Review on Intelligent Power Modules

IWIPP 2021 Webinar

Cyril BUTTAY

Laboratoire Ampère, Lyon, France

Introduction

2 Review of Existing Smart Power Modules

Image: Smart "features"

Packaging Technologies for IPMs

6 Conclusion

Introduction

Introduction

ECPE report on "smart power modules"

- Accessible to ECPE principal members
- 200 pages, 300 references
- Not included here: discussion on future trends
- https://www.ecpe.org/

This presentation is a literature review, all images and data belong to their respective owners.

What is a Smart Power Module?

Intelligent Power Module (IPM) ↔ Smart power module

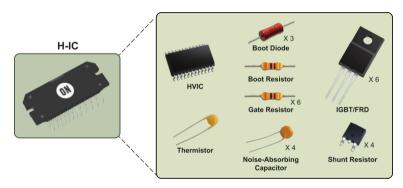
What is a Smart Power Module?

Intelligent Power Module (IPM)↔Smart power module The following are *not* considered IPMs here:

- · A standard power module with just an additional temperature sensor
- · Plug-in features which mount on top of power modules
- Monolithic integrated power circuits
- Integrated power converters (e.g. DC/DC converters)
- Very specific devices such as the IGCT

What is a Smart Power Module?

Intelligent Power Module (IPM)↔Smart power module The following are *not* considered IPMs here:

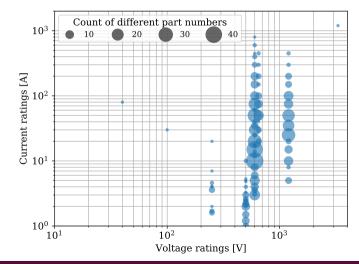

- · A standard power module with just an additional temperature sensor
- · Plug-in features which mount on top of power modules
- Monolithic integrated power circuits
- Integrated power converters (e.g. DC/DC converters)
- Very specific devices such as the IGCT

IPMs have at least (in a single package):

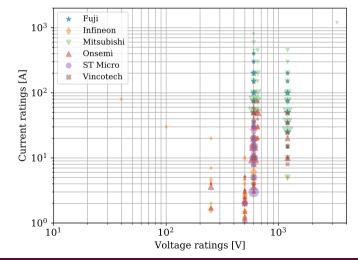
- 2 power devices
- Some gate driver circuitry
- Some additional features (temperature/current sensing, protections...)

Example of a Smart Power Module

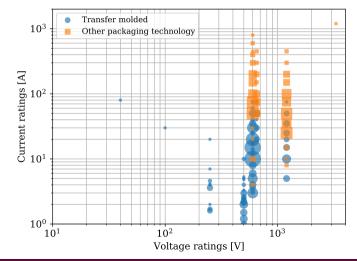
Source: On Semiconductor [1]


Typical IPM used for motor control (3 phase inverter)

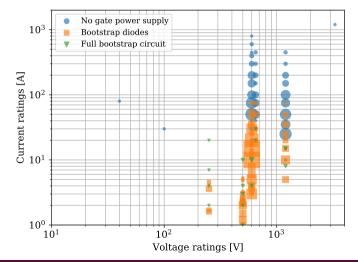
Review of Existing Smart Power Modules



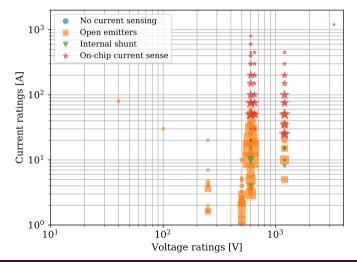
• Voltage/current ratings



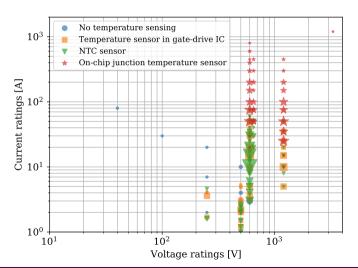
- Voltage/current ratings
- Portfolio per manufacturer



