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Recherche Médicale (INSERM),

France

*Correspondence:
Luis E. Muñoz

luis.munoz@fau.de

Specialty section:
This article was submitted to

Cancer Immunity and Immunotherapy,
a section of the journal
Frontiers in Oncology

Received: 05 February 2021
Accepted: 29 July 2021

Published: 16 August 2021

Citation:
Podolska MJ, Shan X, Janko C,

Boukherroub R, Gaipl US, Szunerits S,
Frey B and Muñoz LE (2021)

Graphene-Induced Hyperthermia
(GIHT) Combined With Radiotherapy

Fosters Immunogenic Cell Death.
Front. Oncol. 11:664615.

doi: 10.3389/fonc.2021.664615

ORIGINAL RESEARCH
published: 16 August 2021

doi: 10.3389/fonc.2021.664615
Graphene-Induced Hyperthermia
(GIHT) Combined With Radiotherapy
Fosters Immunogenic Cell Death
Malgorzata J. Podolska1,2, Xiaomei Shan1,2, Christina Janko3, Rabah Boukherroub4,
Udo S. Gaipl5, Sabine Szunerits4, Benjamin Frey5 and Luis E. Muñoz1,2*

1 Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nürnberg
(FAU), Universitätsklinikum Erlangen, Erlangen, Germany, 2 Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-
University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany, 3 Department of Otorhinolaryngology,
Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung
Professorship, Universitätsklinikum Erlangen, Erlangen, Germany, 4 Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique
Hauts-de-France, UMR 8520-IEMN, Lille, France, 5 Translational Radiobiology, Department of Radiation Oncology,
Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Radiotherapy and chemotherapy are the standard interventions for cancer patients,
although cancer cells often develop radio- and/or chemoresistance. Hyperthermia
reduces tumor resistance and induces immune responses resulting in a better
prognosis. We have previously described a method to induce tumor cell death by local
hyperthermia employing pegylated reduced graphene oxide nanosheets and near infrared
light (graphene-induced hyperthermia, GIHT). The spatiotemporal exposure/release of
heat shock proteins (HSP), high group mobility box 1 protein (HMGB1), and adenosine
triphosphate (ATP) are reported key inducers of immunogenic cell death (ICD). We
hypothesize that GIHT decisively contributes to induce ICD in irradiated melanoma
B16F10 cells, especially in combination with radiotherapy. Therefore, we investigated
the immunogenicity of GIHT alone or in combination with radiotherapy in melanoma
B16F10 cells. Tumor cell death in vitro revealed features of apoptosis that is progressing
fast into secondary necrosis. Both HSP70 and HMGB1/DNA complexes were detected
18 hours post GIHT treatment, whereas the simultaneous release of ATP and HMGB1/
DNA was observed only 24 hours post combined treatment. We further confirmed the
adjuvant potential of these released DAMPs by immunization/challenge experiments. The
inoculation of supernatants of cells exposed to sole GIHT resulted in tumor growth at the
site of inoculation. The immunization with cells exposed to sole radiotherapy rather
fostered the growth of secondary tumors in vivo. Contrarily, a discreet reduction of
secondary tumor volumes was observed in mice immunized with a single dose of cells and
supernatants treated with the combination of GIHT and irradiation. We propose the
simultaneous release of several DAMPs as a potential mechanism fostering anti-tumor
immunity against previously irradiated cancer cells.
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INTRODUCTION

Every anti-tumor therapy aims to induce immunogenic cell
death (ICD), which favors the development of specific anti-
tumor responses. The spatiotemporal exposure of calreticulin on
the outer leaflet of the plasma membrane (1, 2), the secretion of
ATP (3, 4), and the release of DAMPs such as HMGB1 (4–6),
heat shock protein 70 (HSP70) (7, 8) and HSP90 (4, 9) are
essential organic adjuvants required to induce ICD. These signals
are recognized by various pattern recognition receptors on
antigen presenting cells facilitating their activation and
migration to draining lymph nodes followed by induction of
potent adaptive immune response (10). The presence of one of
the organic adjuvants is not sufficient to induce proper immune
reactions and must be accompanied by additional signals. We
have postulated that the release from dead cells of both ‘find-me’
(ATP) and danger signals (HMGB1 and HSP90) is enough to
support robust immune responses, whereas when only one of the
adjuvants concurs, anti-tumor immunity fails (4). Some
mediators released by dying cells, such as Prostaglandin E2 or
adenosine, show immunosuppressive features contributing to the
tolerance (11, 12) and growth of tumor cells (13).

