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Superconducting spin valve under magnonic control

The detailed investigation of a superconducting spin-triplet valve is presented. This spin valve consists of a superconducting film covering a metal with intrinsic spiral magnetic order, which may be the result of a competitive exchange or of an asymmetric Dzyaloshinsky-Moriya exchange following from the central symmetry breaking of the crystal lattice. Depending on the anisotropy, this metal may change its magnetization either from a spiral to uniform order, as in Ho and Er, or in the direction of the spiral itself, as in B20 family crystals. Very recently, a new way of controlling the superconducting spin valve has been developed: the change of the magnetic order may also be triggered by magnonic relaxation processes, thus merging superconducting spintronics and magnonics. The nonuniform magnetic order controls the appearance of long-range triplet superconducting correlations (LRTC), which change the conditions of the proximity effect, enabling an external magnetic control of the superconducting critical temperature. We show that magnetic control of the spin-valve behavior can also be obtained for moderately low exchange energies thanks to an orientation-dependent averaging mechanism of the magnetic inhomogeneity on the scale of the Cooper pairs. The competition between these two mechanisms yields different behaviors of the spin-valve effect. Our numerical calculations show that at low exchange fields (as in MnSi) the spin valve effect may be quite significant. They suggest the switching behavior of the superconducting spin valve to be better optimized for B20 family compounds allowing magnonic control.

I. INTRODUCTION

Superconducting spintronics is a relatively new field in cryogenic nanoelectronics [START_REF] Holmes | International Roadmap for devices and systems[END_REF] appeared since 2010s [START_REF] Eschrig | Spin-polarized supercurrents for spintronics[END_REF]. As in traditional spintronics, the approach is to utilize spin transfer for information processing. Since a spin current is not always accompanied by a charge transfer, such devices combining magnetic and superconducting orders promise to be energy efficient. This new field is currently in development with the demonstration of new device concepts [START_REF] Linder | Superconducting spintronics[END_REF][START_REF] Blamire | The interface between superconductivity and magnetism: understanding and device prospects[END_REF][START_REF] Eschrig | Spin-polarized supercurrents for spintronics: a review of current progress[END_REF]. Magnetic control of charge transfer is the main mechanism of spintronic devices work and, in particular, of magnetic memory (MRAM) unit cells functionality. Like traditional MRAM elements based on magnetic tunnel junctions and spin transfer torque elements, superconducting spin valves (SSVs) were developed first theoretically [START_REF] Oh | A superconductive magnetoresistive memory element using controlled exchange interaction[END_REF][START_REF] Buzdin | Spin-orientation-dependent superconductivity in F/S/F structures[END_REF][START_REF] Tagirov | Low-Field Superconducting Spin Switch Based on a Superconductor/Ferromagnet Multilayer[END_REF], and are currently at the stage of optimization [START_REF] Singh | Colossal Proximity Effect in a Superconducting Triplet Spin Valve Based on the Half-Metallic Ferromagnet CrO2[END_REF][START_REF] Leksin | Isolation of proximity-induced triplet pairing channel in a superconductor/ferromagnet spin valve[END_REF][START_REF] Birge | Ferromagnetic Josephson junctions for cryogenic memory[END_REF].

The magnetization reversal of a ferromagnetic element (F) may provide for magnetic control of the Josephson current [START_REF] Vedyayev | Spin-valve magnetic sandwich in a Josephson junction[END_REF][START_REF] Golubov | Critical current in SFIFS junctions[END_REF][START_REF] Birge | Spin-triplet supercurrents in Josephson junctions containing strong ferromagnetic materials[END_REF][START_REF] Larkin | Ferromagnetic Josephson switching device with high characteristic voltage[END_REF] or may change the superconducting critical temperature T c both in the F/S/F [START_REF] Fominov | Triplet proximity effect in FSF trilayers[END_REF] and S/F/F [START_REF] Ya | Superconducting triplet spin valve[END_REF] configurations, where S is a superconducting film. The possibility to tune superconductivity by the mutual orientation (parallel or antiparallel) of two F layers in this type of SSVs was shown in different experiments [START_REF] Gu | Magnetization-Orientation Dependence of the Superconducting Transition Temperature in the Ferromagnet-Superconductor-Ferromagnet System: CuNi/Nb/CuNi[END_REF][START_REF] Potenza | Superconductorferromagnet CuNi/Nb/CuNi trilayers as superconducting spin-valve core structures[END_REF][START_REF] Westerholt | Superconducting Spin Valve Effect of a V Layer Coupled to an Antiferromagnetic [Fe/V] Superlattice[END_REF][START_REF] Steiner | Magnetic switching of the superconducting transition temperature in layered ferromagnetic/superconducting hybrids: Spin switch versus stray field effects[END_REF]. The shift δT c in the critical temperature was assumed to be due to the paramagnetic effect, i.e., the breaking of the Cooper pairs by the spin polarizations induced into the S layer from the F layers. When the magnetization in the F layers are antiparallel, these polarizations effectively cancel out, while in the parallel configuration the induced polarizations act cooperatively to suppress superconductivity.

Later, the triplet mechanism of SSV effect was detected in the same structures. It was shown that a noncollinear magnetization configuration may even provide a larger δT c shift [START_REF] Singh | Colossal Proximity Effect in a Superconducting Triplet Spin Valve Based on the Half-Metallic Ferromagnet CrO2[END_REF][START_REF] Leksin | Peculiarities of performance of the spin valve for the superconducting current[END_REF][START_REF] Flokstra | Controlled suppression of superconductivity by the generation of polarized Cooper pairs in spin-valve structures[END_REF] due to the appearance of long range triplet superconducting correlations (LRTC) [START_REF] Bergeret | Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization[END_REF][START_REF] Kadigrobov | Quantum spin fluctuations as a source of long-range proximity effects in diffusive ferromagnet-super conductor structures[END_REF][START_REF] Eschrig | Theory of Half-Metal/Superconductor Heterostructures[END_REF][START_REF] Bergeret | Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures[END_REF]. The production of the LRTC, which can be seen as a new channel for the draining of the Cooper pairs from the superconductor, enhances the proximity effect, and therefore, efficiently reduces T c . A full T c switch, where δT c is larger than the superconducting transition width, has been achieved in a few experiments [START_REF] Leksin | Evidence for Triplet Superconductivity in a Superconductor-Ferromagnet Spin Valve[END_REF][START_REF] Leksin | Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure[END_REF][START_REF] Li | Superconducting Spin Switch with Infinite Magnetoresistance Induced by an Internal Exchange Field[END_REF][START_REF] Gu | Large Superconducting Spin Valve Effect and Ultrasmall Exchange Splitting in Epitaxial Rare-Earth-Niobium Trilayers[END_REF].