- Voltage/current ratings
- Portfolio per manufacturer
- Packaging technologies



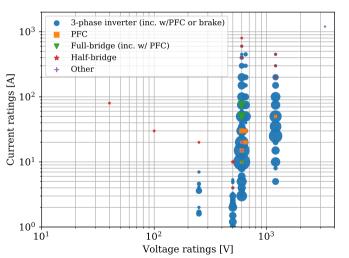
- Voltage/current ratings
- Portfolio per manufacturer
- Packaging technologies
- Gate drive power supply



- Voltage/current ratings
- Portfolio per manufacturer
- Packaging technologies
- Gate drive power supply
- Current sense technology

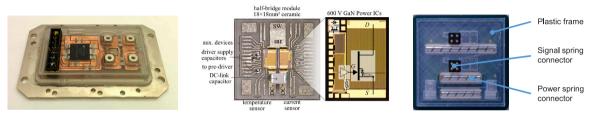
Cyril BUTTAY

- Voltage/current ratings
- Portfolio per manufacturer
- Packaging technologies
- Gate drive power supply
- Current sense technology
- Temperature sense technology


Ampere

- Voltage/current ratings
- Portfolio per manufacturer
- Packaging technologies
- Gate drive power supply
- Current sense technology
- Temperature sense technology
- → two broad categories of IPMs:
 - $\bullet~<$ 20 kVA
 - \bullet > 20 kVA

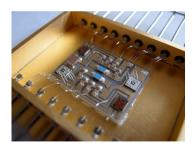
Cyril BUTTAY

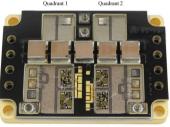

Review on Intelligent Power Modules

- Voltage/current ratings
- Portfolio per manufacturer
- Packaging technologies
- Gate drive power supply
- Current sense technology
- Temperature sense technology
- Topologies
- → two broad categories of IPMs:
 - \bullet < 20 kVA
 - \bullet > 20 kVA
- → Mainly 3-phase inverters

IPMs in the Scientific Literature - High Switching Frequency

Source: Jorgensen et al. [2]; Moench et al. [3]; Marczok et al. [4]


- Integration of gate driver close to the power chips
- Monolithic integration (for GaN power devices)
- Low inductance interconnects; control of parasitic capacitances


IPMs in the Scientific Literature – High Temperature

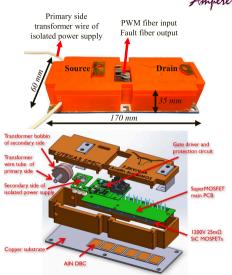
- Based on SiC power devices (JFETs), for $T_J = 250$ °C or more
- Single package for power and gate drives
- Ceramic-based + high temperature resin
- Limits: insulation functions (encapsulation, power/signal insulation)

Quadrant 3

Quadrant 4

Source: Mc Pherson et al. [5]; El Falahi et al. [6]; Whitaker et al. [7]

Cyril BUTTAY


Cyril BUTTAY

Source: Zhang et al. [8]

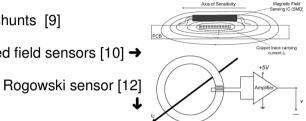
23/08/2021 8 / 30

IPMs in the Scientific Literature – High Voltage

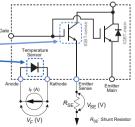
- Also suited to SiC devices
- · Insulation coordination between power and drive
- Can "mask" unusual device configuration
 - Bipolar transistors
 - Super Cascode...

"Smart" features

Current Sensing - Some Sensor Types



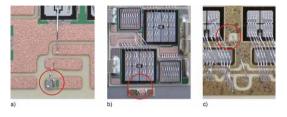
← integrated current shunts [9]


Collector

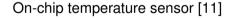
Open and closed field sensors [10] →

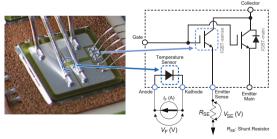
IGBT sensor [11]