Besides sensitizing tumor cells to radio- and chemotherapy
(14), hyperthermia has been demonstrated to have a direct cell
killing effect (apoptosis or necrosis) in both in vitro and in vivo
conditions (15–17). This is achieved by the denaturation and
aggregation of intracellular proteins that are not seen in the case of
radio- or chemotherapies (18–22). Temperatures above 44°C
cause extensive cell damage due to sudden protein aggregation
and result in necrosis, whereas apoptosis is usually elicited in the
case of moderate hyperthermia (i.e., 41.5°C) (23, 24). There are
hints that the mode of action inducing the heat has a decisive effect
on the cell death (25). Nuclear proteins and components of the
Mre11-Rad50-Nbs1 complex orchestrating the repair of double
strand breaks in DNA are the most prone to heat-induced
degradation (26–29). Hence, the energy dose (temperature) and
time jointly orchestrate the systemic outcome. This means that the
generation and control of the heat are essential parameters to be
modulated. With the lack of instruments assuring homogenous
heat dispersion, profound damage can be induced to the
surrounding tissues. The prevention of the latter and targeting
invisible metastasis are the main challenges of this field and are
still under development. Although shrinking tumors, sole
hyperthermia cannot substitute any actual therapy (30).
Nevertheless, hyperthermia is undoubtedly sensitizing tumor
cells for further treatments (25, 31–33).

Gamma irradiation induces irreversible double-strand DNA
breaks leading to apoptotic cell death. Dying tumor cells in vivo
are sensed by the immune system propagating predominantly
tolerogenic messages (34–36). Whether hyperthermia
complementing radiotherapy results in ICD has not been
investigated in-depth yet. We have recently shown that PEGylated
reduced graphene oxide nanosheets (rGO-PEG) are biocompatible,
non-toxic, and can be used for intravenous application to induce
fine-tuned localized hyperthermia by application of near infrared
radiation (37). We demonstrate herein that tumor cells killed by the
combination of gamma irradiation and hyperthermia release several
Frontiers in Oncology | www.frontiersin.org 2
DAMPs in a fashion that renders dead B16F10 melanoma
cells immunogenic.
MATERIALS AND METHODS

Gamma Irradiation (X rays)
B16F10 melanoma cells derived from the C57BL/6 mouse
(ATCC, #CRL-6475) were exposed to ionizing irradiation (20
Gy, 120 kV, 22.7 mA; GE Inspection Technologies, Germany).

Graphene-Induced Hyperthermia (GIHT)
B16F10 melanoma cells were exposed to GIHT as described
before (37). The cells were seeded in 24-well flat-bottom culture
plates (2 × 105 cells/well). Next, graphene nanosheets (50 µg/ml)
were placed in transwell inserts (0.4 µm pores) in close proximity
to the cells, and plates were exposed to near-infrared irradiation
(NIR, 960 nm, 1 hour, 2 W/cm2) applied by Hydrosun®750
(Hydrosun Medizintechnik, Müllheim, Germany). The lower
compartment’s temperature was registered every 10 s with a
Voltcraft K204 Thermometer (Voltcraft, Wollerau, Switzerland)
and a high sensitive “in-well” temperature probe.

Flow Cytometric Analysis of Cell Death
The supernatants (SNs) containing detached B16F10 melanoma
cells treatedwithX-ray irradiation, GIHT, or a combination of both
were collected 24 hours post treatment into polypropylene tubes.
Remaining adherent cells were exposed to trypsin-EDTA solution
for 5min at room temperature (RT), and detached cells were added
to their corresponding SN fractions. Cells kept at 37°C and 5%CO2

served as control of cell death and normal cell turnover. Harvested
cells were centrifuged at 300×g for 5 min, and a morpho-
physiological characterization of cell death by flow cytometry
measurement was performed as described before (38). Briefly, the
cellswere resuspended ina four-color staining solutioncontaining1
µg/ml of Annexin A5 (AxA5)-FITC (ImmunoTools, Friesoythe,
Germany), 100 ng/ml of PI (Sigma-Aldrich, Taufkirchen,
Germany), 10 nM 1,1′,3,3,3′,3′-hexamethylindodicarbo - cyanine
iodide (DiIc1(5), EnzoLife Sciences, Lörrach,Germany), 1mg/ml of
Hoechst 33342 (Thermo Fisher Scientific Inc., Waltham, USA) in
Ringer’s solution for 30 min at RT followed by acquisition on
Gallios flow cytometer and analysis with the software Kaluza 2.1.

