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Abstract :

We present a deduction of Kirchhoff-Love and Reissner-hikdhematics of a simply-connected plate by using
the formal asymptotic developments method applied to ttpadbility conditions of Saint Venant and the formula
of Cesaro-Volterra, without the use of any information aogrfrom the loading or the constitutive behavior.

Résumé :

Nous donnons une déduction purement géometrique des @gsiainématiques de Kirchhoff-Love et de celles
de Reissner-Mindlin dans le cas d’'une plaque simplememedan Cette déduction est obtenue uniqguement a
partir des relations de compatibilité de Saint Venant etaleeprésentation intégrale de Cesaro-Volterra. Aucune
information concernant le matériau constitutif de la plaquu le chargement n’est utilisée.
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1 Introduction

The justification of the usual models of thin plates has berbgect largely discussed in the last
twenty years. In particular the Kirchhoff-Lovekshematical assumptiorfsave been obtained
by formal asymptotic developments from the 3D equilibriunu&tions taking into account the
loading and the peculiar geometry of the structure: inddwslreference configuration of the
plate isQ° = wx] — ¢, [ wherew is a domain olR? and the thickness 2 > 0. Thesmall
parametee describes the thinness of the plate and will tend to zero.uketcall that, under
suitable assumptions on the loads, the formal asymptopamsions have been justified by
different arguments (see e.qg. ref.(1) and (2))

In this paper we give, whemn is simply-connected, a differepurely geometricaformal
deduction of the Kirchhoff-Love’s kinematical assumpsand we apply the same method to
obtain the Reissner-Mindlin kinematics.

2 The Saint Venant Compatibility Conditions and the Formula of Cesaro-Volterra for a
3D Plate-like cylindrical domain

Let be given a deformation matrix fiell (x°) = (ef;)(x°) € MZ,,, defined into the variable

(simply-connected) domain® and satisfying the Saint Venant compatibility conditions:
i€k (X) + 05, (X7) — O5ef,,(X°) — 9ye5(X7) = 0in €. (1)

Then, there exists a displacement figfd= (u:) whose (linearized) strain tensor fieldggx*)
( Saint Venant stated this result in 1864, but it was rigolppsoved by Beltrami only in 1886).
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V. Volterra in 1906 provided a formula givingxplicitelythe displacement as a line integral on
a path contained in the domain of a certain function of theragtnic matrix field. In 1907
Cesaro re-wrote the formula of Volterra in a more refined Wergcisely, lety* (x5, x°) denote

a (regular) path from a fixed poirf to x° completely contained if2®, then the representation
of Cesaro-Volterra of the displacement fiefd= () takes the following form:

u; (X°) = [y i (Xg’xs)[efj (V) + (2} = yi) (el () — 97 ei; (¥7))ldy; )

In order to study the asymptotic behavior of the deformatieldl & and of the displacement
field u® when the thickness goes to zero, we introduce the usual change of variables that
allows to transform the problem posed on a variable domapgddent of) onto a problem on

a fixed domain (independent of, (see ref.(1)). Lef2 := wx| — 1, 1[ and letx = (z;) denote

the generic point in the s€l; at each poink € 2, we associate the point € O through the
bijection (Fig. 1):

I Xx=(2;) €Q — X = (25) = (w1, 29,623) € V. (3)

(2

Consequently,

L
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Figure 1: The reference configuration

0. =0, ando; = éﬁg.

and we denote;;(¢)(X) = ef;(X°), resp.u;(e)(X) = u;(x), the deformation, resp.the displace-
ment, transformed bif°. In the sequel, we will omit the explicit dependence:gf<) from x.

By applying the change of coordinates (3) to the CesaroeMatformula (2) we obtain for the
in-plane displacemenis, and the transverse displacemept

ua(e)(X) = / leap(€)(Y) + (2o = ¥s)(Os€ap(€)(Y) = Datop(e)(y))+

7(X0,X) 1

(s — 1) (SOheanle)y) — Duess(e) )y

#eleca(E)(9) ¥ (3~ 1) BocunlE)Y) — Qutra (€94 )

s~ 1) e )9) Do) i @
(

w0 = [ (@) + yaw@a>w—gmﬁ@wmwﬁ

+eless(e)(Y) + (2o — ¥o)(Ores3(e)(Y) — gf?seag(f)(y))]dys.

2
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In the sequel, we will omit the dependenceyoaf the integrand function and the dependence
of v from the starting and ending pointg andx.