Current sensing summary


Sensor	Bandwidth		Sensitivity	Integration	Usage		Comment		
	Low	high			Sens.	Prot.			
Ohm's law									
Shunt	DC	10 kHz	Т	Good	++	++	limited by power dissipation		
Interconnect. res.	DC	10 kHz	Т	Excellent	+	++	Low SNR, high TCR		
MOSFET R _{DSon}	DC	100 kHz	T, <i>V_{GS}</i>	Excellent	+	++	1 st quad. only, very high TCR		
Faraday's law of induction									
Rogowski	10 kHz	100 MHz		Fair	-	++	No saturation, very fast		
Transformer	10 Hz	10 MHz	I _{DC}	Poor	-	+	Saturation, no conditioning		
Interconnect. ind.	1 Mhz	100 MHz	T, EMI	Excellent	-	++	Bias caused by resistance		
Magnetic field sensing									
Hall (open)	DC	10 kHz	T, Ext. Field	Good	+	-	Slow, sensitive to ext. fields		
Hall (closed)	DC	10 kHz	Т	Poor	+	-	Slow, saturation of core		
Fluxgate	DC	10 kHz	T, Ext. Field	Good	+	-	Slow, sensitive to ext. fields		
(X)MR	DC	1 MHz	T, Ext. Field	Good	++	-	sensitive to ext. fields		
Semiconductor-based									
Current Mirror	DC	100 MHz	Т	Good	+	++	1 st quad. only, sensitive to T		
Desat. detection	DC	10 MHz	T, V _{GE}	Good	-	++	Mainly suited to IGBTs, coarse		

→ Hybrid sensors seem necessary, with Rogowski + field sensors most promising.


Cyril BUTTAY


Temperature Sensing – Discrete sensors

Discrete temperature sensors, with or without electrical isolation [9]

Temperature Sensing Summary

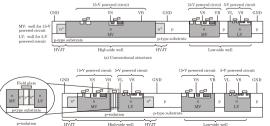
Sensor	Time const.	Senses	Integration	Sig. Cond.	Comment					
Discrete sensors										
RTDs	1-10 s	T _{case}	Good	Simple	More expensive than thermistors					
Thermistors	1-10 s	T _{case}	Good	Simple	Commonly used in IPMs.					
Semiconductor sensor	1-10 s	T _{case}	Good	Integrated	Integrated in gate drive					
Integrated sensors										
PN junctions	10 µs	T_j	Excellent	Simple	Used for all current-sensing transistors					
RTDs	10 µs	T_j	Excellent	Simple	Can use metal layer of power chip					
Temperature-Sensitive Electrical Parameters										
Miller plateau ampl.	1 ms	T_j	Excellent	Complex	Sensitive to ageing or parameter					
Switching timing	Switching timing 1 ms		Excellent	Complex	scattering between chips					
Volt. drop across Le	1 ms	T_j	Excellent	Complex	scattering between chips					

- Integrated sensors required for on-chip current measurement
- TSEP do not seem convenient for temperature measurement outside of lab
 - May be used for condition monitoring?

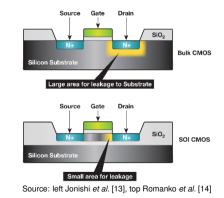
IC technologies

3 voltage levels required for a gate circuit:

LV: typ. 5 V, for logic circuits


MV: typ. 15-20 V, for gate control

HV: typ. 650 or 1200 V, DC bus voltage


2 technologies

BCD (Bipolar CMOS DMOS), on Si bulk, ${<}150\ ^{\circ}\!\mathrm{C}$

SOI (Silicon On Insulator), can operate >200 °C

Cyril BUTTAY

Review on Intelligent Power Modules

23/08/2021 13 / 30

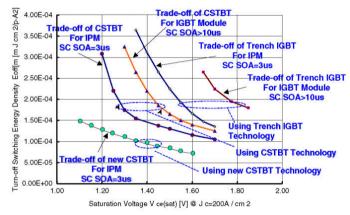
Control features

Gate drive standard features

- Signal isolation
 - · level shifter, magnetic isolation, fiber optics
- Power supply
 - only bootstrap, no integrated DC/DC available
- Output buffer
- Protections

Gate drive advanced features

- Advanced control
 - Switching speed control; miller clamp; ...
- Condition monitoring (currently not implemented)



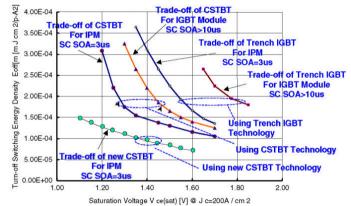
Cyril BUTTAY

Matching power device and gate drive circuit

Faster protections thanks to:

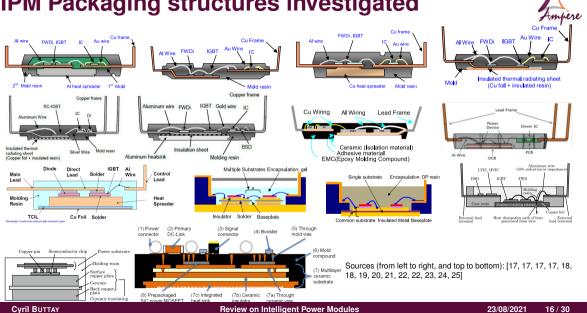
- On-chip sensors
- Well defined components
- Known circuit parasitics

Source: Majumdar et al. [16] (2007)



Matching power device and gate drive circuit

Faster protections thanks to:


- On-chip sensors
- Well defined components
- Known circuit parasitics
- To use "weaker" devices:
 - Less robust to short-circuit
 - Lower losses
 - Same trade-off for SiC MOSFETs

Source: Majumdar et al. [16] (2007)

Packaging Technologies for IPMs

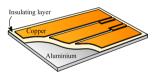
IPM Packaging structures investigated

Substrates

Lead frame

- Most common for low power IPM
- Thermal performance limited by moulding compound
- · Ceramic or metal insert for improved thermal performance

Source: SH Precision Japan, https://shpj.co.jp/


Substrates

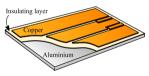
Lead frame

- Most common for low power IPM
- Thermal performance limited by moulding compound
- Ceramic or metal insert for improved thermal performance

Source: SH Precision Japan, https://shpj.co.jp/

Insulated Metal Substrates & Variants

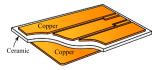
- Usually poor thermal conductivity
- BN-loaded insulating resin up to 20 W \cdot m^{-1} \cdot K^{-1}
- Together with thick (\approx 1 mm or more) copper, strong trend.


Substrates

Lead frame

- Most common for low power IPM
- Thermal performance limited by moulding compound
- Ceramic or metal insert for improved thermal performance

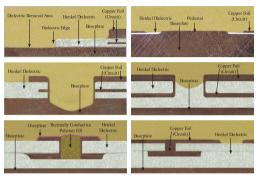
Source: SH Precision Japan, https://shpj.co.jp/

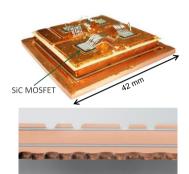


Ceramic Substrates

- Orientation toward thin (2–300 µm) ceramics, with thick copper
- Zr-Al₂O₃, Si₃N₄
- More traditional structures for high voltage only (>1700 V)

Insulated Metal Substrates & Variants


- Usually poor thermal conductivity
- BN-loaded insulating resin up to 20 $W\cdot m^{-1}\cdot K^{-1}$
- Together with thick (\approx 1 mm or more) copper, strong trend.

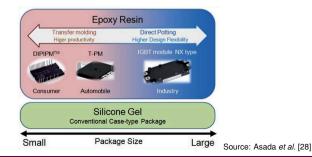


Cyril BUTTAY

Substrates – Trends

Multi-layer and "3D" IMS features for improved thermal management, low inductance or common mode shielding [26].

"thin ceramic/thick copper" DBC structure [27]

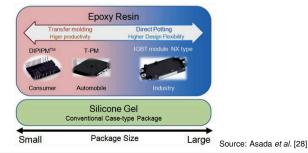

→ overall CTE of organic or inorganic substrates approaches that of copper (16.5 ppm/K).

Encapsulation

Many possible candidates

- · conformal coatings, volume encapsulants
- Silicone, epoxy, polyimide, parylene, cyanate ester, bismaleimide, inorganic cement...

Encapsulation

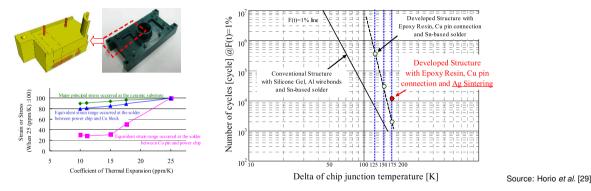


Many possible candidates

- · conformal coatings, volume encapsulants
- Silicone, epoxy, polyimide, parylene, cyanate ester, bismaleimide, inorganic cement...