Detection of Danger Signals
Plates containing treated B16F10 melanoma cells and specified
controls were centrifuged at 300xg for 5 min at the indicated time
points, and the SNs were collected. The release of ATP from B16F10
melanoma cells was detected with the ‘Luminescent ATP Detection
Assay Kit’ (Abcam, Cambridge, UK). ATP degradation was
prevented by the provided lysis buffer. Luminescence
measurements were performed on a Centro LB960 luminometer.
HMGB1 and HSP70 were detected with the HMGB1 ELISA Kit II
(IBL International, Hamburg, Germany) and DuoSet IC Kit (R&D
Systems (Minneapolis, USA), respectively, according to the
manufacturer’s instructions. For the measurement of absorbance,
an ELISA Microplate Reader and the software Magellan 7.1 SP1
were used.
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Splenocytes Isolation and Staining
Briefly, Balb/c mice were sacrificed, and dissected spleens were
pressed through a 70 µm cell strainer washed with ice-cold PBS.
Collected cells were centrifuged at 300xg for 5 min at 4°C.
Erythrocytes were lysed with erythrocytes lysis buffer for
2 min, followed by centrifugation at 300xg for 5 min at 4°C.
Splenocytes proliferation was detected with the CellTrace™

CFSE Cell Proliferation Kit (Thermo Fisher Scientific, Rockford,
USA) employed according to the manufacturer’s instructions. In
brief, splenocytes (10e6 cells/ml) were incubated in 5 µM staining
solution for 20 min at RT. Excessive dye was removed by adding
the medium with 10% serum for 5 min at RT. Next, labeled cells
were centrifuged at 300xg for 5 min and were employed in
further experiments.

Dendritic Cell Generation and Activation
Femora and tibia bones from sacrificed C57BL/6 mice were
sterilized in 70% ethanol. Next, bone marrow was washed out
with a needle (0.4 mm x 19 mm) into ice-cold medium. Collected
cells were filtered through a 70 µm cell strainer and centrifuged at
300xg for 5 min at 4°C. Bone marrow-derived cells were
differentiated with a complete cell culture medium containing
4 ng/ml of GM-CSF (ImmunoTools, Friesoythe, Germany) and
10 ng/ml IL-4 (ImmunoTools, Friesoythe, Germany) for 7 days.
On days 3 and 5, a fresh DCs medium was added. DC cultures
were treated with 100 µl of SNs from B16F10 melanoma cells
treated with X-ray irradiation, GIHT, or a combination of both for
24 hours at 37°C and 5% CO2. The expression of co-stimulatory
molecules on DCs was confirmed after the conditioning treatment
by flow cytometry using the following antibodies anti-mouseMHC
II (1:600, Biolegend, San Diego, USA), anti-mouse CD11c (1:800,
Biolegend, San Diego, USA), CD40 (1:800, Biolegend, San Diego,
USA), CD86 (1:400, Biolegend, San Diego, USA).

T Cell Activation and Proliferation
Conditioned DCs were irradiated (20 Gy) and co-incubated with
CFSE-stained splenocytes for four days, at 37°C and 5% CO2. After
4 days splenocytes were stained with anti-mouse CD3 (1:400,
Thermo Fisher Scientific, Rockford, USA), anti-mouse CD4
(1:600, Biolegend, San Diego, USA), and anti-mouse CD8 (1:800,
Biolegend, San Diego, USA) antibodies added for 30 min at RT in
the dark and analyzed withGallios flow cytometer and the software
Kaluza 2.1. The mean fluorescence intensity (MFI) of T cells
exposed to unprimed DCs was used as the maximal signal to
calculate the dilution of the dye induced by proliferation. The
average number of divisions (division index) was obtained by
dividing the maximal MFI signal by the signal obtained from T
cells exposed to DCs pre-incubated with the indicated conditions.

