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ABSTRACT

Recent deep networks like transformers not only excel in several language tasks, but their activations1

linearly map onto the human brain during language processing. Is this functional similarity caused by2

specific factors, such as the language abilities and the architecture of the algorithms? To address this3

issue, we analyze the brain responses to isolated sentences in a large cohort of 102 subjects, each4

recorded with both functional magnetic resonance imaging (fMRI) and magnetoencephalography5

(MEG). We then compare the ability of 32,400 transformer embeddings to linearly map onto these6

brain responses. Finally, we evaluate how the architecture, training, and performance of the models7

independently account for this brain mapping. Our analyses reveal two main findings. First, the8

similarity between brain responses and the activations of language models primarily depends on their9

ability to predict words from the context. Second, this similarity allows us to decompose and precisely10

track the rise and maintenance of perceptual, lexical, and compositional representations within each11

cortical region. Overall, this study evidences a partial convergence of language transformers to brain-12

like solutions, and shows how this phenomenon helps unravel the brain bases of natural language13

processing.14

Keywords Natural Language Processing | Encoding | Functional Magnetic Resonance Imaging | Magneto-15

encephalography16

1 Introduction17

Deep learning has recently made remarkable progress in harnessing capabilities hitherto considered unique to the18

human species (4; 5; 6). In particular, language transformers demonstrate unprecedented completion, translation, and19

summarization abilities (7; 8; 9; 10). Do these algorithms process words and sentences like the human brain?20

Preliminary evidence suggests that they might. First, word embeddings – high dimensional dense vectors trained to21

predict lexical neighborhood (11; 12; 13; 14) – have been shown to linearly map onto the brain responses elicited by22

words presented either in isolation (15; 16; 17) or within narratives (18; 19; 20; 21; 22; 23). Second, the "contextualized"23

activations of language transformers improve the precision of this mapping, especially in the prefrontal, temporal and24

parietal cortices (24; 25; 26). Third, specific computations of deep language models, such as the estimations of word25

surprisal (i.e. the probability of a word given its context) and the parsing of syntactic constituents have been shown to26

correlate with evoked related potentials (27; 28; 29; 30).27

However, the comparison between deep language models and the brain is fragmentary. First, most studies map the high-28

dimensional activations of deep language models onto fMRI: yet, these slow brain signals are unable to determine the29

sequence of brain representations elicited as the sentence unfolds. Second, past studies are based on i) a small number30

of subjects and ii) on a small set of language models varying in dimensionality, architecture, training objective, and31

training corpus. These computational differences prevent a formal comparison between the brain and these algorithms.32

Third, the mapping between brains and algorithms could be driven by factors largely independent from language33



A PREPRINT - OCTOBER 1, 2021

Figure 1: Hypotheses and Methods. A. The three panels represent three hypotheses on the link between language
transformers and the brain. Each dot represents one hypothetical language transformer. Language transformers can
be considered to converge to brain-like computations if their language performance (x-axis: i.e. top-1 accuracy at
predicting a word from its previous context) correlates with their ability to map onto brain responses to the same
stimuli (i.e. y-axis: brain score), and vice versa for a divergence hypothesis. High-dimensional neural networks can, in
principle, capture relevant information (1; 2), and thus lead to a fortunate similarity with brain responses. B. Using
fMRI and MEG recordings in the same subjects (3), we compare both the language performance and the brain-mapping
of the layer-wise activations (‘embeddings’) extracted from a large variety of language transformers. C. To compute
the brain scores, we (1) fit a linear regression W from the model’s activations X to predict brain responses Y and (2)
evaluate this mapping with a correlation between the predicted and true brain responses to held-out sentences Ytest.
MEG scores and fMRI scores are computed independently.

processes: for instance, networks with random weights have been shown to significantly predict brain responses to34

sound, speech and language stimuli (31; 32; 33).35

Thus, we ask two questions: is the similarity between language algorithms and the brain driven by specific factors? If36

so, can these algorithms help reveal the spatiotemporal hierarchy of language computations in the human brain?37

To address these issues, we analyze the brain responses of 102 healthy adults, scanned with both functional magnetic38

resonance imaging (fMRI) and source-localized magneto-encephalography (MEG) by Schoffelen et al (3) during39

two 1 h-long sessions, during which they read isolated Dutch sentences composed of 9 to 15 words. We then extract40

32,400 embeddings from a variety of language transformers to compare their ability to linearly map onto these brain41

responses (‘brain score’ (32)). Finally, we assess how differences in training, architectures, and language performance42

independently contribute to these brain mappings (Figure 1).43

The results demonstrate that the similarity between language models and the brain primarily depends on their language44

ability (i.e. accurately predicting words from the context).45

2 Results46

2.1 Intermediate layers predict brain responses best.47

To evaluate how the activations (X) of a deep language model map onto the brain (y) in response to the same sentences,48

we fit, within each subject, an `2-penalized linear regression (W ) to predict single-sample fMRI and MEG responses49

for each voxel/sensor independently. We assess the accuracy of this mapping with a Pearson R correlation (hereafter50

referred to as ‘brain score’ (34)) between true and predicted brain activations on held-out recordings of distinct sentences,51

using a five-fold cross-validation. Except if stated otherwise, we report the average brain scores across all voxels (or52

across MEG sensors and time samples) in the text, and refer the reader to the figures for a more complete description.53

Finally, we assess the statistical significance of these (average or single-voxel/channel) brain scores with a two-sided54

Wilcoxon test across subjects.55
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Figure 2: Language transformers tend to converge towards brain-like representations. A. Bar plots display the
average MEG score (across time and channels) of six representative transformers varying in tasks (causal vs masked
language modeling) and depth (4-12 layers). The green and red bars correspond to the word-embedding and middle
layers, respectively. The star indicates the layer with the highest MEG score. B. Average MEG scores (across subjects,
time, and channels) of each of the embeddings (dots) extracted from 18 causal architectures, separately for the input
layer (word embedding, green) and the middle layers (red). C. Zoom of (B), focusing on the best neural networks (i.e.
accuracy >35 %), revealing a slight plateau and divergence of the middle and input layers, respectively. D. Permutation
importance reveals how each property of the language transformers specifically contribute to the brain scores (∆R).
All properties significantly contribute to the brain scores (∆R > 0, all p < 0.0001 across subjects). Ordered pairwise
comparisons of the permutation scores are marked with a star (‘*’: p < .05, ‘**’: p < .01, ‘***’: p < .001). E-H.
Same as A-D, but evaluated on fMRI recordings. All error bars are the 95% confidence intervals across subjects.