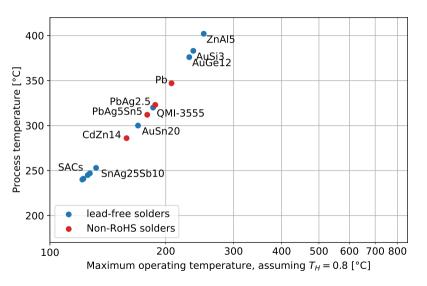
- Epoxy most promising for \approx 200 °C

- · Coefficient of Thermal Expansion (CTE) matching that of copper
- Higher breakdown field than silicone
- Recycling may become an issue

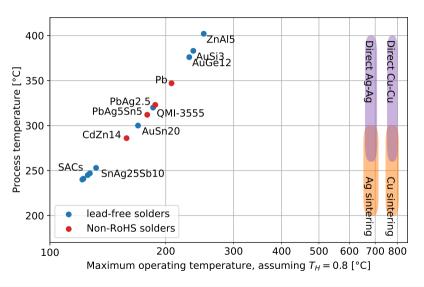


Cyril BUTTAY

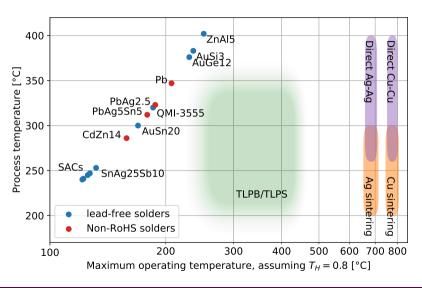
CTE of encapsulant approaches that of copper


- Better reliability reported by Fuji and Mitsubishi, but no third party analysis
 - Is it true for thin IGBTs only?
 - What about thicker or stiffer (SiC) chips?

Encapsulation – trends

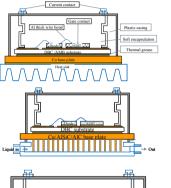

Die attach

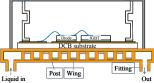
Few high temp, Pb-free solders

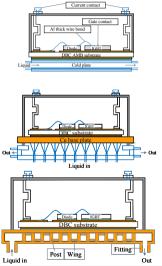

Die attach

- Few high temp, Pb-free solders
- Cu- or Ag-sintering excellent replacements

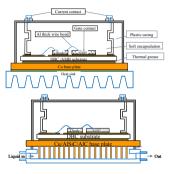
Die attach


- Few high temp, Pb-free solders
- Cu- or Ag-sintering excellent replacements
- What about Transient Liquid Phase Bonding?


Cyril BUTTAY


Review on Intelligent Power Modules

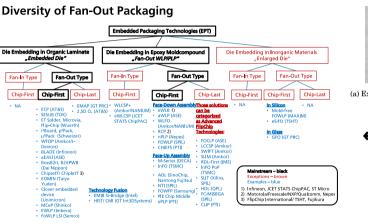
Cooling



← Source: Schulz et al. [30]

- Many cooling solutions
- IPMs need interface standardisation

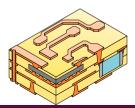
Cooling


← Source: Schulz et al. [30]

- Many cooling solutions
- IPMs need interface standardisation
- Only two configurations gained acceptance:
 - flat surface for heatsink
 - pin fins for direct water cooling

↑ Source: Majumdar et al. [31]

Heterogeneous Integration



(a) External appearance

⁽b) Internal structure

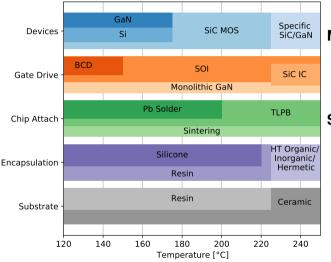
←Fan-out [32], ↑Chip on chip [33], PCB embedding↓

Prof. Klaus-Dieter Lang © Fraunhofer IZM

Source: Steffen Kroehnert NANIUM, June 2017

roehnert Festvage 117 Technologie

T Fraunhofer


Cyril BUTTAY

Review on Intelligent Power Modules

23/08/2021 23 / 30

Conclusion

Summary on Technologies

Materials

- Incremental changes to reach $T_j = 200-225 \ ^{\circ}{
 m C}$
- Very few SiC IPMs on the market