Mice
All mice experiments were conducted in full agreement with
institutional guidelines on animal welfare and with the approval of
the local Animal Care and Use Committees of the University
Erlangen-Nürnberg and the ‘Regierung von Unterfranken’
[Allowance numbers TS-12/2015 (bone marrow cells and
splenocytes); 55.2 DMS-2532-2-103 (airpouch model); 54-2532.1-
6/12 (tumor growth)].
Frontiers in Oncology | www.frontiersin.org 3
Air-Pouch Model
Briefly, 5 mL of sterile air was injected subcutaneously in the
back of previously anesthetized mice (isofluorane). The air
formed a cavity between the skin and the fascia of the back of
the thorax. This cavity was stabilized with 3 ml of sterile air after
three days. After five days the cellular membrane formed allows
the study and quantification of infiltrating leukocytes. On day
five, 5 mL of supernatants collected 24 hours post-treatment
from B16F10 melanoma cells treated with X-ray irradiation,
GIHT, or a combination of both were injected into airpouches.
After 24 hours, the mice were sacrificed, and the lavage of
pouches was collected. Lavages were centrifuged for 5 min at
300x g and stained for 30 min at room temperature in the dark
with the following antibodies: a-ms CD45 (Biolegend, San
Diego, USA), a-ms CCR3 (Biolegend, San Diego, USA), a-ms
CD11b (Thermo Fisher Scientific, Rockford, USA), a-ms Ly-6C
(Biolegend, San Diego, USA), a-ms Ly-6G (Biolegend, San
Diego, USA), a-ms CD170 (Siglec-F) (Biolegend, San Diego,
USA), a-ms CD115 (Biolegend, San Diego, USA), a-ms F4/80
(Biolegend, San Diego, USA). Fluorescence was measured on a
Gallios cytofluorometer, and data analysis was performed with
the software Kaluza 2.1 Following populations were
distinguished: inflammatory monocytes (CD45pos CD11bpos
Ly6Chigh Ly6Gneg CCR3neg SiglecFneg), anti-inflammatory
monocytes (CD45pos CD11bpos Ly6Clow Ly6Gneg CCR3neg
SiglecFneg), macrophages (CD45pos CD11bpos CD115pos F4/
80pos), neutrophils (CD45pos CD11bpos Ly6Cpos Ly6Gpos
CCR3neg SiglecFneg).

Evaluation of the Efficiency of the
Killing Method
In order to determine whether supernatants of treated cells
contained surviving cells that might preclude their use as
immunization agent, supernatants containing detached dead
and dying cells were transferred to a new culture flask
containing fresh DMEM supplemented with 10% (v/v) FBS
and penicillin–streptomycin and cultured at 37°C in a 5% CO2

atmosphere. Cell survival and ability to form colonies were
investigated 7 days post-transfer. Microphotographs were
taken on Microscope Axiovert 25 by a Nikon D700 reflex
camera. Images were processed using Adobe Photoshop CS5.
Also C57BL/6 mice were injected intraperitoneally (i.p.) with
supernatants of treated cells. Mice were sacrificed once tumor
growth in the peritoneal cavity was detected by simple inspection
and palpation. The experiment ended at 32 days, and surviving
mice were sacrificed. Results are presented as Kaplan-Meier
survival curves (Figure 2).

Anti-Tumor Immunization
A syngeneic anti-tumor immunization model was used. Mice
(C57BL/6, MHC haplotype H2b) were immunized i.p. with
supernatants containing detached dead and dying cells
harvested 24 hours post-treatment from B16F10 melanoma
cells (carriers of the MHC haplotype H2b). SNs from cells
treated with gamma irradiation or the combination of GIHT
and gamma irradiation were used in this experiment. GIHT
alone was not used as immunization since the inoculum
August 2021 | Volume 11 | Article 664615
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contained surviving cells and was not suitable as an
immunization agent (Figure 2). After 14 days, the mice were
challenged subcutaneously (s.c.) in the back with viable B16F10
melanoma cells (1 × 106). The width, height, and depth of
subcutaneous tumors were measured with a caliper and
recorded for a maximum 16 days.

