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Abstract :

This communication presents the numerical resolution ofliveear yield stress phenomena by using a new mixed
anisotropic auto-adaptive finite element method. The Rdlsdlow of a Bingham fluid with slip yield boundary
condition at the wall is considered. Despite its practigaerest, for instance for pipeline flows of yield stress
fluids such as concrete and cements, this problem was nodge¢ssed to our knowledge. The case of a pipe
with a square section has been investigated into detail® cdmputations cover the full range of the two main
dimensionless numbers and exhibit complex flow patterhthetifferent flow regimes are completely identified.

Résumeé :

Dans cette communication, nous présentons la résolutionénigue de phénoménes non-linéaires de seuil de
contrainte par une nouvelle méthode d’éléments finis mads-adaptatifs. On considere I'écoulement de Poi-
seuille d'un fluide de Bingham avec une condition aux bordglidsement a seuil. Malgré son intérét pratique, par
exemple pour les écoulementg@pelinede ciments et bétons liquides, ce probléeme n’avait pas er@érabordé a
notre connaissance. Le cas d'un tuyau de section carréddiééen détails. Les calculs couvrent la plage entiere
des deux nombres sans dimension principaux du problemet&ninen évidence des situations d’écoulements
complexes : tous les différents régimes d’écoulement smmpletement identifiés.

Mots-clefs :
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1 Introduction

The flow of a viscoplastic fluid in a straight pipe with congteross-section andith non-
slip condition at the wall as been considered several times ilitémature. In the 60’s, an exten-
sive mathematical study was presented by Mosolov and MiagijiL965]. These authors have
presented impressive results on the existence and shajggdaanes in the flow. In particular,
they were the first to characterize the critical value of theddystress above which the flow
stops. Next, Duvaut and Lions [1972] clarified the problenmexistence and uniqueness of a
solution and renewed the mathematical study by using thegdalools of variational inequa-
lities. They recovered some properties already estaldlislyeMossolov and Miasnikov, and
found new interesting properties. Saramito and Roquet]PB$visited the classical fully de-
veloped Poiseuille flow of a Bingham yield stress fluid in pigéh non-circular cross-section.
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Addressing the case of a square cross-section, they pomtethe lack of precision of the
previous numerical computations, that were not able to edgenpccurately the yield surfaces
that separates the shear region from the central plug andketie zones. They proposed a new
mixed anisotropic auto-adaptive finite element method B the augmented Lagrangian al-
gorithm proposed by Fortin and Glowinski [1983]. The medinement is expected to capture
accurately the free boundaries of the rigid zones. Baseal mori error estimate on adapted
meshes, Roquet et al. [2000] performed the numerical aisatyshe method and showed that
it converges with an optimal global order of accuracy. Hindhe extension of this approach
to more general flows of a Bingham fluid is addressed in RogquetSaramito [2003] where
the authors considered the flow around a cylinder. Neversisein practical viscoplastic flow
problems such as concrete pumping, it appears that a nobalindary condition is not stis-
factory. The fluid slips when the tangential strength exseedritical value, and, otherwise the
fluid sticks at the wall. This critical value may be considkees an intrinsic characteristic of
the material : in the following, it will be called thgeld-forceof the fluid. The model defined
by Weber and Amerongen [1969] describes this yield-forge ghenomenon. It has already
been used for the flow of a Newtonian fluid with the Weber sl ly Roquet and Saramito
[2004] for the straight pipe flow with a square cross-sectidre aim of this paper is to extend
the technique presented in Saramito and Roquet [2001] agddR@and Saramito [2004] in or-
der to apply it to the flow of a Bingham fluid in a straight pipgwtonstant cross-section with
the Weber slip law at the wall.

2 Constitutive equation and conservation laws

The total Cauchy stress tensor is expresseglhy= —p.I + o0, whereos denote its deviatoric
part, andp the pressure. In this paper, the fluid is supposed to be V&st@ and the relation
betweenr and D(u) is given by the Bingham model (see Oldroyd [1947]) :

o = 277D(u)+00% whenD(u) # 0
lo| < o9 whenD(u) =0

(1)

hereo, > 0 is the yield stressy > 0 is the constant viscosity; is the velocity field and
D(u) = (Vu+ VuT”) /2. For any tensor = (7;;), the notatiorjr| represents the matrix norm:

|7|? = <Zm Tij> /2. The constitutive equation (1) could be written equivdient

_ %0} o
D(u) = <1 Iol) o When\a.| > 0y )
0 otherwise
The slip boundary condition reads :
— 1] Ovt
w=d (1) o whenlow > s ®)
0, otherwise

wheres, > 0 is the slip yield stress ang > 0 the friction dissipation coefficient. The notations
u; ando,, are defined byi; = u — (u.v)v ando,, = o.v — (0,,) v Whereo,, = (o.v).v
andv is the unit outward normal vector. For any vector fieldthe notation.| represents the
vector normv| = (v.v)'/2. Notice that the vector field, is tangent to the boundary and that
o, 1S a scalar field defined on the boundary. Observe the analogiyuature between the slip
law (3) and the Bingham constitutive equation (2). The gigtion can be also written as :

Opt = —CyUg — 80|3—:|, When|ut\ # 0, (4)
lows| < so, when|u| = 0.
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Also, observe the analogy between (4) and (1). The boundamditton is completed by a

condition expressing that the fluid does not cross the bayndar = 0. Remark that fok, =

0, one obtains the classical linear slip boundary conditite fluid slips for any non-vanishing

shear stress,;. For s, > 0, boundary parts where the fluid sticks can be observeds,As
becomes larger, these stick regions develop. The systequatiens is closed by conservation
laws. The conservation of momentum is :

p(%—ltlJru.Vu) —divo+ Vp =0,

wherep is the constant density. Since the fluid is supposed to bampoessible, the mass
conservation leads todivu = 0.