We evaluate the brain scores of 32 transformer architectures (varying from 4 to 12 layers, each ranging from 128 to56

512 dimensions, and each benefiting from 4 to 8 attention heads), trained on the same Wikipedia dataset either with a57

‘causal’ language modeling (CLM) or a ‘masked’ language modeling task (MLM). For each architecture, we input the58

model with the sentence read by the subjects in the MEG or fMRI scanner, extract the activations from every layer, and,59

finally, compute the corresponding fMRI and MEG scores.60

The brain scores of all these trained language models are significantly above chance (all p < 10−9, Figure 2A and61

E). As detailed in supplementary analyses, the modest values of these brain scores reflect the notoriously high level62

of noise in single-sample single-voxel/channel neuroimaging data. Indeed, fMRI and MEG scores reach R = .04863

and R = .041, respectively, for the best layer of a typical 12-layer CLM, which is close to and even exceeds the noise64

ceiling (fMRI: R = .060, MEG: R = .020, Figure S4).65

Overall, the brain scores vary as a function of the relative depth of the embedding within the transformer. Specifically,66

both MEG and fMRI scores follow an inverted U-shaped pattern across layers for all architectures (Figure 2A and E):67

middle layers 1 systematically outperform output (fMRI: ∆R = .011± .001, p < 10−18, MEG: ∆R = .003± .0005,68

1For simplicity, we refer to ‘middle layers’ as the layer l ∈ [nlayers/2, 3nlayers/4], Figure 2A and E
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Figure 3: The similarity between language transformers and the brain reveals the spatio-temporal hierarchy
of language representations. Lexical and compositional representations can be isolated from the word embedding
(green) and one middle layer (red) of a typical language transformer (here, a 12-layer causal transformer). To account
for low-level visual representations, we also compute the brain scores of a convolutional neural network trained on
character recognition (blue). A. Mean (across subjects) fMRI scores obtained with the convolutional neural network
(blue), the word embedding layer (green), and the ninth layer of a 12-layer transformer (red). All colored regions display
significant fMRI scores across subjects after FDR correction for multiple comparisons. B. The temporal resolution
of MEG allows to precisely track the unfolding of the three types of representation over time. In B, the mean MEG
scores averaged across all time samples and subjects. C. Left: mean MEG scores averaged across all sensors. Right:
mean MEG gains averaged across all sensors: i.e. green: [word embedding] - [visual embedding]; red: [compositional
embedding] - [word embedding]). D. Mean MEG gains in four regions of interest. For a whole-brain depiction of the
MEG gains, see Video 2.

p < 10−13) and input layers (fMRI: ∆R = .031± .001, p < 10−18, MEG: ∆R = .009± .001, p < 10−17). This69

result confirms that the intermediary representations of deep language transformers are more "brain-like" than input and70

output layers (26).71

2.2 The emergence of brain-like representations predominantly depends on the network’s ability to predict72

missing words.73

The above findings result from trained neural networks. However, recent studies suggest that random (i.e. untrained)74

networks can significantly map onto brain responses (31; 32; 33). To test whether brain mapping specifically depends75

on the language proficiency of the model, we assess the brain scores of each of the 32 architectures trained with 10076

distinct amounts of data. For each of these training steps, we compute the top-1 accuracy of the model at predicting77

masked or incoming words from their contexts. This analysis thus results in 32,400 embeddings, whose brain scores78

can be evaluated as a function of language performance (Figure 2B and F).79

We observe three main findings. First, random embeddings systematically lead to significant brain scores across subjects80

and architectures. The mean fMRI score across voxels is R = .19± .01, p < 10−16. The mean MEG score across81

channels and time sample is R = .18± .008, p < 10−16). This result suggests that language transformers partially82

map onto brain responses independent of their language abilities.83

Second, brain scores strongly correlate with language accuracy in both MEG (R = .77 Pearson’s correlation on average84

± .01 across subjects) and fMRI (R = .57± .02, Figure 2B and C). The correlation is higher for middle (for fMRI:85

R = .81 ± 02 and MEG: R = .91 ± 01) than input (R = .39 ± 03) and output layers (R = .63 ± 03). Beta86

coefficients for each particular layer and architecture are displayed in Figure S5A and B. Furthermore, single-voxel87

analyses show that this correlation between brain score and language performance is driven mainly by the superior88

temporal sulcus and gyrus for the embedding layer (mean R = .52± .06) and is widespread for the middle layers,89

exceeding R = .85 correlation in the superior temporal sulcus, infero-frontal, fusiform and angular gyri (Figure S5C).90
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Overall, this result suggests that the better language models are at predicting words from the context, the more their91

activations linearly map onto those of the brain.92

Third, the highest brain scores are not achieved by the very best language transformers (Figure 2C and G). For instance,93

