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Version space learning for possibilistic hypotheses
Henri Prade and Mathieu Serrurier 1

Abstract. In this paper, we are interested in learning stratified
hypotheses from examples and counter-examples associated with
weights that express their prototypical importance. It leads to an ex-
tension of the well-known version space learning framework. In or-
der to do that, we emphasize that the treatment of positive and neg-
ative examples in version space learning is reminding of a bipolar
revision process recently studied in the setting of possibilistic in-
formation representation. Bipolarity appears when the positive and
negative sides of information are specified in a distinct way. Then,
we use the possibilistic bipolar representation setting, which distin-
guishes between what is guaranteed to be possible, and what is sim-
ply not impossible, as a basis for extending version space learning to
examples associated with possibility degrees. It allows us to define a
formal framework for learning layered hypotheses.

1 Introduction

Version space learning [3] is a general framework for concept learn-
ing. It proposes to identify all the hypotheses coherent with a set
of examples or counter examples. The way for treating positive and
negative examples during the learning process reminds a bipolar revi-
sion process, that is at work when positive information is said apart
from negative information [1]. Negative information states what is
known to be impossible, what is rejected, while positive information
states what is possible for sure, feasible or satisfactory. Examples
and counter examples w. r. t. an if-then rule are instances of posi-
tive and negative information. When a bipolar view of information
is maintained, consistency between positive and negative informa-
tion, namely what is positively assessed is included in what is not
negatively assessed, should be enforced when new information is re-
ceived. We first point out the similarity between version space learn-
ing and bipolar revision, when learning from a set of examples and
counter-examples. Then, examples are associated with possibility de-
grees that describe how much a positive example is guaranteed to be
possible or how much a negative example is not impossible. By tak-
ing advantage of bipolar possibilistic revision, we propose an origi-
nal algorithm for version space learning in order to identify the set of
layered hypotheses that are sound w. r. to t. examples.

2 Version space and bipolar information

Let X denote a feature space. In the bipolar [1] possibilistic setting,
two [0, 1]-valued possibility distributions over X are considered : δ

describes to what extent configurations are guaranteed to be possible
and π describes what is not impossible. These two distributions
are consistent in the bipolar framework iff ∀x ∈ X , δ(x) ≤ π(x).
Given δ and π, which respectively describe what is guaranteed
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to be possible and what is not impossible, when a new piece of
information of the form πnew or δnew is presented, a revision
process takes place : ∀x ∈ X πrevised(x) = max(π(x), δnew(x))
and δrevised(x) = min(πnew(x), δ(x)). Let us describe the version
space learning framework from the bipolar point of view. Let U
= {0, 1} be a concept space, where 1 means that the example
of the concept is positive (guaranteed possible i.e. δ(x) = 1),
and 0 means that the example is negative (totally impossible i.e.
π(x) = 0). An hypothesis h is a mapping from X to U . H
denotes the hypotheses space. The version space framework takes
as input a set S = {(xi, ui)i=1,...,m s.t xi ∈ X and ui ∈ U}
of m training examples, and a hypothesis space H. The set H
is supposed to be equipped with a partial preorder � expressing
generality, formally: h1, h2 ∈ H. h1 � h2, iff {x ∈ X|h1(x) = 1}
⊇ {x ∈ X|h2(x) = 1}. An hypothesis h is sound w. r. t. a training
example (x, u) ∈ S iff h(x) = u. If ∀(xi, ui) ∈ S, h is sound w.r.t
(xi, ui), then h is said to be sound w. r. t. S. This framework defines
the version space V = {h ∈ H| h is sound with S}. Version space
learning aims at identifying the upper and the lower bounds of this
version space V . The upper bound Vg will contain the most general
hypotheses, i.e., the ones that classify more examples, whereas
the lower bound Vs will contain the most specific ones, i.e., the
hypotheses that classify less examples, both being compatible with
the training examples. The general algorithm for learning version
space consists in updating Vs and Vg step by step by considering
an increasing set of examples. If the example is positive, all the
hypotheses of Vg that are not coherent are removed, since they
cannot be generalized, and all the hypotheses of Vs that do not
cover the examples are minimally generalized in order to cover
it. On the contrary, if the example is negative the hypotheses that
are incoherent with the example are removed if they are in Vs or
minimally specialized if they are in Vg .

We can view a hypothesis as a possibility distribution, which
states what feature configurations x are possible : ∀h ∈ H, ∀x ∈
X , μh(x) = h(x). Then, given a set of hypotheses, we define two
possibility distributions : the most specific one ∀H ∈ 2H, ∀x ∈
X , δH(x) = min{μh(x); h ∈ H} and the most general one
∀H ∈ 2H, ∀x ∈ X , πH(x) = max{μh(x); h ∈ H}. Let πS

and δS be the possibility distributions that correspond respectively
to the most general and the most specific distribution revised by the
examples in S. The set of hypotheses in Vs contains the most spe-
cific hypotheses that cover all the positive examples and no negative
examples. It means that these hypotheses must identify, if possible,
only the situations that are guaranteed to be possible w. r. t. the set of
examples and then δS ≤ δVs

. In the same way, since Vg contains the
most general hypotheses that cover all the positive examples and no
negative ones, these hypotheses describe the situations that are not
impossible w. r. t. the set of examples and then πS ≤ πVg

.
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3 Weighted extension of version space learning