3 Deduction of the Kirchhoff-Love kinematics

By applying the previous coordinates change in (1) we oltanfollowing equations on the
fixed domain(2:

5111622(5) + Ogge11(€) — 2012€12(€) =0,
5_2033622(6) + Oggess(e) = —0Oazeas(e),

L Busen(e) + Ouiea(e) = “Dises(),

L nsern () = Oh(—Orens(e) + Drers(e) + %agelz(s)), ®)
—0O13622(g) = Do (01€93(g) — Daer3(e) + %83612(5)),

“Onsess(c) = %ag(ale%(g) 4 Brers(e) — %agem(g)).

Since in the re-scaled equations (5) the parameter of sessrappears explicitly in a poly-
nomial form, we assume that there exists a formal asympésp@ansion of the deformations
6,’j(€):
e;j(e) = e?j + 562,1], + 626?]- + 836%— + ... (6)
By substituting the asymptotic development (6) in (5) andsioyating the zerd order term
o find:
e;;» we find:
aggegﬁ = 0,
0236(1]1 — 0136(1]2 = 0,
0236(1]2 — 0136(2]2 = 0,
611682 —+ 6226?1 — 28126(1)2 = 0.

From equation (7%)we derive immediately the characterization of the comptsefithe leading
termely := el

(7)

ei{,@L = cQ,B('Tlu .Z’g) + x371a13($1, .TQ). (8)

Thus, we can notice that the deformation field is decomposeada parts, which are well-
known in theory of plates: the formey,s, the so-calledn-plane strain tensqrgoverns the in-
plane deformations; the latteys, the so-calledurvature tensarcharacterizes the deformations
outside the middle-plane of the plate.
By substituting (8) in (7)5 4, we obtain the compatibility conditions for the fields; andr,z
in the case of a plate:

Opac11 + O11622 — 2012¢12 = 0,

O — Oyry = 0, (9)

817'22 — 627’12 = 0.

No conditions have been found for the remaining componeftsof the deformation. They
follow from the formula of Cesaro-Volterra (2). Indeed irnsgg the asymptotic development
(6) in (4) we obtain the two formal asymptotic expansions:

Ua () = ud + eul + e2ul + 3ud + .. (10)

1
us(e) = gugl +ud + eud + *ul + Buh + ... (11)
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whose leading terms are:
ul (%) = / (€2 + (o — Uo) Doy — Bacly) + (x5 — y3)se2 5 dys,
uz'(x) = — / (20 — o) D5 s,

and represent the formula of Cesaro-Volterra in the caseptdta. Naturally, by applying the
independence from the path to the line integral (12), weinlatace more the equations (7) and
hence (8)-(9). The substitution of (8) into (12) suggestsftilowing definitionsuXL := 2,
uf" = uz" and henceX) = 1(9,uf’ + 9;ul") andefi" := d5uf’". Moreover, by deriving
the formulae (12) along the through-the-thickness coatein;, we obtain that’ = 0.

(12)

Let us stress explicitely the difference betweér andel:

e L are calculated starting from the formula of Cesaro-Voiteand they represent the
strain functions associated to the displacemefitsanduf*;

e ¢!, are only the zerd order terms of the asymptotic development of the matrix #é4d.
In order to recover from (12) the classical Kirchhoff-Lovied&matics of a plate:

ui{L(xlv X2, .1'3) = Ua(xL ..'12'2) — flfgaaw,
KL - (13)
ug (21, x2) = w(xy, x2),

one has only to consider the Airy functian(z, z,) € C3(w) (i.e. such that,; := —0d.5w)
and to choose a pathall contained in the middle plane of the plate (i®2.C w). One then

obtains (13) withi,, (21, x2) := /,\[Caﬁ + (To — Yo)(0sCap — Oalop)|dys.

5

It is important to remark once more that in order to obtain) @@ did not make any as-
sumption on the constitutive behavior of the material or loa equilibrium conditions of the
system.

4 Deduction of the Reissner-Mindlin kinematics

All plate theories obtained by asymptotic analysis and éhasea limit process when the thick-
ness tends to zero give rise to non-shearable kinematias,kischhoff-Love plate model. It
has been remarked (see e.g. ref. (3)) that the the engigelativation of equations of shearable
plates, like Reissner-Mindlin plate model, is based on tilewwing set of internal constraints:

833ua =0 and03U3 =0. (14)

Let now be given a deformation matm satisfying the compatibility conditions (1) and the
constraints () ( )
€55(X5) = €5 z(T1, 22
i) =0 o)
which are the analogous of (14). It then follows thgt is a linear function of the transverse
coordinaters:
eas(X) = o1, 1) + 2375 5(71, 2). (16)
and that; ; andrg ; satisfy the following set of Reissner-Mindlin compatitylconditions in
Q°:
01659 + 05071 — 2015¢7, = 0,
O 5 + 05917y — 205,17, =0,
iy — Oiriy = Oiyeis — O €53,
O3y — 0517y = O1ye53 — 059673,