Nevertheless, the improvement and optimization of SSVs still remains both a theoretical and experimental challenge [START_REF] Kamashev | Increasing the performance of a superconducting spin valve using a Heusler alloy[END_REF][START_REF] Chacón Hernández | Anti-Lenz Supercurrents in Superconducting Spin Valves[END_REF][START_REF] Baker | The role of canting and depletedtriplet minima in superconducting spin valve structures[END_REF][START_REF] Moen | Spin-split conductance and subgap peak in ferromagnet/superconductor spin valve heterostructures[END_REF][START_REF] Feng | Out of plane superconducting Nb/Cu/Ni/Cu/Co triplet spinvalves[END_REF][START_REF] Lenk | Fullswitching FSF-type superconducting spin-triplet magnetic random access memory element[END_REF][START_REF] Klenov | Periodic Co/Nb pseudo spinvalve for cryogenic memory[END_REF]. The possible ways to improve the SSV properties call for the optimization of the structures, via their technology of preparation, quality of interfaces, and choice of materials, including strong, half-metallic, and insulating ferromagnets.

Recently, layers of the spiral magnet (M) holmium have been used as spin-mixers, improving magneto-resistive properties of SSVs [START_REF] Singh | Colossal Proximity Effect in a Superconducting Triplet Spin Valve Based on the Half-Metallic Ferromagnet CrO2[END_REF][START_REF] Banerjee | Evidence for spin selectivity of triplet pairs in superconducting spin valves (Py-Ho-Nb-Ho-Py-FeMn)[END_REF][START_REF] Sosnin | Superconducting Phase Coherent Electron Transport in Proximity Conical Ferromagnets[END_REF][START_REF] Zhu | Unanticipated Proximity Behavior in Ferromagnet-Superconductor Heterostructures with Controlled Magnetic Noncollinearity[END_REF][START_REF] Chiodi | Supra-oscillatory critical temperature dependence of Nb-Ho bilayers[END_REF][START_REF] Gu | Large Superconducting Spin Valve Effect and Ultrasmall Exchange Splitting in Epitaxial Rare-Earth-Niobium Trilayers[END_REF][START_REF] Bernardo | Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces[END_REF]. Taken separately in a S/M bilayer, a spiral or conical magnetic layer also provides a T c shift under the action of an external magnetic field [START_REF] Bernardo | Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces[END_REF][START_REF] Satchell | Control of Superconductivity with a Single Ferromagnetic Layer in Niobium/Erbium Bilayers[END_REF]. Indeed, a parallel magnetization of the spiral magnetic layer suppress the LRTC that leads to a change in T c . However, the return to the initial helimagnetic state requires a heating of the sample above the Curie temperature (much higher than T c ), what makes this kind of SSVs difficult to use in low-temperature electronics.

One more important problem to consider, inherent both for SSVs and Josephson MRAM, is the so-called half-select problem [START_REF] Vernik | Magnetic Josephson Junctions With Superconducting Interlayer for Cryogenic Memory[END_REF]. It is the conventionally known RAM scheme: two sets of crossing "word" and "bit" lines, for example along "X" and "Y" directions. The control signal should switch the state of a particular element at the crossing of two lines in a net, whereas the halfamplitude signal should not cause a switch of all other elements along crossing lines. This requirement provides the addressed switch of a particular memory element in RAM. It means that two logical states of a memory element should be separated by a potential barrier. Multilayered structures with continuous magnetization reversals do not solve this problem. In contrast, it has been pointed out [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] that S/M bilayers composed of a spiral magnet M having a potential barrier between two spiral directions due to cubic anisotropy may work both as SSVs and Josephson MRAM. Recently, a new way of control of such SSVs was developed [START_REF] Gusev | Magnonic control of the superconducting spin valve by magnetization reorientation in a helimagnet[END_REF], with a nondestructive superconducting state method which is based on magnonic relaxation after a magnetic field pulse. It has been established [START_REF] Gusev | Magnonic control of the superconducting spin valve by magnetization reorientation in a helimagnet[END_REF] that the spiral SSVs allowing such a control should have parameters (record-readout speed and stability) comparable with modern MRAM.

In this paper we explore this idea quantitatively [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] where spiral magnets of the B20 family, such as MnSi, (Fe,Co)Si, FeGe, etc., taken in bulk, or etched films, may provide the full T c switch by a change of the spiral direction. The latter is possible thanks to the cubic noncentrosymmetric magnetic structure of B20 crystal family [START_REF] Ishikawa | Magnetic excitations in the weak itinerant ferromagnet MnSi[END_REF][START_REF] Pfleiderer | Non-Fermi-liquid nature of the normal state of itinerantelectron ferromagnets[END_REF][START_REF] Uchida | Real-Space Observation of Helical Spin Order[END_REF] providing asymmetric Dzyaloshinski-Moriya exchange [START_REF] Grigoriev | Principal interactions in the magnetic system Fe1-xCoxSi: Magnetic structure and critical temperature by neutron diffraction and SQUID measurements[END_REF]. The magnetic spiral structure, characterized by the spiral vector Q, may be aligned in few equivalent directions under the control of a weak external magnetic field. These preferred directions are determined by the potential barrier that depends on the compound [START_REF] Dyadkin | Control of chirality of transition-metal monosilicides by the Czochralski method[END_REF]. This provides the above-mentioned advantages for their use as MRAM switchable elements. These magnetic compounds and their films are now in focus FIG. 1: Sketch of the studied SSV with the spiral wave vector Q tilted at an angle α to the normal of the S/M interface. [START_REF] Mühlbauer | Skyrmion Lattice in a Chiral Magnet[END_REF][START_REF] Fert | Skyrmions on the track[END_REF] as a medium for magnetic topological defects like skyrmions. Thin films of MnSi, having a strong in-plane magnetic anisotropy, host only a magnetic spiral order with Q perpendicular to the film plane [START_REF] Menzel | Hall effect and resistivity in epitaxial MnSi thin films under ambient and high pressure[END_REF]. The T c control in superconducting bilayers based on them, may be performed by a reversible uniform magnetization of the films in an external magnetic field. Such elements may be used in biased RAM. Here we theoretically investigate both possibilities of using S/M bilayers as switchable elements for cryogenic electronics applications. We find that the magnitude of δT c is a non-monotonic function of the spiral wave vector depending on the amplitudes of the exchange field. This behavior can be exploited for the optimization of the structures.

This paper is organized as follows: Sec. II presents the model and the general method for the derivation of T c in the S/M bilayer, while Sec. III discusses the obtained numerical results for T c . Sec. IV concludes this work. The details of the analytical calculations are presented in the Appendix.

II. MODEL

To describe the superconducting proximity effect with a spiral magnet, we use linearized Usadel equations in the form [START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF] valid close to T c in the dirty limit, usually satisfied in hybrid structures prepared by sputtering. In this limit the superconducting coherence lengths in the M and S layers are given by ξ f,s = D f,s /2πT cb , where D f,s are the corresponding electron diffusion coefficients and T cb is the critical temperature of the bulk superconductor.

