution at the back of the
succeeding tips. Finally, depending on the load ratio, closure effects can be observed with a
high influence on fatigue crack growth.
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