Structure

- Multi-layer packages
 - Low parasitics
 - Higher integration density
- Thick copper layers
 - Package CTE matching that of Cu.
 - Thin insulation layers

Conclusion

- Most IPMs target mass markets
 - 3-phase inverters for motor control, new topologies may develop, e.g for automotive
- More advanced features (sensors, supplies, etc.) may be required for high-end IPMs
 - High power/voltage, SiC-based
 - IPMs can "mask" exotic devices/exploit "weaker" devices
- Trend towards "organic" packaging:
 - IMS substrates, epoxy encapsulation, even for higher power/voltages
 - IPM technologies may take advantage of other heterogeneous integration technologies
 - Recycling not addressed

Bibliography I

- [1] O. Semiconductor, "Motor control solutions flr0101/d," tech. rep., On Semiconductor, 2014.
- [2] A. B. Jørgensen, T. S. Aunsborg, S. Bęczkowski, C. Uhrenfeldt, and S. Munk-Nielsen, "High-frequency resonant operation of an integrated medium-voltage sic mosfet power module," *IET Power Electronics*, 2019.
- [3] S. Moench, R. Reiner, P. Waltereit, J. Hueckelheim, D. Meder, R. Quay, O. Ambacher, and I. Kallfass, "A 600v gan-on-si power ic with integrated gate driver, freewheeling diode, temperature and current sensors and auxiliary devices," in *CIPS 2020; 11th International Conference on Integrated Power Electronics Systems*, pp. 1–6, March 2020.
- [4] C. Marczok, E. Hoene, T. Thomas, A. Meyer, and K. Schmidt, "Low inductive sic mold module with direct cooling," in PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1–6, May 2019.
- [5] B. McPherson, J. M. Hornberger, J. Bourne, A. B. Lostetter, R. M. Schupbach, R. Shaw, B. Reese, B. Rowden, H. A. Mantooth, S. Ang, J. C. Balda, K. Okumura, and T. Otsuka, "Packaging of High Temperature 50kW SiC Motor Drive Module for Hybrid-Electric Vehicles," *Advancing Microelectronics*, vol. 37, pp. 20–26, Jan. 2010.
- [6] K. El Falahi, S. Hascoët, C. Buttay, P. Bevilacqua, L. V. Phung, D. Tournier, B. Allard, and D. Planson, "High temperature, Smart Power Module for aircraft actuators," in *Proceedings of the High Temperature Electronics Network* (*HiTEN*), (Oxford, UK), IMAPS, July 2013.

Bibliography II

- [7] B. Whitaker, Z. Cole, B. Passmore, D. Martin, T. McNutt, A. Lostetter, M. N. Ericson, S. S. Frank, C. L. Britton, L. D. Marlino, A. Mantooth, M. Francis, R. Lamichhane, P. Shepherd, and M. Glover, "High-temperature sic power module with integrated sic gate drivers for future high-density power electronics applications," in 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, pp. 36–40, IEEE, Oct 2014.
- [8] L. Zhang, S. Sen, and A. Q. Huang, "7.2-kv/60-a austin supermos: An intelligent medium-voltage sic power switch," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, pp. 6–15, March 2020.
- [9] A. Wintrich, U. Nicolai, W. Tursky, and T. Reimann, *Application Manual Power Semiconductors*. ISLE Verlag, 2 ed., 2015.
- [10] S. Ziegler, R. C. Woodward, H. H. Iu, and L. J. Borle, "Current sensing techniques: A review," IEEE Sensors Journal, vol. 9, pp. 354–376, April 2009.
- [11] F. Electric, "Fuji automobile IGBT module M653 series application manual," tech. rep., Fuji Electric, 2016.
- [12] D. Bortis, J. Biela, and J. W. Kolar, "Active gate control for current balancing of parallel-connected igbt modules in solid-state modulators," *IEEE Transactions on Plasma Science*, vol. 36, pp. 2632–2637, Oct 2008.
- [13] A. JONISHI, M. AKAHANE, and M. YAMAJI, "Hvic technologies for ipm," FUJI ELECTRIC REVIEW, vol. 61, no. 4, 2015.
- [14] T. Romanko, "Extreme design: Developing integrated circuits for -55 degc to +250 degc," *EE Times*, 2008.