Here we have developed the calculation method, which allows us to consider limits of both weak and strong exchange splitting h, as well as to examine the behavior at arbitrary value of h (as long as the Usadel equations remain valid) for a long and short spiral period. Moreover, we consider here a finite thickness for the magnetic layer, and the related effects, such as re-entrant super-conductivity, which also depend on the spiral magnetic order. The third advance of the presented method in comparison with previous theories [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF][START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF][START_REF] Volkov | Odd triplet superconductivity in a superconductor/ferromagnet system with a spiral magnetic structure[END_REF][START_REF] Halász | Critical current of a Josephson junction containing a conical magnet[END_REF][START_REF] Halász | Magnetic-coupling-dependent spin-triplet supercurrents in helimagnet/ferromagnet Josephson junctions[END_REF][START_REF] Wu | Proximity effects in conical-ferromagnet/superconductor bilayers[END_REF][START_REF] Halterman | Half-metallic superconducting triplet spin valve[END_REF][START_REF] Jara | Angular dependence of superconductivity in superconductor/spin-valve heterostructures[END_REF] is that it permits the calculation of T c at arbitrary angles between the spiral wave vector Q and the S layer plane.

A. Usadel equations for the magnetic spiral inclined for arbitrary angle

We consider a superconducting layer (S) with a finite thickness d s in proximity with a layer of spiral magnet (M) of thickness d f . The spiral vector Q, is taken inclined with the angle α with respect to the OZ direction, orthogonal to the layers plane, see Fig. 1. We assume that Q lies in the XOZ plane, while the XOY plane coincides with the SM interface [65].

The linearized Usadel equations have the general form [START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF][START_REF] Champel | Effect of an inhomogeneous exchange field on the proximity effect in disordered superconductor-ferromagnet hybrid structures[END_REF]]

D∇ 2 -2 |ω| f s = -2π∆ + 2i sgn(ω) h • f t , D∇ 2 -2 |ω| f t = 2i sgn(ω) h f s , (1) 
where the singlet f s and triplet f t = (f x , f y, f z ) spin components of the anomalous Green's function describe the different superconducting correlations. The singlet superconducting order parameter ∆ = ∆(z) is nonzero only in the S layer, while the exchange spin splitting h(x, z) aligned along the local magnetization is nonzero only in the M layer. By taking into account the even symmetry of the singlet components and the odd symmetry of the triplet ones with respect to the Matsubara frequency ω ≡ ω n = πT (2n + 1) with n a positive or negative integer, we may consider in the following only positive ω.

As a result of the presence of the S/M interface and of the proximity effect, the superconducting correlations naturally depend on the distance to the interface, i.e., they exhibit a z-dependence. For an inclined spiral vector Q, the magnetic vector h displays an explicit spatial dependence on both variables x and z, so that the problem we consider is in general a two-dimensional one. However, as we show in the Appendix, the extra dependence on x due to the rotating spiral when α = 0 can be gauged away via a suitable transformation on the triplet vector f t , so that the original problem is mapped to the following effective one-dimensional one for the new triplet components f -(z) and f + (z) in the magnetic layer (see the Appendix for the detail):

∂ 2 ∂z 2 - 2ω D f f s = i h D f [f --f + ] , ∂ 2 ∂z 2 ∓ 2iQ cos α ∂ ∂z -Q 2 - 2ω D f f ± = ∓ 2i h D f f s , (2) 
with h and Q the amplitudes of the exchange splitting and of the spiral wave vector, respectively. The form of these equations reproduces the limiting cases of the spiral orthogonal and parallel to the interface α = 0, π/2 which were considered in Refs. 47 and 57. The presence of linear terms in the spiral vector Q reflects the chirality of the spiral, which is related to the broken inversion symmetry of the magnetic lattice that can be found in compounds of the B20 family for instance. The chirality makes the calculations rather more complicated than in the case assuming uniform magnetization.

B. Characteristic equation

If the M layer is semi-infinite and occupies the halfspace z > 0, the solutions of the linear differential Eqs.

(2) take the simple form f j (z) = u j exp(-k i z), where j = s, +, -. Here, we assume the more general situation of a M layer with a finite thickness. This means that we also have to consider spatial solutions with -k i , describing the waves reflected from the free M interface.

The amplitude coefficients for these solutions are determined by the boundary conditions. Here the wave vectors ±k i are the eigenvalues of the system (2) and we represent in the following the components of these two related eigenvectors by u j , v j . Let us also introduce the characteristic momenta k ω = 2ω/D f , k h = h/D f . Eqs. (2) lead to the system of algebraic equations

k 2 -k 2 ω f s -i k 2 h f -+ i k 2 h f + = 0, ±2i k 2 h f s + k 2 -k 2 ω ± 2iQk cos α -Q 2 f ± = 0. (3) 
The characteristic equation of this system yielding the eigenvalues k i is

(k 2 -k 2 ω -Q 2 ) 2 + 4Q 2 k 2 cos 2 α k 2 -k 2 ω +4k 4 h (k 2 -k 2 ω -Q 2 ) = 0. ( 4 
)
This bicubic equation displays 3 pairs of solutions ±k i with Real k i > 0, which are the eigenvalues of the system (2). In the limit k 2 h ≫ Q 2 , k 2 ω the 3 eigenvalues are similar to that found in the orthogonal case: two short-range components k ± ≈ (1 ± i) k h , and one long-range component k 0 ≈ k 2 ω + Q 2 . Assuming a large exchange energy h = 100 meV, one may for instance estimate the quasimomenta as [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] 

k h = ξ -1 h ∼ 0.7 nm -1 , k ω ∼ 1/7 nm -1 = 0.14 nm -1 , that yields the inequalities k h > Q > k ω .
The approximation of strong exchange energy for the values of k ±,0 is thus valid for h = 100 meV with an accuracy of two decimal places. But the approximate eigenvectors (-1, -1, 1), (1, -1, 1) and (0, 1, 1) associated to these eigenvalues have an accuracy of one decimal place only.

Therefore, in the general case we have solved exactly the characteristic equation (4), with the found eigenvectors u j and v j written in Appendix. Note that, in the approximation of large exchange splitting, the found eigenvalues and eigenvectors naturally coincide with the ones described previously in the two limiting cases of the spiral parallel to the S/M interface [START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF][START_REF] Champel | 0π Transitions in a Superconductor/Chiral Ferromagnet/Superconductor Junction Induced by a Homogeneous Cycloidal Spiral[END_REF] (α = π/2) and of the spiral orthogonal to the S/M interface (α = 0) for semi-infinite [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] and finite [START_REF] Volkov | Odd triplet superconductivity in a superconductor/ferromagnet system with a spiral magnetic structure[END_REF] M layers.

The solution of the Usadel equations for the finite M layer may finally be found in the general form

f j (z) = i A i u j (k i ) exp(-k i z) + B i v j (k i ) exp(k i z). (5)
The coefficients A i and B i are then determined from the boundary conditions discussed in the next Section.