CLM transformers best map onto MEG (R = .039) and fMRI (R = .056) when they reach a language performance94

of 43% and 32%, respectively. By contrast, the very best transformers reach a language accuracy of 46%, but have95

significantly smaller brain scores (Figure 2C and G).96

2.3 Architectural and training factors impact brain scores too.97

Language proficiency co-varies with the amount of training as well as with several architectural variables. To disentangle98

the contribution of each of these variables to the brain scores, we perform a permutation feature importance analysis.99

Specifically, we train a Random Forest estimator (35) to predict the average brain scores (across voxels or MEG100

sensors) of each subject independently, given the layer of the representation, the architectural properties (number101

of layers, dimensionality, attention head), task (CLM, MLM), amount of training (number of steps) and language102

performance (top-1 accuracy) of the transformer. Permutation feature importance then estimates the unique contribution103

of each feature in explaining the variability of brain scores across models (36; 35). The results confirm that language104

performance is the most important factor that drives the brain scores (Figure 2 D,H). This factor supersedes other105

covarying factors such as the amount of training, and the relative position of the embedding with regard to the106

architecture (’layer position’): ∆R = .56± .01 for fMRI, ∆R = .51± .02 for MEG. Nevertheless, these other factors107

contribute significantly to the prediction of brain scores (p < 10−16across subjects for all variables).108

Overall, these results show that the ability of deep language models to map onto the brain primarily depends on their109

ability to predict words from the context, and is best supported by the representations of their middle layers.110

2.4 The mapping between the brain and language models helps to automatically decompose the cortical111

hierarchy of language.112

Where and when are the language representations of the brain similar to those of deep language models? To address113

this question, we extract the activations of the first (XCLM1 ,a.k.a "word embedding") and ninth layers (XCLM9) of114

a representative 12-layer transformer trained on causal language modeling (CLM). Unlike the 9th layer, the word115

embedding layer represents each word as a unique vector independent of its context (37). On the contrary, deeper116

layers are compositional: they combine word representations to best predict incoming words and can thus capture117

sentence-level properties like syntax (38; 39). To control for sub-lexical features, we also extract the activations XCNN118

of the last layer of a convolutional neural network (CNN) trained on character recognition (40) and input with the119

image of each word. By definition, such CNN is devoid of context and is thus unable to capture the meaning of words.120

Consequently, we hereafter refer to these different sets of activations as visual, lexical and compositional embeddings121

(Figure 3A).122

In fMRI, the brain scores of the visual embedding peak in the early visual cortex (V1) (mean brain scores across123

voxels: R = .022 ± .003, p < 10−11). By contrast, the brain scores of lexical embedding peak in the left superior124

temporal gyrus (R = .052 ± .004, p < 10−13) as well as in the inferior temporal cortex and middle frontal gyrus125

(R = .053± .003, p < 10−15) and are significant across the entire language and reading network (Figure 3B). Finally,126

the brain scores of the compositional embedding are significantly higher than those of lexical of embeddings in the127

superior temporal gyrus (∆R = .012± .001, p < 10−16), the angular gyrus (∆R = .010± .001, p < 10−16), the128

infero-frontal cortex (∆R = .016 ± .001, p < 10−16) and the dorsolateral prefrontal cortex (∆R = .012 ± .001,129

p < 10−13). While these effects are lateralized (left hemisphere versus right hemisphere: ∆R = .010 ± .001,130

p < 10−14), they are significant across a remarkably large number of bilateral areas (Figure 3B).131

Overall, these results confirm that trained deep neural networks linearly map onto the brain (41; 26). However, the132

sequence of representations underlying these shared representations remains unknown.133

2.5 The model-to-brain mapping reveals the unfolding of language representations over both time and space.134

To characterize the unfolding of brain responses over both time and space, we perform the same analysis using source-135

localized MEG recordings. The resulting brain scores are consistent with – although less spatially precise than – the136

fMRI results (Figure 3C, average brain score between 0 and 2 s). For clarity, Figure 3D and Video 2 (SI.6.4) plot the137

gain in MEG scores: i.e. the difference of prediction performance between i) word and visual embeddings (green) and138

ii) the difference between compositional and word embedding (red). The brain scores of the visual embedding peak139

around 100 ms in V1 (R = .008± .002, p < 10−3), and rapidly propagate to higher-level areas (Figure 3D, Video 2,140

SI.6.4). The gain achieved by the word embedding can be observed in the left posterior fusiform gyrus around 200 ms141
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and peaks around 400 ms and in the left temporal and frontal cortices. Finally, the gain achieved by the compositional142

embedding is observed in a large number of bilateral brain regions, and peaks after ≈ 1s (Figure 3C and D).143

After that period, brain areas outside the language network, such as area V1, appear to be better predicted by word and144

compositional embeddings than by visual ones (e.g between visual and word in V1: ∆R = .016± .002, p < 10−10).145

These effects could thus reflect feedback activity (42) and explain why the corresponding fMRI responses are better146

accounted for by word and compositional embeddings than by visual ones.147

Together with Supplementary Figure S5, these results show with unprecedented spatio-temporal precision, that the148

brain-mapping of our three representative embeddings automatically recovers the hierarchy of visual, lexical, and149

compositional representations of language in each cortical region.150

3 Discussion151

Do deep language models and the human brain process sentences in the same way? Following a recent methodology152

(34; 43; 44; 45; 46; 47; 48; 49; 31; 41; 26; 31), we address this issue by evaluating whether the activations of a large153

variety of deep language models linearly map onto those of 102 human brains. Each subject was recorded by Schoffelen154

and colleagues (3) with both MEG and fMRI, while they read isolated Dutch sentences composed of 9 to 15 words. Our155

study provides two main contributions.156

Language performance is the primary factor that drives brain-mapping. First, not only do language transformers157

linearly map onto brain responses (24; 25; 26; 23; 27; 30; 32), but this property primarily depends on their language158

performance: i.e. whether these models accurately predict words from their context. Our analysis indicates that159

language performance is the most contributing factor explaining the variability of brain scores across models, spanning160