Bibliography III

- [15] R. Herzer, "Integrated gate driver circuit solutions," in *2010 6th International Conference on Integrated Power Electronics Systems*, pp. 1–10, March 2010.
- [16] G. Majumdar, M. Fukunaga, and T. Ise, "Trends of intelligent power module," *IEEJ Transactions on Electrical and Electronic Engineering*, vol. 2, no. 2, pp. 143–153, 2007.
- [17] E. Motto, J. Donlon, S. Shirakawa, T. Iwagami, H. Kawafuji, M. Seo, and K. Satou, "Latest Progress in Power Modules for Appliance Inverter Applications," in *Industry Applications Conference, 2006.* 41st IAS Annual Meeting. Conference Record of the 2006 IEEE, vol. 3, pp. 1222–1228, IEEE, 2006.
- [18] P. Jabs and M. Albayrak, "The intelligent power module concept for motor drive inverters," *Bodo's Power Systems*, 2019.
- [19] F. S. O. Semiconductor), "An-9070 smart power module motion spm products in spm45h packages," tech. rep., Fairchild Semiconductor - (On Semiconductor), 2012.
- [20] J. Lee, T. Lee, J. Lee, and D. Chung, "New pfc-integrated intelligent power module for home appliances," in *PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management*, pp. 1–5, May 2019.
- [21] E. R. Motto and J. F. Donlon, "Igbt module with user accessible on-chip current and temperature sensors," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 176–181, Feb 2012.

Bibliography IV

- [22] M. E. Corporation, "7th generation igbt module t/t1-series application note nx type & std type," tech. rep., Mitsubishi Electric Corporation, 2018.
- [23] S. Tezuka, Y. SUZUKI, and T. SHIRAKAWA, "2nd-generation small ipm series," FUJI ELECTRIC REVIEW, vol. 62, no. 4, pp. 246–250, 2016.
- [24] Y. Nakamata, M. Tachioka, and Y. Ichimura, "Enhanced thermal resistance of molding resin used for all-sic modules," *Fuji Electric Review*, vol. 62, no. 4, 2016.
- [25] E. Hoene, "On wide band gap semiconductor packaging," in ECPE Workshop "Power Module 2.0", 2019.
- [26] Bergquist, "Comprehensive selection guide thermal clad," tech. rep., Bergquist Henkel.
- [27] T. Welker, M. Rüppel, R. Herrmann, O. Mathieu, S. Polster, and A. Meyer, "Power system in package based on multilayer ceramic substrates," in ECPE Workshop "Advanced Power Packaging – Power Modules 2.0", 2019.
- [28] S. Asada, S. Kondo, Y. Kaji, and H. Yoshida, "Resin encapsulation combined with insulated metal baseplate for improving power module reliability," in *PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management*, pp. 1–5, May 2016.
- [29] M. Horio, Y. Iizuka, Y. Ikeda, E. Mochizuki, and Y. Takahashi, "Ultra compact and high reliable sic mosfet power module with 200° coperating capability," in 2012 24th International Symposium on Power Semiconductor Devices and ICs, pp. 81–84, June 2012.

- [30] J. Schulz-Harder, "Review on Highly Integrated Solutions for Power Electronic Devices," in *Proceedings of the Conference on Integrated Power electronics Systems (CIPS)*, (Nüremberg), p. 7 p, Mar. 2008.
- [31] G. Majumdar, T. Oi, T. Terashima, S. Idaka, D. Nakajima, and Y. Goto, "Review of integration trends in power electronics systems and devices," in CIPS 2016; 9th International Conference on Integrated Power Electronics Systems, pp. 1–10, March 2016.
- [32] R. Aschenbrenner, "Embedding technologies for planar power electronics module," in *2018 Second International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM)*, 2018.
- [33] Y. Seki, Y. Takahashi, and T. Fujihira, "Fuji electric's semiconductors: Current status and future outlook," *Fuji Electric's Semiconductors: Current Status and Future Outlook 42*, vol. 55, no. 2, p. 42, 2009.

Thank you for your attention

This work was funded by the ECPE Joint Research Programme

cyril.buttay@insa-lyon.fr