C. Boundary conditions

Kupriyanov-Lukichev [START_REF] Yu | Influence of boundary transparency on the critical current of "dirty" SS'S structures[END_REF] boundary conditions for the singlet and triplet components of the anomalous Green's function read at the free interfaces

∂ ∂z f s,t = 0, (6) 
and at the SM interface located at z = 0

ξ s ∂ ∂z f S s,t = γξ f ∂ ∂z f s,t , (7) 
f S s,t = f s,t -γ b ξ f ∂ ∂z f s,t .
Here we have introduced the dimensionless interface parameters

γ b = R b Aσ f /ξ f and γ = (σ f /σ s )(ξ s /ξ f ).
The quantities R b and A are, respectively, the resistance and the area of the S/M interface, and σ f,s is the conductivity of the M or S metal. The superscript S in the components f S s or f S t is used to specify that the correlations are evaluated from the superconducting side, while the absence of superscript holds for the magnetic side.

Since the Usadel equations have been rewritten in terms of the transformed triplet components f ± (z), we need to derive the boundary conditions for these functions instead. As shown in Appendix, we get the boundary conditions for the free interfaces at z = d f and z = -d s for the inclined case corresponding to the linearized Usadel equations ( 2)

∂ ∂z f s (d f ) = 0, ∂ ∂z f ± (d f ) = ±iQ cos α f ± (d f ), (8) 
∂ ∂z f S s,± (-d s ) = 0,
and the boundary conditions at the S/M interface at z = 0

ξ s ∂ ∂z f S s (0) = γξ f ∂ ∂z f s (0), ξ s ∂ ∂z f S ± (0) = γξ f ∂ ∂z ∓ iQ cos α f ± (0), (9) 
f S s (0) = f s (0) -γ b ξ f ∂ ∂z f s (0), f S ± (0) = f ± (0) -γ b ξ f ∂ ∂z ∓ iQ cos α f ± (0).
The sign ± in front of the contributions depending on Q expresses the chirality of the magnetic spiral: clockwise or anticlockwise. In the presence of a finite thickness for the magnet, this chirality leads to a calculation complexity, which was not taken into account by previous works. Note, however, that the superconducting critical temperature turns out to be independent of the chirality sign owing to the spin symmetry of the superconducting wave function in S.

D. Critical temperature calculation

The singlet component f S s (z) in the superconductor depends on the superconducting gap ∆(z), which is calculated self-consistently. The required closed boundary value problem for the singlet component f S s includes the Usadel equation ( 2) in the superconducting layer, and the boundary condition in the form

ξ s ∂ ∂z f S s z=0 = -W f S s z=0 . (10) 
The real-valued quantity W contains the entire information about the proximity effect with the spiral magnet, and may be written as

W = γ   i S i u s (k i ) ξ f i R i k i u s (k i ) + γ b   -1 , (11) 
with the coefficients R i and S i defined in the Appendix. Finally, we compute numerically the critical temperature T c of the superconducting layer, via the use of the self-consistent equation ln

T cb T c = πT c ∞ ω=-∞ 1 |ω| - f S s (z) π∆(z) (12) 
by using the method of fundamental solution [START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF][START_REF] Ya | Nonmonotonic critical temperature in superconductor/ferromagnet bilayers[END_REF][START_REF] Löfwander | Phase diagrams of ferromagnet-superconductor multilayers with misaligned exchange fields[END_REF].

E. Model parameters

For the realization of the presently studied SSV, different types of spiral magnets may be considered, thus providing various possible ranges of values for the model parameters. Of course, this variety can be exploited to optimize the switching control and the spin-valve behavior in the S/M bilayer. In this section, we address in some detail the possibilities so far available nowadays from real materials and the associated variable ranges, such as for example for the magnitudes of the exchange splitting h or for the spiral wave vector Q.

Metals of the B20 family like MnSi, (Fe,Co)Si, FeGe, etc., are arranged in a crystal lattice of cubic symmetry with broken inversion symmetry. The latter provides an asymmetric Dzyaloshinsky-Moriya exchange leading to the spiral magnetic order. For Lanthanide metals like Ho or Er, the spiral magnetic order stems from the competitive magnetic exchange of close neighbours and next neighbours. Although having a different microscopic nature, at the level of the proximity effect these magnetic materials exhibit similar properties when described in the mean field approximation.

On account of the lattice symmetry in B20 materials the magnetic spiral characterized by the vector Q may align in few different directions in the ground state (in the absence of an external magnetic field). Depending on the compound, the preferred spiral directions may be along the cubic axes [100], [010], [001] for FeCoSi and MnGe, and along the diagonals of the cube [1 ± 1 ± 1] for MnSi. Depending on the magnetic history [START_REF] Dyadkin | Control of chirality of transition-metal monosilicides by the Czochralski method[END_REF] the spiral may even have an arbitrary direction at a weak cubic anisotropy as for example in FeCoSi. The direction of Q may be controlled by a relatively weak external magnetic field of the order of 100 Oe for MnSi. It is important for the applications in SSVs to have the control field lower than the critical magnetic field of superconducting films, which is ∼ 30 kOe for the in-plane direction of the Nb superconductor. Very recently, a method to control a bilayer SSV which does not perturb its superconducting state has been proposed and optimized [START_REF] Gusev | Magnonic control of the superconducting spin valve by magnetization reorientation in a helimagnet[END_REF] via numerical experiments on the MnSi/Nb bilayer SSV. A switching between few ground state magnetic configurations (separated by a potential barrier) with different directions of the magnetic spiral Q is found to be carried out by a several hundred ps in duration magnetic field pulse of several kOe in magnitude. Such a pulse does not destroy the superconducting state of the Nb layer by itself but leads to the excitation of magnons in the magnetic layer, which trigger the reorientation process of the magnetic spiral [START_REF] Gusev | Magnonic control of the superconducting spin valve by magnetization reorientation in a helimagnet[END_REF]. The system can be switched there and back by magnetic fields of opposite signs along one direction in the layers plane, thus permitting an easy control. The switching time is estimated [START_REF] Gusev | Magnonic control of the superconducting spin valve by magnetization reorientation in a helimagnet[END_REF] as several nanoseconds, which coincides with the scales of the spin-transfer torque MRAM recording time making this method attractive for energy saving cryogenic electronics.

The absolute value of the spiral vector is defined as Q = 2π/λ, where λ is the spiral spatial period. The spiral antiferromagnets of the B20 family may have short or long spiral spatial periods (from 3 nm for MnGe up to 90 nm for Fe(0.5)Co(0.5)Si) that reflect the relation between the Dzyaloshinsky-Moriya interaction and the exchange energy. In the spiral magnetic metal MnSi with λ = 18 nm the preferred spiral directions [1 ± 1 ± 1] have the angle arccos(1/3) = 70.5 • . If two of these directions lie in the film plane, the other two have the angle α = π/2arccos(1/3) = 19.5 • with the normal OZ to the interface. In this case the structure is periodic in OX direction with the large period λ/ sin α = 54 nm, which is much larger than other characteristic lengths such as λ/2π or the superconducting coherence length ξ f . The period of the spiral in OZ direction increases only slightly, since λ/ cos α = 19 nm.