Statistics
Statistical analysis was performed by GraphPad Prism (version
7.0) software. As statistically significant, the p-values ≤ 0.05
were considered.
RESULTS

GIHT Triggers Apoptosis Rapidly Followed
by Secondary Necrosis
Anti-tumor therapies induce various types of cell death that
might result either in the activation or in the inhibition of specific
anti-tumor immune responses. For example, the survival of
cancer patients has been negatively correlated with tolerogenic
apoptosis (39), and primary necrosis was shown to lack of
immunogenicity (4). Therefore, we first evaluated the type of
cell death induced by GIHT, gamma irradiation and its
combination in vitro employing a flow cytometry-based six-
parameter classification protocol (Supplementary Figures 1, 2)
(38). Untreated cells display a high proportion of viable cells
(Figure 1). The exposure of B16F10 melanoma cells to gamma
irradiation alone results mainly in primary necrosis
independently of GIHT (Figure 1). NIR exposure caused
hyperthermia and rapid progression to secondary necrosis
when rGO or rGO-PEG were present (GIHT, Supplementary
Figure 2) (37). This phenotype persisted after the combined
action of gamma-irradiation and GIHT (Figure 1).

Surviving Cells Are Present in
Supernatants of Dead and Dying Cells
The stimulation of proliferation of few surviving cells by
bystander dead cells has been confirmed for melanoma cells,
fibroblasts, and primary synoviocytes (13) and it might contribute
considerably to relapses after radio- or chemotherapy (40–42). In
order to determine the suitability of dying tumor cells supernatants
as immunization adjuvants, we further cultured supernatants
containing detached dead and dying cells in culture flasks and in
the peritoneal cavity of C57Bl/6mice. The supernatants of untreated
cells and those treated with GIHT contained surviving cells that
generated colonies after 7 days of cultures in vitro and tumors in the
peritoneal cavity of mice, respectively (Figure 2). Contrarily,
supernatants of cells treated with gamma irradiation and with the
combination of irradiation and GIHT did not generate colonies in
vitro or peritoneal tumors in vivo (Figure 2). This indicates that
killing of B16F10 melanoma cells by hyperthermia alone might
cause the release of growth and survival factors that support the
growth of tumors at the site of injection of supernatants. This
precludes the use of cells treated with hyperthermia alone in
immunization protocols.
Frontiers in Oncology | www.frontiersin.org 4
Dying Cells Killed by GIHT Combined With
Gamma Irradiation Induce Inflammatory
Cell Infiltration in the Site of Injection
Employing the in vivo airpouch model, we investigated the pro-
inflammatory potential of mediators released by dead cells
induced by GIHT alone or in the combination with gamma
irradiation (Figure 3). Supernatants of dead and dying cells were
injected into established sterile airpouches. We observed a
significant increase in the infiltration of inflammatory
FIGURE 1 | Frequencies of subpopulations of dead and dying cells.
B16F10 melanoma cells exposed to gamma irradiation (20 Gy), graphene
induced hyperthermia (GITH) or the combination were classified by flow
cytometry employing multiparametric cell staining after 24 hours. Viable
cells, green, negative for PI and AxA5. Primary necrotic cells, red, positive
for PI and AxA5 with high DNA content (Hoechst). Secondary necrotic cells,
blue, positive for PI and AxA5 with low DNA content (Hoechst). NIR, near
infrared irradiation; Gy, Gray; PI, propidium iodide; AxA5, annexin A5.
*p < 0.05; **p < 0.01.
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neutrophils into airpouches supernatants induced by the
combination of therapies accompanied by a significantly
decreased proportion of anti-inflammatory monocytes and
macrophages. Supernatants of irradiated cells caused a
moderate elevation of inflammatory monocytes (Figure 3).
Frontiers in Oncology | www.frontiersin.org 5
GIHT Combined With Gamma Irradiation
Elicits the Release of Organic Adjuvants
With a Specific Spatiotemporal Pattern
We further analyzed the presence of organic adjuvants released
by dead and dying B16F10 melanoma cells after GIHT (37)
FIGURE 2 | Efficiency of cell killing. B16F10 melanoma cells exposed to gamma irradiation (20 Gy), GIHT or the combination. Supernatants containing detached
dead and viable cells were collected 24 hours post-treatment and cultured for further 7 days adding fresh medium twice. Representative bright field pictures of
cultures show growth of colonies after 7 days of treatment. Supernatants were also injected in the peritoneal cavity of C57Bl/6 mice. Mice were observed during 32
days or euthanized before if the growing tumor compromised their wellbeing. Kaplan-Meier survival analysis of mice (n=4 or 5) treated with the indicated
supernatants. Scale bar, 25 µm. Gy, Gray; GIHT, graphene induced hyperthermia; i.p. intraperitoneal.
August 2021 | Volume 11 | Article 664615
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(Figure 4). We observed an early (t0) and late (t24) release of
ATP in the case of GIHT applied alone or in combination with
gamma irradiation (Figure 4A). Also, both treatments induced
late release of HSP-70 (Figure 4B). However, only the
combination of GIHT and 20 Gy was associated with a late
secretion of HMGB-1 (Figure 4C), suggesting the release of
nucleosome-bound HMGB-1 as reported for secondary necrotic
cells (43).