32 architectures, two tasks, and 100 training steps (Figure 2D and H). Overall, deep language transformers thus appear161

to mainly converge to brain-like representations during their training.162

Language transformers help decompose the cortical hierarchy of language in space and time. Second, our163

model comparison decomposes the visual, lexical, and compositional representations in the cortex. Whereas the areas164

involved in language processing are well known (50; 51; 52; 41; 53), the precise nature, format, and dynamics of their165

lexical and compositional representations remain largely unknown (54; 55; 52). Here, we track these hierarchical166

representations with unprecedented spatio-temporal precision. Early visual responses (<150 ms) are quasi-entirely167

accounted for by visual embeddings, and then transmitted to the posterior fusiform gyrus, which switches from visual168

to lexical representations around 200 ms (Video 2 and SI.6.4). This finding strengthens the claim that this area is169

responsible for orthographic and morphemic computations (51; 56; 57). Then, around 400 ms, lexical embeddings170

predict a large fronto-temporo-parietal network which peaks in the left temporal gyrus; these representations are then171

maintained for several seconds (15; 24; 26; 17). This result not only confirms the wide spread distribution of meaning172

in the brain (41), but also reveals its remarkably long-lasting nature.173

Finally, compositional embeddings peak in the brain regions associated with high-level language processing such174

as the infero-frontal and anterior temporal cortices as well as the superior temporal cortex and the temporal-parietal175

junction (58; 52; 28). We confirm that these left-lateralized representations are significant in both hemispheres (59; 60).176

Critically, MEG suggests that these compositional effects become dominant and clearly bilateral long after word onset177

(>800 ms). This surprisingly late response may be due to the nature of the sentences, whose complex syntactic structure178

may slow down compositional computations.179

Overall, our results suggest a convergence between the brain and language transformers. However, several factors180

qualify this conclusion.181

Brain scores are limited by the signal-to-noise ratio. The mapping between these models and brain recordings is182

low. This phenomenon is expected: i) neuroimaging is notoriously noisy and ii) we analyze and model here single-183

sample responses of single-voxel/sensor. However, the resulting brain scores are i) highly significant (all p < 10−9 on184

average across both all fMRI voxels and MEG sensors), and ii) in the same order of magnitude to our noise ceilings185

(Figure S4) as well as previous reports (e.g. (41), before correcting for the noise ceiling). Besides, we generally report186

brain scores averaged across all voxels or MEG channels, even though many brain areas do not strongly respond to187

language (S4). Yet, brain scores often reach R > .10 in the brain areas associated with language (Figure 3). Critically,188

the core of our study is the link between brain scores and language performance. This effect is very strong: the189

correlation between the language performance and brain scores is above R= .90 for MEG and R= .80 for fMRI (Figure190

S5).191
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Language performance is not the only variable modulating brain scores. Permutation feature importance shows192

that several factors such as the amount of training and the architecture significantly impact brain scores. This finding193

contributes to a growing list of variables that lead deep language models to behave more-or-less similarly to the brain.194

For example, Hale et al. (29) show that the amount and the type of corpus impact the ability of deep language parsers195

to linearly correlate with EEG responses. The present work complements this finding by evaluating the full set of196

activations of deep language models. It further demonstrates that the key ingredient to make a model more brain-like197

is, for now, to improve its language performance. This conclusion, however, should be qualified, because the brain198

scores of some layers of the very best models tend to ultimately decrease with language performance, especially in199

fMRI (Figure 2G). We speculate that this unexpected phenomenon rises because transformers may over-specialize in an200

objective that differs from the human brain’s: predicting a word from its context, as opposed to generating the meaning201

of a sentence.202

Structure of language is different from that of the brain. The training and the architecture of transformers (7)203

are in many ways not biologically plausible. On the one hand, the brain i) is a recurrent architecture ii) is trained204

on a relatively small amount of grounded sentences, and iii) presumably computes prediction errors at each level of205

the language hierarchy (61). On the other hand, transformers are i) feedforward neural networks, ii) trained on huge206

but strictly textual corpora (10), iii) can memorize and access a very large number of words, and iv) only minimize207

prediction errors at their final layer. Besides, language transformers are still far from human-level performance in208

a variety of tasks such as dialogue, summarization, and systematic generalization (62; 63). Thus, it is all-the-more209

remarkable to see that such algorithms partially map onto brain responses.210

Input and output layers show a limited convergence. The input and output layers converge less than the middle211

layers (Figure S5). Why is there such a difference? We speculate that syntactic representations may drive the212

convergence of the middle layers. Indeed, unlike word embeddings, middle layers have been shown to encode syntactic213

trees (38) and co-references (39; 64). Our supplementary analyses support this possibility: middle layers best encode214

syntactic features and this information varies with language performance similar to brain scores (Figure S5). Studying215

the precise nature of the shared representations between brains and transformers is an exciting direction for future work.216

Overall, this study provides evidence of shared language representations between the adult human brain and language217

transformers, suggesting a partial convergence between the two systems. This result is important for three reasons.218

First, it suggests that there is a limited number of – and perhaps unique – solutions to process language. Second, this219

convergence provides a concrete framework to understand the computational bases of language: deep language networks220

can be used as meaningful models of language processing only if they process language like our brain. Similarly,221

these models allow the community to move away from factorial design, and capitalize on the incremental properties222

of uncontrolled settings (65). Third, current language models remain relatively poor at general understanding, and223

zero-shot generalization (although see (10). Our results thus provide a stepping stone to unravel the cognitive operations224

specific to the human species, and, ultimately, implement them in machine learning algorithms.225