Recently, there have been some evidence that MnSi has a relatively weak exchange splitting [START_REF] Janoschek | Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets[END_REF][START_REF] Bauer | talk at DPG Spring Meeting[END_REF]. In the compound MnSi, the amplitude of the exchange field has even been estimated [START_REF] Bauer | talk at DPG Spring Meeting[END_REF] to the relatively low value h = 11 meV. We could take the estimated value of the exchange as an upper limit for the exchange splitting of the superconducting electrons in the mean field approximation. However, the exchange splitting magnitude may be larger for other compounds of the B20 family. The Curie temperature may work as a signature of the exchange energy magnitude, though without direct proportionality. It varies from about 29 K for MnSi to 279 K for FeGe. Thus, the Curie temperature is larger than the T c of swave BCS superconducting metals like Al or Nb usually used in cryogenic nanotechnology.

As a result of the asymmetric exchange interaction, topological magnetic defects called skyrmions exist in such compounds at high magnetic fields and at temperatures close but lower than the Curie temperature [START_REF] Neubauer | Topological Hall Effect in the A Phase of MnSi[END_REF][START_REF] Li | Robust Formation of Skyrmions and Topological Hall Effect Anomaly in Epitaxial Thin Films of MnSi[END_REF]. These defects carry nontrivial topological charge. Because of possible applications in spintronics [START_REF] Monchesky | Skyrmions: Detection with unpolarized currents[END_REF], as well as of the fundamental interest for physical properties dictated by topology, these compounds and their films are now under very intensive theoretical and experimental investigations. There exists an experimental method to prepare films of B20 compounds from the single crystals by etching [START_REF] Tonomura | Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples[END_REF][START_REF] Mochizuki | Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect[END_REF][START_REF] Yu | Variation of skyrmion forms and their stability in MnSi thin plates[END_REF]. Such films have the same magnetic properties as bulk crystals, albeit with lower thicknesses. Seemingly, thin films of MnSi grown by molecular beam epitaxy (MBE) or by electron beam lithography often do not host skyrmions, presumably due to their high inplane magnetic anisotropy. In these structures, the magnetic spiral may align only with Q orthogonal to the film plane. At d f < λ the incomplete period of the magnetic spiral may be continuously collapsed towards the uniform magnetization replacing the conical phase in a parallel magnetic field about few kOe up to around 1.3 T for MnSi. This effect may be also used to tune T c in the S/M bilayer, by gradually destroying the LRTC when approaching the uniform magnetization situation.

In contrast, the spiral magnetic order in lanthanide 4f metals, like Ho or Er which have been widely used in experiments on the superconducting proximity effect, is characterized by a short spiral period of about 4 nm for Er and 6 nm for Ho, and probably by a large exchange splitting. Furthermore, the magnetic anisotropy of such lanthanide films is usually strongly in-plane.

Other model parameters. For the T c calculations, the superconducting layer is assumed to be made of Nb, with the superconducting coherence length ξ s = 11 nm. The critical temperature of the bulk superconductor is taken as T cb = 9.2 K. The superconducting coherence length in the M layer is chosen to be ξ f = 4.2 nm. The S/M interface transparency is taken from the realistic estimations made in Ref. [START_REF] Pugach | Superconductor-insulatorferromagnet-superconductor Josephson junction: From the dirty to the clean limit[END_REF] with γ B = 0.7, and the interface parameter [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] is chosen as γ = 0.7. 

III. RESULTS AND DISCUSSION

The superconducting critical temperature T c of the S/M bilayer has been systematically studied and compared in the three configurations of a spiral parallel to the S/M interface (cos α = 0), of a spiral inclined to the interface normal by the angle α = 19.5 • (i.e., cos α ≈ 0.94), and of a uniform magnetization (in this case, the superconducting properties are independent of the angle α and Q = 0). These three configurations permit the comparison between two possible switching behaviors of the SSV, which may be considered experimentally. If the S film is covered by a bulk or etched crystal of a spiral magnet of the B20 family, the change of T c may be achieved by the switch between parallel and inclined (maybe perpendicular) spiral. Alternatively, in the case of the proximity with a M film characterized by a strong in-plane magnetic anisotropy (as in Ho, Er, or thin B20 family films), for which the spiral vector is always perpendicular to the film plane, the T c switch may be realized by the collapse to the uniform magnetization.

In Figs. 2, the dependencies of T c on the superconductor thickness d s are first analyzed for different spiral configurations. Fig. 2a shows that, at a strong exchange field, the critical temperature T c for a parallel spiral is larger than that obtained for a uniform magnetization. This can be easily understood by the effective space averaging of the exchange field at the Cooper pair size scale. In contrast, for the inclined spiral, T c is (slightly) reduced in comparison to the uniform case because of the draining of the Cooper pairs from the S layer into the open long-range triplet channel. This figure illustrates that the S/M proximity effect is driven by two competing mechanisms which affect the value of T c : i) an effective space averaging of the exchange field (mostly governed by the wave vector Q of the spiral), and ii) the appearance of the LRTC (controlled by the spiral angle and the exchange amplitude) which tends to suppress T c .

In fact, the relative role of these two mechanisms depends on the relation between all characteristic wave vectors (e.g., including the exchange quasi-momentum k h defined from the exchange energy h, and the superconductor quasi-momenta related to the coherence lengths in the S and M layers), so that the resulting behavior for T c turns out to be a many-parametric problem. Thereby, it is revealed in Fig. 2b that the consideration of a smaller value for the exchange field h than in Fig. 2a can implement an opposite order for the T c values, since the T c for an inclined spiral is now larger than in the uniform case. It can also be seen in Fig. 2b that the spin-valve effect for the set of parameters related to MnSi [START_REF] Bauer | talk at DPG Spring Meeting[END_REF] may become giant achieving a δT c ∼ 1.6 -1.8 K depending on the switch to the inclined spiral or uniform magnetization. An even larger spin-valve effect is displayed in Fig. 2d where both a low exchange field and a short spiral period are considered. This case reveals the search direction for a suitable magnetic compound leading to the largest spin-valve effect. As expected, the strongest effects resulting from the S/F interplay may be found in the regime where all characteristic lengthscales (the S and F superconducting coherence lengths, the spiral wavelength λ, and the magnetic length ξ h = k -1 h ) are of the same order.