Dying Cells Treated With GIHT and
X-Rays Induce the Proliferation of
Naive T Cells In Vitro
After confirming the presence of released organic adjuvants and
testing its inflammatory potential, we aimed to investigate
whether these adjuvants contribute to the activation of DCs.
The supernatants of all treatments caused a significant
upregulation of the activation markers CD80, CD86, MHC-II
and CD40 on bone marrow derived DCs (Supplementary
Figure 3). These conditionally activated DCs were used in a
modified mixed lymphocyte reaction (MLR) to activate naive
allogeneic T cells to proliferate (Figures 5A, B). The allogeneic
Frontiers in Oncology | www.frontiersin.org 6
major histocompatibility complex (MHC) molecules induced so-
called background stimulation of T cells proliferation
(Figures 5A, B, UNT). We observed that the proliferation of
CD4+ T cells but not CD8+ T cells were significantly increased in
response to SN from tumor cells exposed to GIHT alone or in
combination with gamma irradiation (Figures 5A, B).

Dying Cells Killed by GIHT Combined With
Gamma Irradiation Elicit Specific Anti-
Tumor Immune Responses In Vivo
Once we observed that innate and adaptive immune activation
was induced by the SN from tumor cells killed by the
combination of hyperthermia and gamma irradiation, we
sought to determine whether these SN are able to support
specific anti-tumor responses if inoculated together with dead
tumor cells in an immunization/challenge experiment. For this
experiment we used the SN from untreated (containing no viable
tumor cells), gamma irradiated alone (containing dead tumor
cells) and in combination with GITH (containing dead tumor
cells) as a single immunization dose. Mice were challenged with
viable tumor cells after 14 days, and tumor growth was
FIGURE 3 | Inflammatory cell infiltration to the site of cell death. SNs of dying B16F10 melanoma cells (24h) were injected into air pouches of mice and the infiltrating
cells were quantified by flow cytometry. The infiltration caused by supernatants of untreated cells was used as a baseline. The main four myeloid populations are
shown. One-way analysis of variances of five mice with Tukey’s multiple comparison test is shown. Values of p < 0.05 considered as significant are underlined.
UNT, untreated; Gy, Gray; GIHT, graphene-induced hyperthermia.
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monitored for 32 days. The SN of cells exposed to the single
treatment modality of gamma irradiation fostered the growth of
secondary tumors while the combination of gamma irradiation
and GITH resulted in a discreet reduction of the tumor volume of
secondary tumors (Figures 5C–F and Supplementary Table 1).
DISCUSSION

Radiotherapy is an essential treatment option for the majority
of patients bearing tumors (44). However, radioresistance of
some cancer cells results in the failure of this therapy (45).
Hyperthermia was demonstrated to radiosensitize tumor cells
(46, 47). The effect of GIHT administered before radiation on the
progression of cell death of the poorly immunogenic B16F10
melanoma cells was investigated. Twenty Gy resemble the two
weeks cumulative dose of X-rays that patients receive when
undergo radiotherapy (31).