(17)

4
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By applying the change of coordinates (3);, respr;, 5, respe;,; turns intocas(¢), resp.ras(e),
resp.e,s(e) and one can define the corresponding asymptotic expansions.
The representation of Cesaro-\olterra of the displacerfirgdtu(e) = (u;(¢)) takes the form:

ua(e)(X) = /[Caﬁ<5) + (To = ¥o)(0sCap(e) — Oatop(e))+
+€y3(7“a5(5) + (To = Yo)(OsTap(€) — Oarop(e)))+
+e(xs — y3)(rap(e) — Oaesp(e))]dys+ (18)
+eleas(€)

+ (%o = Yo ) (Dre3p(e) — Ouess(€))]dys,
)+

us(e)(x) = / lesa(e) + (2 = Yo)(Tesp(e) — 105(€))ldys.

The asymptotic expansions @fs(c), r.3(c) ande,s(¢) induce an asymptotic development for
the displacement functions(¢):

ui(e) = ud + euy + e2u? 4+ 3ud + .. (19)

[Cgﬁ + (2o — yO)(aUCgB - 8a025)]dy57

uh(X) = ][Ciﬁ + (%0 = Yo ) (0sChg — OaChp) + ys(rog + (To — Yo) (OsTog — Darog))+
Y
+ (3 — ys)( — O 635)]@6 + [e9s + (T — yo)(80635 — 0a€3y)dys,
/

ug(x) = [635 + (74 ycr)(&Uesﬁ 05)]0@57
(20)
We can easily prove thaf, is independent from the transverse coordingteThus,
w0 = [ [+ (@0 = ur) Oy — Dachy)ldys = T (a1, 22) 21)

We notice that? governs only the in-plane deformation state, while we aokily for a
Reissner-Mindlin kinematics which takes into account notyanembranal and flexural but
also shear behaviors. In order to obtain the missing inftionave intensively use (20).

At first, we derive (20) with respect tar; and we havésu? = 0. Hence:
uy := w(wy, 19). (22)

Secondly, from (2@)and from (20), by derivingu!, with respect tar; andu with respect
to z, and by summing up these two derivatives, we find:

Osul + Oquy = 2e25(21, 29). (23)
and hence one has the complete characterization of thexdéspkent functions! andu:

{ ul (21, w9, 23) = T (71, T9) + 13(2e25 — D), (24)

ud(z1, T9) = w(zy, T2).

Thirdly, from (20),, if we deriveu!, with respect tars andug with respect ta,,, we have:

1
ciﬁ(xl, To) + xgrgﬁ(xl, T9) = 5(8@@ + &wé), (25)
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and hence using (24)

1, . . 1
c}m = 5(851&! + 8aué) andrgﬁ = 5(2%623 + 28aeg3 — OppW). (26)

We can now define the Reissner-Mindlin kinematics:

ufiM (21, @2, 13) 1= W (21, 22) + g (21, 22) + 23(2e05 — aw), 27)
ul™ (21, 29) == w(wy, T2),
and consequently, we can calculate the deformation fieldlbsws:
egév{ = g1, T2) 4 chp(w1, w2) + 2310 5(1, 22),
efa! = eha(1, 22), (28)
RM _ 0
633 .

As we can notice from the definition (27) of the Reissner-Mimdisplacements, the quan-
tity 22, — 0, w clearly represents the rotation of the transverse fibereoptate. This fiber does
not remain perpendicular to the middle plane after the deddion, as in the Kirchhoff-Love
plate: hence, this is an example of a plate which can shearfurtctione?,, which appears in
the rotation of the transverse segment, measures pretigetieviation from a Kirchhoff-Love
strain state and identifies a new deformation state of a ahkaplate, namely the Reissner-
Mindlin strain state.

5 Conclusions

The previousormaldeduction of the Kirchhoff-Love kinematics (12) or (13) afdhe Reissner-
Mindlin kinematics (27)for simply-connected plategisrely geometricasince we have used
no information about the material of the plate or about trediog. We haveonly used the
Saint Venant compatibility conditions and the Cesaro-&fo# integral representation. Both are
deeply connected with theetric structure of the deformation and of the manifold to whom
this deformation is applied. Hence one can develop an aoatogpproach in other situations :
beams, shells, ...
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