4 Methods226

We assess the similarity between (i) the activations of deep neural networks and (ii) those of the brain of 102 subjects,227

recorded with magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) by Schoffelen et228

al. (3), when these two sets of systems are input with the same 400 isolated sentences.229

4.1 Deep Neural Networks230

4.1.1 Language Transformers231

To model word and sentence representations, we trained a variety of transformers (7), input them with the same sentences232

that the subject read, and extracted the corresponding activations from each layer. We always extract activation in233

a "causal" way: for example, given the sentence ‘THE CAT IS ON THE MAT’, the brain response to ‘ON’ would234

be solely compared to the activations of the transformer input with ‘THE CAT IS ON’, and extracted from the ‘ON’235

contextualized embeddings. Word embeddings and contextualized embeddings were generated for every word, by236

generating word sequences from the three previous sentences. We did not observe qualitatively different results when237

using shorter or longer contexts. It is to be noted that the sentences were isolated, and were not part of a narrative.238

In total, we investigated 32 distinct architectures varying in their dimensionality (∈ [128, 256, 512]), number of239

layers (∈ [4, 8, 12]), attention heads (∈ [4, 8]), and training task ("causal" language modeling and "masked" language240

modeling). While "causal" language transformers are trained to predict a word from its previous context, "masked"241

language transformers predict randomly masked words from a surrounding context. We froze the networks at ≈ 100242
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training stages (log distributed between 0 and 4,5M gradient updates, which corresponds to ≈ 35 passes over the243

full corpus), resulting in 3,600 networks in total, and 32,400 word representations (one per layer). The training was244

early-stopped when the networks’ performance did not improve after 5 epochs on a validation set. Therefore, the245

number of frozen steps varied between 96 and 103 depending on the training length.246

The algorithms were trained using XLM implementation 2 (9), on the same Wikipedia corpus of 278,386,651 words (in247

Dutch) extracted using WikiExtractor 3 and pre-processed using Moses tokenizer (66), with punctuation. We restricted248

the vocabulary to the 50,000 most frequent words, concatenated with all words used in the study (50,341 vocabulary249

words in total). These design choices enforce that the difference in brain scores observed across models cannot be250

explained by differences in corpora and text preprocessing.251

To evaluate the language processing performance of the networks, we computed their performance (top-1 accuracy on252

word prediction given the context) using a test dataset of 180,883 words from Dutch Wikipedia.253

4.1.2 Visual Convolutional Neural Network254

To model visual representations, every word presented to the subjects was rendered on a gray 100 x 32 pixel background255

with a centered black Arial font, and input to a VGG network pretrained to recognize words from images (40), resulting256

in an 888-dimensional embedding. This embedding was used to replicate and extend previous work on the similarity257

between visual neural network activations and brain responses to the same images (e.g. (34; 45; 46)).258

4.2 Neuroimaging259

4.2.1 Protocol260

For all the analyses, we used the open-source dataset released by Schoffelen and colleagues (3), gathering the functional261

magnetic resonance imaging (fMRI) and magneto-encephalography (MEG) recordings of 204 native Dutch speakers262

(100 males), aged from 18 to 33 years. Here, we focused on the 102 right-handed speakers who performed a reading263

task while being recorded by a CTF magneto-encephalography (MEG) and, in a separate session, with a SIEMENS264

Trio 3T Magnetic Resonance scanner (3).265

Words (in Dutch) were flashed one at a time with a mean duration of 351 ms (ranging from 300 to 1400 ms), separated266

with a 300 ms blank screen, and grouped into sequences of 9 - 15 words, for a total of approximately 2,700 words per267

subject. Sequences were separated by a 5 s-long blank screen. We restricted our study to meaningful sentences (400268

distinct sentences in total, 120 per subject). The exact syntactic structures of sentences varied across all sentences.269

Roughly, sentences were either composed of a main clause and a simple subordinate clause, or contained a relative270

clause. Twenty percent of the sentences were followed by a yes/no question (e.g. "Did grandma give a cookie to the271

girl?") to ensure that subjects were paying attention. Questions were not included in the dataset, and thus excluded from272

our analyses. Sentences were grouped into blocks of five sequences. This grouping was used for cross-validation to273

avoid information leakage between the train and test sets.274

4.2.2 Magnetic Resonance Imaging (MRI)275

Structural images were acquired with a T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) pulse276

sequence. The full acquisition details, available in (3), are summarized here simplicity: TR=2,300 ms, TE=3.03277

ms, 8 degree flip-angle, 1 slab, slice-matrix size=256×256, slice thickness=1 mm, field of view=256 mm, isotropic278

voxel-size=1.0×1.0×1.0 mm. Structural images were defaced by Schoffelen and colleagues. Preprocessing of the279

structural MRI was performed with Freesurfer (67), using the recon-all pipeline and a manual inspection of the280

cortical segmentations, realigned to ’fsaverage’. Region-of-interest analyses were selected from the PALS Brodmann’s281

Area atlas (68) and the Destrieux atlas (69).282

Functional images were acquired with a T2∗-weighted functional echo-planar blood oxygenation level-dependent283

(EPI-BOLD) sequence. The full acquisition details, available in (3), are summarized here for simplicity: TR=2.0284

seconds, TE=35ms, flip angle=90 degrees, anisotropic voxel size=3.5×3.5×3.0 mm extracted from 29 oblique slices.285

fMRI was preprocessed with fMRIPrep with default parameters (70). The resulting BOLD times series were detrended286

and de-confounded from 18 variables (the 6 estimated head-motion parameters (transx,y,z , rotx,y,z) and the first 6287

noise components calculated using anatomical CompCorr (71) and 6 DCT-basis regressors using nilearn’s clean_img288

2Each algorithm was trained each on 8 GPUs using early stopping with training perplexity criteria, 16 streams per batch, 128
words per stream, epoch size of 200 000 streams, 0.1 dropout, 0.1 attention dropout, gelu activation, inverse (sqrt) adam optimizer
with learning rate 0.0001, 0.01 weight decay.