We have observed that rGO and rGO-PEG exhibit the best
photothermal conversion efficacy (37). The hyperthermia (42-
43°C) induced by rGO and rGO-PEG alone or in combination
with gamma irradiation led to significantly increased cell death.
When GIHT was administered alone or in combination with
gamma irradiation, melanoma cells mainly followed apoptotic
cell death patterns with fast progression to secondary necrosis.
The decision taken by the dying cell is orchestrated by multiple
factors, such as the severity of the damage, energy availability, the
presence/absence of ligands of cell death/dependent receptors, or
inhibitors of specific pathways. The outcome has profound
effects on the subsequent immune response (48). Necrotic cell
death does not always induce robust immune responses (4), and
the activation of apoptosis might result as a double edge sword
with features of immunogenic (4, 49, 50) or tolerogenic (36) (40)
cellular demise. Necroptotic cells, for example, although
releasing ‘find me’ signals, may be engulfed without activating
the immune system (51). Therefore, determining the precise
Frontiers in Oncology | www.frontiersin.org 7
death pathway and delineating its immunological consequences
results of major importance while designing novel anti-
cancer therapies.

When apoptotic cells are not cleared in an efficient and timely
manner, they become secondary necrotic (52). In vivo, the
complete apoptotic program’s execution is usually interfered
by rapid phagocytosis (53). However, in the case of large
amounts of cell demise that challenges the capacity of
phagocytes to efficiently clear cellular debris (54) or when the
clearance capacity is itself reduced (35, 55), apoptotic cells lose
their plasma membrane integrity and release immune
stimulators (56, 57). Secondary necrosis in vivo is linked to
multiple inflammatory and autoimmune disorders (35, 58, 59).
Based on our observations, we suggest that when GIHT is
applied in combination with gamma irradiation, a large
number of apoptotically modified tumor-derived antigens
along with an appropriate cocktail of mediators are released
and can stimulate DCs. This is possible due to the high frequency of
secondarily necrotic cells observed with the multimodal therapy.

The efficiency of anti-cancer therapies rely on many factors.
One of them is the microenvironment resulting directly after
therapy. Massive cell death of solid tumors changes dramatically
the tumor microenvironment and triggers biological reactions in
the host and tumor. Inosine released by dead and dying cells
mediates proliferation of surviving cells via purinergic receptors
(13) and this might support the appearance of relapses (40, 42).
The treatment with GITH alone was inefficient and fostered the
rapid proliferation of surviving cells in our in vitro and in
vivo settings.

It was demonstrated that the spatiotemporal appearance of
organic adjuvants such as ATP (3, 4), HMGB1 (4–6), HSP70 (7,
8, 60, 61) and HSP90 (4, 9) decides about the consequences of
cell demise. In line with this, we previously proposed that the sole
presence of ATP leads to the silent removal of dead cells, whereas
the presence of ATP together with HMGB1 or HSP90 induces
the robust anti-tumor immune responses (4).
A B C

FIGURE 4 | Organic adjuvants released from GIHT treated B16F10 melanoma cells. (A) Time kinetic of the levels of ATP, (B) HSP70, and (C) HMGB-1 detected in
supernatants after the application of the treatment. Supernatants from untreated cells (UNT) represent basal concentrations of DAMPs. The two-way analyses of
variance with Bonferonni posttest was employed. Values of p < 0.05 were considered as significant. Means with the standard error of the mean (SEM) are shown.
GIHT, graphene induced hyperthermia; UNT, untreated; ATP, adenosine triphosphate; HSP70, heat shock protein 70; HMGB1, high mobility group box 1 protein.
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We detected significantly increased ATP release levels
into the extracellular space mostly due to a temporal heat-
induced permeability of membranes (62, 63), including
mitochondrial envelopes. Notably, the recovery of plasma
membranes occurs in the latest 40 minutes after the
treatment since most of the cells are PI negative by this time
Frontiers in Oncology | www.frontiersin.org 8
point. The progression towards secondary necrosis was then
responsible for the releases of further intracellular contents
later on (24 hours).

We detected significantly increased secretion of HSP70 at
24 and 12 hours post administration of GIHT alone or
combined with gamma irradiation, respectively. Exposure to
A B