To understand the behavior according to the two highlighted mechanisms i) and ii), it is important to remind that the long-range and short-range triplet superconducting correlations are characterized by quite different dependencies on the exchange field, which are best discriminated at strong fields: the former has a h-independent coherence length ∼ (k 2 ω + Q 2 ) -1/2 , while the latter can be associated to the lengthscale ∼ (k 2 ω +k 2 h ) -1/2 , which is roughly inversely proportional to √ h. The physical reason for this discrepancy is that the LRTC are not subjected to the depairing influence of the exchange field, so that both electrons in the Cooper pair can have the same spin projection to the field direction. Therefore, an increasing exchange field favors the draining of the Cooper pairs into the LRTC channel rather than into the short range triplet channel with S z = 0. At low fields, the LRTC appear as a correction effect in comparison with the predominantly generated short-range correlations, and thus hardly affect the superconducting properties of the M/S bilayer. In the low-exchange field regime, the T c dependence on the spiral direction is mainly determined by the averaging mechanism: when the direction of the penetration of the Cooper pairs into the magnet does not coincide with the direction of averaging, this averaging becomes more effective, and then, T c proved to be less suppressed, cf. Fig. 2b.

Interestingly, this averaging effect on T c may be even more pronounced in magnitude than that accompanied by the LRTC creation. It has already been noticed [START_REF] Pugach | Ferromagnetic Josephson junctions with steplike interface transparency[END_REF] that the scale of space modulation of superconducting properties in the junction plane may differ from the one out of plane. In the present study, one can also see the similarity between the integral energetic characteristics like T c and the Josephson current. In the case of T c , the out-of-plane modulation scale is weakened due to the competition with the proximity effect leakage mechanism occuring in the same direction, so that out-of-plane modulations play quantitatively a minor role than the inplane ones. If one ignores the LRTC, one can understand this effect in the following way. For a perpendicular or slightly inclined spiral, the Cooper pairs encounter, when penetrating into the M layer, an almost uniform exchange field and feel its modulations weakly as they propagate. On the contrary, for a magnetic spiral parallel to the interface, they experience an exchange field averaged out over the full Cooper pair size extension.

As already remarked above, the low exchange field value in the compound MnSi yields, a priori, an important spin-valve effect. As is clear from the previous discussion, another way to enhance the switching effect is to prefer magnetic materials with strong spatial modulations, as the mean exchange averaging becomes more effective for a short spiral period. This situation is encountered, e.g., in Ho with the relatively short spiral period λ = 6 nm. The corresponding T c dependencies for the different spiral configurations are displayed in Fig. 2c (we have chosen here h = 100 meV because we believe that pure 4f metals still have strong exchange).

From now on, we will consider a S/M bilayer with a fixed S thickness (d s = 21 nm; this value is chosen as more or less optimal to exhibit the dependencies) and analyze the T c variations with respect to various other model parameters. We show in Fig. 3 that the interplay between the averaging and the LRTC mechanisms is also exhibited in the dependence of the superconducting critical T c on the spiral wave vector Q = 2π/λ. For a large exchange field, we clearly see in Fig. 3a an extremum in the T c dependence of the inclined spiral. It is the result of the competition between the T c suppression by the LRTC, which is more important at a long spiral, i.e., at small Q, and the effective averaging mechanism, which leads to the growth of T c at a short spiral period, i.e., at large Q. Note that this competition does not occur in the case of a spiral parallel to the interface, for which the LRTC is absent: T c displays a monotonic increase as a function of Q due to the more efficient averaging effect when reducing the characteristic spatial modulation of the exchange field. In contrast, at a smaller exchange field, the LRTC creation mechanism becomes less relevant, so that the extremum for the inclined configuration is shifted to much smaller values of Q as revealed in Fig. 3b. In this situation the averaging effect wins for most spiral periods.

To make clear the role of the exchange energy in the interplay of the two underlined mechanisms governing the T c behavior, we also present in Fig. 4a the dependence of T c on h for a long spiral period (case of MnSi with λ = 18 nm). It is seen that the T c in the different configurations display a similar (roughly parallel) decreasing tendency. In the low exchange field regime, the inclined case provides a slightly higher T c than in the uniform case, whereas at higher exchange values it yields a lower T c . In the inclined spiral configuration, the growth of h entails an increasing role of the LRTC in the proximity effect, which efficiently weaken superconductivity of the S layer. At a smaller spiral period as in Ho (λ = 6 nm), the difference in the T c (h) behavior between the uniform and inclined configurations is more pronounced, see Fig. 4b. The lowest T c is then always obtained in the uniform case.

The finite thickness of the M layer taken into account in our model calculations allows us to consider the phenomenon of reentrant superconductivity according to the spiral configuration, which is studied in some detail in Figs. [START_REF] Eschrig | Spin-polarized supercurrents for spintronics: a review of current progress[END_REF]. It is pointed out that if one magnetic config-uration provides the reentrant behavior, i.e., T c = 0 in some range of thicknesses d f , the full switch of superconductivity may then be achieved in this range with the change of the magnetic configuration. With the decrease of the magnetic exchange energy (compare Fig. 5a andFigs. 5b, 5c) the period of the T c oscillation becomes larger, as one could expect. It thus creates better conditions for the experimental implementation of such reentrant behavior, by providing wider regions of d f where T c = 0 for a given magnetic configuration and nonzero T c (in the Kelvin range) for another magnetic configuration. Note that the nature of the magnetic configuration yielding a vanishing T c in a given d f range also depends on the magnetic exchange amplitude, in accordance with Figs. [START_REF] Blamire | The interface between superconductivity and magnetism: understanding and device prospects[END_REF]. For thin films grown with a strong in-plane anisotropy a possible switch may be realized by commut- ing the magnetic system from a spiral perpendicular to the layer to a uniform magnetization configuration, which may be achieved for a thickness smaller than the spiral period under the application of a relatively small magnetic field. From this analysis, one may conclude that the compounds of the B20 family seem preferable for the observation of the controlled reentrant superconductivity phenomenon and for the realization of the full switch of T c to zero.

Finally, our model calculations also allow us to study the T c dependence on the angle α between the spiral vector Q and the S/M interface normal, see Figs. [START_REF] Oh | A superconductive magnetoresistive memory element using controlled exchange interaction[END_REF] with two different sets of parameters, one suitable for MnSi (Fig. 6b) and the other one for Ho (Fig. 6a). In the two cases, the same general trend is found, namely the monotonic growth of T c with the angle α, with an initial T c lower than the T c obtained in the uniform magnetization case. This stronger suppression of superconductivity for a spiral perpendicular to the film is due to the presence of the LRTC, whose generation is controlled by the angle (with a maximal production for α = 0). The comparison between Fig. 6a and Fig. 6b shows that the LRTC plays a role at lower exchange field and at larger spiral period only within a small range of angles α for which we encounter the unusual situation where an applied magnetic field magnetizing the film uniformly may lead to an increase of the T c of the bilayer.