3https://github.com/attardi/wikiextractor
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pipeline and otherwise default parameters (72). The resulting volumetric data lying along a 3mm "line" orthogonal to289

the mid-thickness surface were linearly projected to the corresponding vertices. The resulting surface projections were290

spatially decimated by 10, and are hereafter referred to as voxels, for simplicity. Finally, each group of 5 sentences was291

separately and linearly detrended. It is noteworthy that our cross-validation never splits such groups of five consecutive292

sentences between the train and test sets. Two subjects were excluded from the fMRI analyses because of difficulties in293

processing the metadata, resulting in 100 fMRI subjects.294

4.2.3 Magneto-encephalography (MEG)295

The MEG time series were preprocessed using MNE-Python and its default parameters except when specified (73).296

Signals were band-passed filtered between 0.1 and 40 Hz filtered, spatially corrected with a Maxwell Filter, clipped297

between the 0.01st and 99.99th percentiles, segmented between -500 ms to +2,000 ms relative to word onset and298

baseline-corrected before t=0. Reference channels and non-MEG channels were excluded from subsequent analyses,299

leading to 273 MEG channels per subject. We manually co-referenced (i) the skull segmentation of subjects’ anatomical300

MRI with (ii) the head markers digitized before MEG acquisition. A single-layer forward model was generated with the301

Freesurfer-wrapper implemented in MNE-Python (73). Due to the lack of empty-room recordings, the noise covariance302

matrix used for the inverse operator was estimated from the zero-centered 200 ms of baseline MEG activity preceding303

word onset. Subjects’ source space inverse operators were computed using a dSPRM. The average brain responses304

displayed in Figure 1D were computed as the square of the average evoked related field across all words for each subject305

separately, averaged across subjects, and finally divided by their respective maxima, to highlight temporal differences.306

Video 1 displays the average sources without normalization (SI.6.4). Seven subjects were excluded from the MEG307

analyses because of difficulties in processing the metadata, resulting in 92 usable MEG recordings.308

4.3 Noise Ceiling: Brain→ Brain mapping309

To estimate the amount of explainable signal in each MEG and fMRI recording, we trained and evaluated, through310

cross-validation, a linear mapping modelW to predict the brain responses of a given subject to each sentence Y from the311

aggregated brain responses of all other subjects who read the same sentence X . Specifically, five cross-validation splits312

were implemented across 5-sentence blocks with scikit-learn ‘GroupKFold’ (36). For each word of each sentence i, all313

but one subject who read the corresponding sentence were averaged with one another to form a template brain response:314

xi ∈ Rn with n the number of MEG channels or fMRI voxels, as well as a target brain response yi ∈ Rn corresponding315

to the remaining subject. X and Y were normalized (mean=0, std=1) across sentences for each spatio-temporal316

dimension, using a robust scaler clipping below and above the 0.01st and 99.99th percentiles, respectively. A linear317

mapping W ∈ Rn×n was then fit with a ridge regression to best predict Y from X on the train set:318

W = (XT
trainXtrain + λI)−1XT

trainYtrain (1)

with λ the l2 regularization parameter, chosen amongst 20 values log-spaced between 10−3 and 108 with nested319

leave-one-out cross-validation for each dimension separately (as implemented in (36)). Brain predictions Ŷ = WX320

were evaluated with a Pearson correlation on the test set:321

R = Corr(Ytest, Ŷtest) (2)

For the MEG source noise estimate, the correlation was also performed after source projection:322

R = Corr(KYtest,KŶtest) (3)

with K ∈ Rn×m the inverse operator projecting the n MEG sensors onto m sources. Correlation scores were finally323

averaged across cross-validation splits for each subject, resulting in one correlation score (’brain score’) per voxel (or324

per MEG sensor/time sample) per subject.325

4.4 Brain score and similarity: Network→ Brain mapping326

To estimate the functional similarity between each artificial neural network and each brain, we followed the same327

analytical pipeline used for noise ceiling, but replaced X with the activations of the deep learning models. Specifically,328

using the same cross-validation, and for each subject separately, we trained a linear mapping W ∈ Ro,n with o the329

number of activations, to predict brain responses Y from the network activations X . X was normalized across words330

(mean=0, std=1).331

To account for the hemodynamic delay between word onset and the BOLD response recorded in fMRI, we used a finite332

impulse response (FIR) model with five delays (from 2 to 10 seconds) to build X∗ from X . W was found using the333
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same ridge regression described above, and evaluated with the same correlation scoring procedure. The resulting brain334

correlation scores measure the linear relationship between the brain signals of one subject (measured either by MEG335

or fMRI) and the activations of one artificial neural network (e.g a word embedding). For MEG, we simply fit and336

evaluated the model activations X at each time sample independently.337

In principle, one may orthogonalize low-level representations (e.g. visual features) from high-level network models338

(e.g. language model), to separate the specific contribution of each type of model. This is because middle layers339

have access to the word-embedding layer, and can, in principle, simply copy some of its activations. Similarly, word340

embedding can implicitly contain visual information: e.g. frequent words tend to be visually smaller than rare ones. In341

our case, however, the middle layers of transformers were much better than word embeddings, which were much better342

than visual embeddings. To quantify the gain ∆R achieved by a higher-level model M1 (e.g. the middle layers of a343

transformer) and a lower level model M2 (e.g. a word embedding) we thus simply compared the difference of their344

encoding scores:345

∆RM1
= RM1

−RM2
(4)

4.4.1 Convergence analysis346

All neural networks but the visual CNN were trained from scratch on the same corpus (cf. section 4.1.1). We347

systematically computed the brain scores of their activations on each subject, sensor (and time sample in the case of348