3 The pipe flow problem

We consider the fully developed flow in a prismatic tube. (@t) be the axis of the tube
and(Ozy) the plane of the bounded cross-sectibi 2. The pressure gradient is written as
Vp=(0,0,—f)inQ, wheref > 0 is the constant applied force density. The velocity is writt
asu = (0,0, u), where the third componentalong the(Oz) axis depends only upanandy,
and is independent dfand z. The problem can be written as a two-dimensional one, and the
stress tensaor is equivalent to a two shear stress component veaok= (o, 0,.). We also
use the following notations :

. 8” 3u . . 8U:pz 8O-yz . 2 2\1/2
Vu = <8x’8y)’ dive = e + By and |o| = (am—i-ayz) .

Finally, the problem of the flow of a Bingham fluid in a pipe wélp at the wall can be sum-
marized as :

(P) : find o andu defined in( such that

dive = —finQ, (5)

max (O; 1— |U—O|) oc—nVu = 0inQ, (6)
o

max ( 0; 1 — % Vom +cru = 00noY, (7)
|or.n|

wheren is the unit outward normal vector on the boundafy of the cross-sectiof. Here (5)
expresses the conservation of momentum, (6) the congétetjuation and (7) the slip boundary
condition. LetL be a characteristic length of the cross-secfipe.g. the half-length of an edge
of a square cross-section. A characteristic velocity iegibyU = L%f /7. Let :

0o

_ 0o ch_ch
_Lf’

S0
S—LfandCf—Z_n. 8)
The Bingham dimensionless numh@i is defined by the ratio of yield stresg by the repre-

sentative stress = nU/L = Lf. The slip yield dimensionless numbgiis defined as the ratio
of the slip yield stress, to X. The three dimensionless numbéts S andC characterize the
problem. TheC; coefficient is chosen equal to the unity for all numericalexpents. In this

paper, we explore the problem related to the variation df libtand.S.

Bi
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4 Numerical experiments and identification of the flow regime

Bi=10.25

DHH
WA
@é@ufm

W

Bi=04

Bi

0.5

FiG. 1 — Adapted meshes and their associated solutions fe10.6 : rigid zones in light gray, deforming
zones in dark gray, and isovalues of the velocity.

The numerical procedure for solving the problem has beeviqusly detailed by Roquet
and Saramito [2007] and is not recalled here. Fig. 1 reptesha development of rigid zones
for S = 0.6 versusBi and the associated adapted meshes. The area of rigid zameases
with Bi and its boundary flattens when approaching the wall. Simatiasly, concave dead
zones appear and develop in the corners of the square &osses In this situation, the width
of the deforming zone decreases and progressively redaceshin band arround the central
plug. Finaly, the flow stops completely when the central @umultaneously merges with the
dead zones and reaches the wall.
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Our computations cover the full range of the two main dimenigiss numbersBi, S).
Fig. 2 shows the existence of five flow regimes that appeakifi#h, S) plane as areas delimted
by some critical curves :

A : full adhesion,
G : full slip,
A+G : adhesion in the corners vicinity and slip elsewhere,
B stop flow ¢« = 0),
T block translation® = constant).

0.68 - 0.6
A B
g A B
S
A+G
A+G = =t
G T G T
0.38 : 0.45 _
0 Bi 1 0.4 Bi 0.8

FiG. 2 — The main flow regimes for a square cross-section : (leftyes separating the regimes;
(right) zoom in the central zone.

5 Conclusion

The communication presents a combination of the two previmn-linear yield stress phe-
nomena : the Poiseuille flow of a Bingham fluid with slip yieloumdary condition at the wall.
This problem is of practical interest, for instance for fiipe flows of yield stress fluids such as
concrete and cements, and has not been addressed to thédaskimowledge from a compu-
tational point of view. This generalizes the works previgahieved for two particular cases :
a viscoplastic fluid with non-slip at the wall, and a Newtanilid with the yield-force slip law.
The case of a pipe with a square cross-section has beenigatestin detail. The computations
cover the full range of the two main dimensionless numbedsexhibit complex flow patterns.
Considering the two main paramete¥sand Bi of the material, five flow regimes and three
sub-regimes have been identified. More precisely :

¢ the limiting values ofBi and S separating the regimes have been obtained;

e the evolution of the rigid zones stick-slip transition pisitnave been established, with

respect taB: and.S in each of the height regimes.
The simulations results have evidenced complex flow patfevhich have been caught thanks
to the use of an auto-adaptive mesh process.
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