IV. CONCLUSION

To summarize, we have studied in detail a superconducting spin valve consisting of a superconducting film covered by a spiral magnet characterized by multiple equilibrium configurations. We have considered spiral magnets of different types: Ho and Er, or B20 family compounds, both crystals and films. These SSVs may be controlled by biased or pulse external magnetic field, pro-ducing magnetization reversal or magnonic relaxation resulting in the magnetic spiral reorientation. They present not only a fundamental theoretical interest, but also a technological one, as exemplified by earlier experimental works [START_REF] Bernardo | Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces[END_REF][START_REF] Satchell | Control of Superconductivity with a Single Ferromagnetic Layer in Niobium/Erbium Bilayers[END_REF] on Er or Ho bilayers and recent experimental efforts to create MnSi based SSVs [START_REF] Grefe | Proximity-Effekte in Nb-B20-Heterostrukturen[END_REF].

In comparison with the theoretical work developed previously in Ref. [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] and 59 on the same model, we have presented here an extended derivation including a few significant improvements: i) an arbitrary value of the exchange energy, suitable for MnSi for example, is considered, whereas a large value was assumed previously [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF]; ii) the magnetic spiral vector can be inclined at an arbitrary angle with respect to the interface (for simplicity, only parallel and perpendicular spirals were considered in Ref. 47); iii) the finite thickness of the magnetic layer is taken into account, in contrast to the previous work [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF] assuming a semi-infinite M layer.

Besides providing a more realistic description of the possible experimental conditions and justifying some simplifications made in the previous work, this enlargement of the parameter space reveals quite different qualitative behaviors for the spin valve depending on the spiral configuration. In particular, we have found that the superconducting critical temperature may significantly vary as a function of the spiral direction also at moderate or low exchange energies. In this parameter regime, the superconducting correlations resulting from the proximity effect between the superconducting film and the chiral magnet are primarily short-range, so that the sensitivity of T c is only due to the averaging of the exchange field on the scale of the Cooper pairs. It turns out that this averaging effect is much more efficient when the direction of the penetration of the Cooper pairs (which is perpendicular to the interface) does not coincide with the direction of the magnetic spatial inhomogeneity. As a result, the parallel spiral configuration always yields the highest T c , as confirmed by our numerical calculations. FIG. 6: Superconducting critical temperature T c as a function of the angle α between the spiral vector Q and the S layer normal within three different magnetic configurations, (a) for large exchange h = 100 meV and short spiral spatial period λ = 6 nm (as in Ho), and (b) for small exchange h = 11 meV and long spiral spatial period λ = 18 nm (as in MnSi). We have taken equal layers thicknesses d s = d f = 21 nm. The curves in the uniform and parallel cases are kept here as reference lines.

In contrast, for large exchange energies a different mechanism of sensitivity of T c is at play: for a spiral direction orthogonal to the interface the production of long-range superconducting triplet correlations opens a new channel for the leakage of the Cooper pairs from the superconducting film, thus leading to an efficient decrease of T c . Therefore, the behavior of the studied superconducting spin valve is driven by two different antagonistic mechanisms. Our quantitative analysis of the reentrant superconductivity phenomenon in the bilayer suggests the switching behavior of the superconducting spin valve to be more optimal at moderately low exchange energies, where the averaging mechanism takes over the long-range triplet correlations mechanism.

The most interesting result, which will stimulate further experimental investigation, optimization, and manufacturing of such structures, is that the spin valve effect may yield a δT c within the Kelvin range in MnSi-Nb bilayers, i.e., may be giant. Therefore, it seems generally preferable to manufacture SSVs with MnSi crystal-Nb bilayers, which furthermore permit nonperturbative magnonic control. The intrinsic solution of the half-select problem and the possibility of magnonic control (nondestructive for superconductivity) make such spin valves appealing for applications in cryogenic nanoelectronics, merging superconducting spintronics and magnonics. 

APPENDIX

In this Appendix, we present the detailed derivation of the key-quantity W [see Eq. ( 11)], which determines the dependences of the superconducting critical temperature on the different model parameters.

For an inclined spiral, the magnetic structure is nonuniform both in OZ and OX directions, so that the different superconducting correlations components in the linearized Usadel Eqs. ( 1) are expected to be in general functions of both x and z spatial variables, and the Laplacian operator reads ∇ 2 = ∂ 2 ∂x 2 + ∂ 2 ∂z 2 . In the orthogonal case (α = 0), the spiral vector Q lies in the OZ direction, and the magnetic field direction is described by the rotation matrix M z around OZ axis with the rotation phase β = Qz: h =h(cos β, sin β, 0) T = M z (h, 0, 0)

T . The linearized Usadel equations take the form in this case:

D∇ 2 -2 |ω| f s = 2i sgn(ω)h [f x cos(Qz) + f y sin(Qz)] , D∇ 2 -2 |ω| f x = 2i sgn(ω)hf s cos(Qz), (13) 
D∇ 2 -2 |ω| f y = 2i sgn(ω)hf s sin(Qz).

From now on, we assume that the axis of the spiral is inclined in the XOZ plane. This inclined configuration may be obtained from the orthogonal case with the help of the rotation matrix around the OY axis by the angle α (OZ axis rotates towards OX axis by the angle α)

M z =   cos β -sin β 0 sin β cos β 0 0 0 1   , M y =   cos α 0 -sin α 0 1 0 sin α 0 cos α   (14)
where the inclined spiral vector is given by Q =M y (0, 0, Q) T . The phase of the exchange field vector rotation around the spiral vector is then β = β(x, z) = Q (-x sin α + z cos α).

The exchange field vector reads h =M y M z (h, 0, 0)

T = h(cos α cos β, sin β, sin α cos β) T .
The unitary transformation of the triplet components vector f t = (f x , f y , f z ) T to the vector

f pm = (f + , f -, f z ) T in the orthogonal case (α = 0) is given by f pm = N f t with the matrix N N =   -exp(iβ) i exp(iβ) 0 exp(-iβ) i exp(-iβ) 0 0 0 1   . (15) 
In the inclined case (α = 0) all components of f t are nonzero in general. We may then introduce the vector f pm = (f + , f -, f zz ) T given by the linear transformation f pm = N M -1 y f t , which transforms the linearized Usadel Eqs. [START_REF] Golubov | Critical current in SFIFS junctions[END_REF] to their linear combination. The equation for the third triplet component f zz separates after the transformation and we may choose f zz = 0, that yields the additional condition f z = f x tan α.

The explicit dependence on the x variable has completely disappeared in the equations obeyed by the correlation functions f s,± (x, z). It can be shown that the latter functions are in fact independent of x. For this purpose, we follow the method of Ref. 57 by expanding the correlations as Fourier series, assuming that the system is periodic in the OX direction: f s,± (x, z) → f s,± (m, z) where m is an integer number. Since the equations are linear, the different Fourier components m are fully decoupled. The most energetically favorable solution corresponds [START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF] to the uniform one with m = 0. The other solutions with m = ±1, ±2... describe the cases of a superconducting order parameter which is spatially inhomogeneous even deeply in the S region and are not realized physically. Finally, we get that the functions f s,± (x, z) obey the Eqs. (2) in the ferromagnet, which have a form similar to the orthogonal case with the spiral vector Q being replaced by Q cos α in the linear term.