MEG) independently. For computational reasons, we restricted model comparison on MEG encoding scores to ten349

time samples regularly distributed between [0, 2]s. Brain scores were then averaged across spatial dimensions (i.e.350

MEG channels or fMRI surface voxels), time samples, and subjects to obtain the results in Figure 2. To evaluate351

the convergence of a model, we computed, for each subject separately, the correlation between (1) the average brain352

score of each network and (2) its performance or its training step (Figure 2 and S5). Positive and negative correlations353

indicate convergence and divergence, respectively. Brain scores above 0 before training indicate a fortuitous relationship354

between the activations of the brain and those of the networks.355

4.4.2 Permutation feature importance356

To systematically quantify how the architecture, language accuracy, and training of the language transformers impacted357

their ability to linearly map onto brain activity, we fitted, for each subject separately, a Random Forest across the358

models’ properties to predict their brain scores, using scikit-learn’s RandomForest (35; 36). Specifically, we input359

the following features to the random forest: the training task (causal language modeling "CLM" vs. masked language360

modeling "MLM"), the number of attention heads ∈ [4, 8], the total number of layers ∈ [4, 8, 12], dimensionality361

∈ [128, 256, 512], training step (number of gradient updates, ∈ [0, 4.5M ]), language modeling accuracy (top-1 accuracy362

at predicting a masked word) and the relative position of the representation (a.k.a ’layer position’, between 0 for the363

word-embedding layer, and 1 for the last layer). The performance of the Random Forest was evaluated for each subject364

separately with a Pearson correlation R using five-split cross-validation across models.365

"Permutation feature importance" summarizes how each of the covarying properties of the models (their task, architec-366

ture, etc.) specifically impacts the brain scores (35). Permutation feature importance was implemented with scikit-learn367

(36) and is summarized with ∆R: the decrease in R when shuffling one feature (using 50 repetitions). For each subject,368

we reported the average decrease across the cross-validation splits (Figure 2). The resulting scores (∆R) are expected369

to be centered around 0 if the corresponding feature does not impact the brain scores , and positive otherwise.370

4.5 Population statistics371

To estimate the robustness of our results, we systematically performed second-level analyses across subjects. Specifically,372

we applied Wilcoxon signed-rank tests across subjects’ estimates to evaluate whether the effect under consideration was373

systematically different from the chance level. The p-values of individual voxel/source/time samples were corrected for374

multiple comparisons, using a False Discovery Rate (Benjamini/Hochberg) as implemented in MNE-Python ((73)).375

Error bars and ± refer to the standard error of the mean (SEM) interval across subjects.376

4.6 Brain parcellation377

In Section 2.2, Section 2.5 and Figure 3, we focus on particular regions of interest using the Brodmann’s areas from the378

PALS parcellation of freesurfer4. The superior temporal gyrus (BA22) is split into its anterior, middle and posterior379

parts to increase granularity. For clarity, we rename certain areas as specified in the table below.380

4https://surfer.nmr.mgh.harvard.edu/fswiki/PALS_B12
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Label Corresponding Brodmann’s areas

V1 BA17
Fusiform BA37
Angular BA39
aSTG BA22-anterior
mSTG BA22-middle
pSTG BA22-posterior
Supramarginal BA40
Infero-frontal BA44 / BA45 / BA47
Fronto-polar BA10
Temporo-polar BA38

381
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6 Supplementary information571

6.1 Anatomical and temporal characteristics of average brain responses to reading.572

When and where do textual sentences elicit brain activity? As expected (54; 51; 74; 52), average fMRI and MEG573

responses to written words peak in a distributed and bilateral cortical network, including the primary visual cortex,574

the left fusiform gyrus, the supra-marginal, and the superior temporal cortices, as well as the motor, premotor and575

infero-frontal areas (Figure S4A). MEG source reconstruction, based on structural MRI and minimum norm estimates,576

further clarifies the dynamics of this cortical network: on average, word onset elicits a series of brain responses577

originating in V1 around ≈100 ms and continuing within the left posterior fusiform gyrus around 200 ms, the superior578

and middle temporal gyri, as well as the pre-motor and infero-frontal cortices between 150 and 500 ms after word onset579

(Figure S4A, Video 1).580

6.2 Noise ceilings.581

To compare the brain responses to the activations of deep language models, it is important to estimate the level of582

signal-to-noise ratio (Figure S4). For this, we fit, for each subject separately, a "noise-ceiling" model across subjects:583

for each recording of each subject and each sentence Ytrain, we fit a linear model W from the recordings of all other584

subjects who read the same sentence Xtrain to predict each voxel and each MEG sensor at each time sample, separately.585

Using a cross-validation scheme across sentences, we then evaluate the Pearson correlation R between (1) the true586

brain responses of subject Ytest and (2) the predicted brain responses Ŷtest = W ·Xtest for each voxel and each MEG587

sensor separately. This procedure can be thought of as approximating an optimal black box: i.e. evaluating a one-hot588

encoder of brain responses is trained and evaluated on each element of a unique sentence. Noise ceiling peaks within the589

expected language network (75) (Figure 1 F-H). These estimates are relatively low: for example, fMRI noise ceilings590

reach, on average, R = 0.129 (±0.004 SEM across subjects) in the superior temporal gyrus, whereas MEG noise591

ceilings peak at R = 0.069± 0.001.592

Fronto-polar cortex: 0.054± 0.003 p < 10−8

Fusiform: 0.120± 0.004 p < 10−8

Infero-frontal: 0.139± 0.005 p < 10−8

M1: 0.042± 0.003 p < 10−8

STG: 0.129± 0.004 p < 10−8

Supramarginal: 0.078± 0.003 p < 10−8

V1: 0.150± 0.006 p < 10−8

593

Supplementary Table 1. Average noise ceiling within each region-of-interest. Mean, standard error of the mean and594