Alg. 1 SpecializeStratifiedHypothesis

Require: hw = {(h1, α1), . . . , (hn, αn)} with α1 ≥ . . . ≥ αn

Require: < x, 0, α >

1: Let i such that (hi, αi) ∈ hw αi ≥ α and � ∃j such that αi >

αj ≥ α

2: for all (hj , αj) such as j > i do
3: if hj(x) = 1 then
4: turn hj in (hj , αj) into one of its minimal specialization
5: if hi(x) = 1 then
6: turn (hi, αi) into (h′

i, αi) where h′
j one of the minimal spe-

cialization of hj

7: if αi �= α then
8: add (hi, α) in hw

Alg. 2 GeneralizeStratifiedHypothesis

Require: hw = {(h1, α1), . . . , (hn, αn)} with α1 ≥ . . . ≥ αn

Require: < x, 0, α >

1: if ∃i such that (hi, αi) ∈ hw and αi = α then
2: return all hw in which hi is turned into one of its minimal

generalization
3: else
4: Let i such that (hi, αi) ∈ hw αi > α and � ∃j such that

αi > αj > α

5: add (hi, αi) in hw such that h′
i is a minimal generalization of

hi

We are now interested in version space learning with examples
associated with weights corresponding to possibility degrees in
a linearly ordered scale, here [0, 1] for simplicity. These possi-
bility values have a different meaning according as the examples
are positive or negative. If the example is positive, the weight
corresponds to a guaranteed possibility degree. If the example is
negative, the weight refers to the possibility distribution π that
describes what is not impossible. The examples are then described
by Sw = {(x, u, α)} with α = δ(x) if u = 1 and α = π(x)
otherwise. The hypothesis we want to learn describes a possibility
distribution that associates a possibility degree to each example,
which corresponds to the degree of compatibility of this example
w. r. t. the target concept. The hypothesis is then a mapping from
X to [0, 1]. Given an hypothesis space H, we now consider a
stratified set of classical hypotheses hw = (h1, α1), . . . , (hn, αn)
with ∀i, hi ∈ H and α1 ≥ ... ≥ αn. The result of hw for x is
∀x ∈ X , hw(x) = maxi{min(hi(x), αi)} and the possibility dis-
tribution induced by hw is ∀x ∈ X , μhw

= hw(x). The generality
ordering on stratified hypotheses corresponds to the partial pre-
order on possibility distributions, and thus h1

w ≤ h2

w iff μh1
w
≤ μh2

w
.

A stratified hypothesis is sound w. r. t. an example if it does not
underestimate the possibility of a positive example and does not
overestimate the possibility degree of a negative example. So, hw

is sound w. r. t. Sw iff ∀(x, u, α) ∈ Sw = hw(x) ≥ α if u = 1
and hw(x) ≤ α if u = 0. A totally positive (guaranteed possible)
example corresponds to (x, 1, 1), and a totally negative (impossi-
ble) example to (x, 0, 0). On the contrary, the examples of the form
(x, 1, 0) and (x, 0, 1) have no influence on the learning algorithm
according to the definition of soundness. Indeed, an example of the

form (x, 1, 0) means just that x is not guaranteed to be a positive
example and (x, 0, 1) means that we are certain that it is possible for
x to be a positive example. The algorithm for learning the version
space in the case of bipolar continuous examples follows the same
structure as the classical version space learning algorithm by using
specialization and generalization operators described respectively in
Alg. 1 and Alg. 2.

Proposition 1 We note δSw
and πSw

the possibility distributions ob-
tained by revising the bipolar distribution (∀x ∈ X , δSw

(x) = 0,
∀x ∈ X , πSw

(x) = 1) with the new information of the form
∀(x, u, α) ∈ S πnew(x) = α if u = 0 or δnew(x) = α if x = 1.
Given Vw = < Vsw,Vgw > the continuous version space from
the set of example S, we have ∀x ∈ X , δSw

(x) ≤ δVsw
(x) and

πSw
(x) ≥ πVgw

(x).

This proposition shows that we can use version space learning for
describing bounds of possibility distributions according to a set of
descriptions of what is not impossible or guaranteed to be possi-
ble. Since it is described in intention in the version space case, the
bounds may be too restrictive w. r. t. the maximal bounds described
by bipolar revision due to the limited description capabilities of the
hypothesis language.

4 Related works and concluding remarks

In this paper, we have emphazised the similarities that exist between
the version space learning framework and the bipolar binary revision
process. According to this remark, we have proposed an extension
of version space learning that deals with examples associated with
possibility degrees. These degrees correspond to non impossibility
degrees for negative examples and to guaranteed possibility degrees
for positive examples. What is learned is the bounding of the set of
stratified hypotheses that are coherent with the data. As for the classi-
cal setting, it is obvious that bipolar version space learning cannot be
used directly in applications, but can be used as a formal framework
for possibilistic concept learning.

This approach could then be applied to possibilistic inductive logic
learning [4], which learns stratified hypotheses from weighted exam-
ples. In this context, it suggests to modify the treatment of examples
in order to consider weights as bipolar information and then to adapt
the specialization and generalization operators as described in this
paper. This approach is clearly different from the fuzzy version space
in [2]. In particular, our approach makes a difference for the meaning,
and then for the treatment, of the levels associated to the examples
according to their positive or negative nature, which is not the case
in fuzzy version space. Indeed, in the fuzzy case, a version space is
learnt for each alpha-cut of the training set. What is learnt is then a
stratified sets of version spaces and the soundness of hypotheses w.
r. t. examples is classical, while what is learnt here is a version space
of stratified hypotheses.
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