The eigenvectors of the system (2) may be chosen for the eigenvalues k i = k 0,± as

  u s (k i ) u -(k i ) u + (k i )   =    i k 2 i -k 2 ω +2iQki cos α-Q 2 2k 2 h - k 2 i -k 2 ω +2iQki cos α-Q 2 k 2 i -k 2 ω -2iQki cos α-Q 2 1    . ( 16 
)
For a finite F layer we also have to take into account the wave reflected from the free M layer interface solutions ∼ exp(k i z). The eigenvectors v j representing this reflected wave may be obtained with the change k i → -k i , considering that only the relation between the eigenvector components has a meaning

  v s (k i ) v -(k i ) v + (k i )   =    i k 2 i -k 2 ω +2iQki cos α-Q 2 2k 2 h -1 k 2 i -k 2 ω +2iQki cos α-Q 2 k 2 i -k 2 ω -2iQki cos α-Q 2    =   u s (k i ) -u + (k i ) -u -(k i )   .
(17) Note that for cos α = 0 (spiral parallel to the SM interface) the two functions f ± are identical, thus indicating that only one type of triplet component (of short-range nature) is in fact produced [START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF] in the hybrid structure in this special configuration. In the inclined case, the system resolution necessarily involves the two different components f + and f -hinting at the coexistence of two types of triplet correlations in the structure. Owing to the chirality, the short-range components (depending on the exchange field h) of the eigenvectors for the incident u and reflected v waves display a complicated symmetry v ± = -u ∓ including the chirality change ("+" to "-", and opposite). The reflected wave moves along the spiral backward and feels the opposite direction (clockwise or anticlockwise) of the magnetization rotation along the movement direction. It is worth stressing that the combination of chirality and finite thickness for the magnet leads to a computation complexity related to the doubling of the needed coefficient amplitudes, which was actually absent in the previous works [START_REF] Pugach | Superconducting spin valves controlled by spiral reorientation in B20-family magnets[END_REF][START_REF] Champel | Switching superconductivity in superconductor/ferromagnet bilayers by multipledomain structures[END_REF][START_REF] Volkov | Odd triplet superconductivity in a superconductor/ferromagnet system with a spiral magnetic structure[END_REF][START_REF] Halász | Critical current of a Josephson junction containing a conical magnet[END_REF][START_REF] Halász | Magnetic-coupling-dependent spin-triplet supercurrents in helimagnet/ferromagnet Josephson junctions[END_REF][START_REF] Wu | Proximity effects in conical-ferromagnet/superconductor bilayers[END_REF][START_REF] Halterman | Half-metallic superconducting triplet spin valve[END_REF][START_REF] Jara | Angular dependence of superconductivity in superconductor/spin-valve heterostructures[END_REF].

The general form of the solution for the finite F layer is written down in Eq. ( 5). Let us denote R i ≡ A i -B i and S i ≡ A i + B i . From the boundary conditions (8) at z = d f , it follows the equations [START_REF] Gu | Magnetization-Orientation Dependence of the Superconducting Transition Temperature in the Ferromagnet-Superconductor-Ferromagnet System: CuNi/Nb/CuNi[END_REF] where we have introduced U s (k i ) = u s (k i )k i and

i [R i cosh(k i d f ) -S i sinh(k i d f )] U s,-(k i ) = 0, i [S i cosh(k i d f ) -R i sinh(k i d f )] U + (k i ) = 0,
U ± (k i ) = V ± (k i )k i + iQ cos αV ∓ (k i ). ( 19 
) V ± (k i ) = u + (k i ) ± u -(k i ),
In the S layer the spatial non-uniformity is only provided by the nonuniform magnetization existing along the SM interface. It thus seems to be natural to use β = β(x, 0) inside the S region. So the transformation to apply on the different superconducting components has the form f S pm = N (β(x, 0))M -1 y f S t , that yields the Usadel equations in the S region

∇ 2 - 2ω D s f S s = -2π ∆ D s , ∇ 2 ± 2iQ sin α ∂ ∂x -Q 2 sin 2 α - 2ω D s f S ± = 0. ( 20 
)
As explained above, the x dependence has been dropped out in the transformed components f s,± , so that we get the equations in the S region

∂ 2 ∂z 2 - 2ω D s f S s = -2π ∆ D s , ∂ 2 ∂z 2 -Q 2 sin 2 α - 2ω D s f S ± = 0, (21) 
and f S zz = 0, as it was also chosen in the ferromagnet. We may search the solutions for the triplet components f S ± satisfying the boundary condition (8) at the free interface z = -d s in the form:

f S ± = C ± cosh[k s (z + d s )] sinh(k s d s ) , (22) 
with the wave vector k s = Q 2 sin 2 α + 2ω/D s . The boundary conditions (9) at the SM interface (z = 0) read

i R i V + (k i ) + S i U + (k i )ξ f γ c = 0, i S i V -(k i ) + R i U -(k i )ξ f γ c = 0, ( 23 
)
where γ c = γ b + γ coth(k s d s )/ξ s k s . For the singlet component, we finally get the two equations:

∂ ∂z f S s (0) = -γ ξ f ξ s i R i k i u s (k i ), f S s (0) = i S i u s (k i ) + γ b R i k i u s (k i )ξ f . ( 24 
)
The latter equations can then be recasted in the form of the reduced boundary condition [START_REF] Leksin | Isolation of proximity-induced triplet pairing channel in a superconductor/ferromagnet spin valve[END_REF] with the expression [START_REF] Birge | Ferromagnetic Josephson junctions for cryogenic memory[END_REF] for the value of the quantity W . The coefficients R i , S i are determined by using Eqs. ( 18) and ( 23).
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 2 FIG. 2: Superconducting critical temperature T c as a function of the S layer thickness d s within three different magnetic configurations. The different panels (a), (b), (c), (d) correspond to different values of the exchange energy and spiral period. The large and small exchange field cases are characterized by the typical values h = 100 meV and h = 11 meV, respectively. The long and short spiral period situations correspond to λ = 18 nm and λ = 6 nm, respectively.
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 34 FIG.3: Superconducting critical temperature T c as a function of the spiral wave vector Q within three different magnetic configurations, for (a) large and (b) small exchange energy h (i.e., h = 100 meV and h = 11 meV, respectively). Here, we consider the layer thicknesses d f = 40 nm and d s = 21 nm.
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 5 FIG. 5: Superconducting critical temperature T c as a function of the M layer thickness d f within within three different magnetic configurations, (a) for large exchange energy h = 100 meV, large spiral spatial period λ = 18 nm and d s = 21.4 nm, (b) large exchange energy h = 100 meV, short spiral spatial period λ = 6 nm and d s = 21 nm (Ho case), and (c) for small exchange energy h = 11 meV, large spiral spatial period λ = 18 nm and d s = 18.5 nm (MnSi case).
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