p-values across subjects.595

6.3 Probe analysis of the language transformer.596

Middle layers better map onto brain responses than input and output layers. Why is there such a difference between597

layers? To tackle the question, we measure the level to which the 32,400 transformer embeddings linearly predict598

two types of linguistic features: part-of-speech (i.e a lexical feature), and the number of open and pending nodes (i.e599

compositional syntactic features (76)). More precisely, we fit and evaluate an `2-penalized linear model to predict each600

of these features given the transformer’s embedding and plot this decoding performance as a function of the language601

performance of the model (Figure S6). While the word embedding and middle layers similarly predict word-level602

features (word length and part-of-speech of the word), the two high-level syntactic features (number of open and603

pending nodes) are better predicted by the middle layers of transformers. Finally, the decoding performance of the two604

syntactic features varies with the layer and the performance, in a manner strikingly similar to the brain score. These605

analyses suggest that middle layers are more "brain-like" than extremity layers because they learn to encode abstract606

linguistic properties like syntax.607

6.4 Video materials608

Below the captions for the two videos provided in supplementary.609

Video 1. Anatomical and temporal hierarchy of reading. Average brain responses elicited by the onset of visual610

words (≈2,700 words were presented to each of the 95 subjects), as estimated with minimum source estimates (MNE)611

of the single-trial responses constrained by the individual subjects’ anatomy (cortical surface extracted from T1 scans).612
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These results correspond to the ones summarized in Figure S4A. Overall, these results confirm that we can track the613

sequential recruitment of the cortical hierarchy of reading, starting from early visual cortex, moving up through the614

expected location of the visual word form area, and then igniting the temporal, prefrontal and parietal areas typically615

associated with language processing. Although these effects are bilateral, the typical left-lateralization associated with616

language processing can be observed.617

Video 2. The main levels of the hierarchy of language revealed by deep neural networks. Single-trial encoding618

scores obtained for three representative embeddings reveal the types of representations that are generated within619

each region and at each time instant. Blue, green and red colors indicates when and where brain responses to words620

are specifically predicted by visual, word and compositional embeddings, respectively (a.k.a gain in brain scores).621

The animated legend illustrates the same data without the anatomy: each dot corresponds to a brain source, radius622

corresponds to effect size (center: no effect, circle: maximum effect), and angle corresponds to the type of representation623

(visual, lexical or compositional). Overall, these results show when and where the brain transforms visual representations624

into lexical and compositional representations.625
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Figure S4: Noise ceilings. A. Grand average MEG source estimates to word onset (t=0) for 7 regions typically
associated with reading (V1: purple, M1: green, fusiform gyrus: dark blue, supramarginal gyrus: light blue, superior
temporal gyrus: orange, infero-frontal gyrus: yellow and fronto-polar gyrus: red), normalized to their peak response.
Vertical bars indicate the peak time of each region. The full (not normalized) data is displayed in Video 1. B. MEG
noise ceilings, approximated by predicting brain responses of a given subject from those of all other subjects. Colored
lines depict the mean noise ceiling in each region of interest. The grey line depicts the best noise ceiling across sources.
C. Same as (D) in sensor space. D. Noise ceiling estimates of fMRI recordings.
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Figure S5: Correlation between the network’s performance and brain score. A-B. Standardized beta coefficients
between the language modeling performance of the network and its MEG (A) or fMRI (B) scores. For each subject, the
brain scores are first scaled (0-mean, 1-std). Then, a linear regression is fit to predict the brain score (averaged across
channels and time for MEG, across voxels for fMRI) of each layer of 100 networks (all 512-dimensional, with 12 layers
and 8 heads) given their language performance (top-1 accuracy). The beta coefficients of the language performance are
reported (y-axis). Results are consistent across 4-, 8-, and 12-layer transformers, trained on a causal (top) or masked
(bottom) language modeling task. Error bars are the standard error of the mean beta coefficients across subjects. C.
Pearson correlation between the performance of the 100 transformers (all 512-dimensional, with 12 layers and 8 heads)
and the brain score of their word embedding (top) and ninth layer (bottom), for each voxel. Correlation scores are
computed for each (subject, voxel) pair, then averaged across subjects. Only significant voxels are displayed, as assessed
with a two-sided Wilcoxon test across subjects and corrected for multiple comparison using false discovery rate across
voxels (threshold: .001).
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Figure S6: What linguistic information drives the brain score? A. From the stimulus, we compute three linguistic
features: the part-of-speech of the words (i) (as given by Spacy), and two higher-level syntactic features: the number of
pending nodes (ii) and open nodes (iii). These two syntactic features are derived from the constituency trees of the
sentences, following (76). B-D. A `2-penalized linear regression is fit to predict the three linguistic features from the
word embeddings (green), and middle layers (red) of the causal models studied in Figure 2B. The decoding performance
is reported on the y-axis (accuracy at predicting the part-of-speech for B, r-squared for C, D and E). E. MEG scores
(averaged across sensors and time) of the embeddings given their language modeling performance (top-1 accuracy at
predicting the next word, Figure 2B). F. MEG scores of the embeddings given their ability to predict the number of
open nodes.
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Figure S7: Performance of the 32 transformer architectures. Best perplexity (the lower the better) and top-1
accuracy (the higher the better) of 32 transformer architectures, evaluated on a test test of 180K words from Wikipedia.
Transformers are trained with a masked (‘mlm’) or causal (‘clm’) language modeling objective. They vary in their
dimensionality (“Dim”), number of layers (‘Layers’) and number of attention heads (‘Heads’). The models are trained
on a set of 280K words from Wikipedia (in Dutch). The training is stopped when the perplexity on a validation set
does not decrease for 5 epochs.
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