C D

E F

FIGURE 5 | Induction of specific anti-tumor immune responses. T cells proliferation induced by conditioned DCs. DCs were co-incubated for 24 hours with SN
collected from B16F10 melanoma cells exposed to indicated treatments. CSFE-labelled T cells were co-cultured with DCs for 4 days. To show bottom-line
proliferation, DCs were conditioned with fresh medium. Division index of CD4 positive T cells (A) and CD8 positive T cells (B) is shown. Kruskal-Wallis test with
Dunn’s multiple comparison test was employed. Values of p < 0.05 were considered as significant. (C) Tumor growth after challenge of immunized mice.
Immunization was performed with a single i.p. dosis of detached B16F10 melanoma cells including their supernantants. Fourteen days after the immunization, mice
were challenged with viable B16F10 melanoma cells injected subcutaneously in the back. Two-way ANOVA was used to compare the means at each time point.
Values of p < 0.05 after Tukey’s multiple comparison test were considered as significant and depicted. (D) Tumor volume of immunized mice at day16 after the
challenge with viable B16F10 melanoma cells. One way ANOVA was applied to evaluate the means at day 16 after challenge. (E, F) Tumor growth of single mice of
the experiment shown in (C). P values of Fisher´s least significant differences are depicted. Gy, Gray; GIHT, graphene-induced hyperthermia.
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elevated temperatures leads to the increased expression of
intracellular HSP. Colorectal adenocarcinoma cells exposed
to 41.5°C for 1-hour show significantly decreased cell death
orchestrated probably by the Thermo protection effect of HSP
(64). In terms of ICD, when HSP proteins are presented on the
plasma membrane’s outer leaflet or are released in the
extracellular milieu, they gain immune stimulatory
properties (7, 8, 60, 61). In other studies, hyperthermia
(41.5°C, 1 hour) administered alone or in combination with
radiation (2 Gy) was demonstrated to trigger the release of
both proteins HSP70 and HMGB1 by dead and dying B16F10
melanoma cells (65). HSP70 secreted after the treatment elicits
the maturation of DC and promotes the release of pro-
inflammatory cytokines (64).

Chronic persistent inflammation is linked to tumorigenesis,
and extracellular HMGB1 is perceived as a pro-inflammatory
cytokine inducing the expression of other inflammatory factors
(66–68). Besides that, HMGB1 leads to the secretion of other
pro-inflammatory cytokines (i.e., TNF, IL-1, or IL-6) by
resident or migrated leukocytes (69). In this manner, HMGB1
further fosters a vicious cycle of inflammation and
manipulation of the immune system. The plethora of actions
of HMGB1 can be explained by its redox status, the type of
affected cell, and available receptors (70), as well as by its
interaction with DNA. Free reduced HMGB1 protein was
shown to be passively released by primary necrotic cells,
whereas the oxidized form, which is additionally bound to
the nucleosome, was observed in secondary necrotic cells (43,
71). It was reported that during apoptosis, cysteine residues of
HMGB1 are oxidized by mitochondrial ROS produced in a
caspase-dependent manner. This fosters immunological
tolerance. Immunogenicity was then recovered by blocking its
oxidation (72). Furthermore, apoptotic cell death accompanied
by elevated intracellular levels of ROS exhibited higher
immunogenicity in vivo when compared to the death
developing in the absence of ROS (71).

In the death induced by GIHT alone, the release of danger
signals was significantly increased at the earlier time points
(HMGB1/DNA, 12 hours) when ATP was still absent. In the
case of the combined treatments, we detected significant
concentrations of extracellular DAMPs, HSP70, and HMGB1/
DNA, 18 hours post treatment. The combinational therapy was
then characterized by the simultaneous increase of ATP and
HMGB1/DNA released 24 hours post treatment. We have
previously observed that dying cells are less potent
stimulators when ATP is released without other DAMPs (4).
The presence of only one of the organic adjuvants is not enough
to provide sufficient stimulation of the immune system.
Werthmöller et al. reported that the simultaneous presence of
HSP70 and HMGB1 was linked to the increased immunogenic
potential of cellular demise (65). This suggests that the DAMPs
detected 18 hours post combinational treatment can stimulate
the immune system. The additional presence of ATP further
fosters the activation.

At the site of inoculation of supernatants, we observed
significant infiltration of neutrophils and significantly
Frontiers in Oncology | www.frontiersin.org 9
decreased levels of anti-inflammatory monocytes in response
to cells treated with GIHT combined with gamma irradiation.
Single treatments affected less the composition of early infiltrates.
It was demonstrated that dying cancer cells secrete specific
chemokines to recruit cells of the immune system (11, 73). IL-
1a and IL-1b were reported to attract neutrophils (initial phase)
and macrophages (late phase) during sterile inflammation,
respectively (74). Additionally, IL-1a was shown to sustain
chronic infiltration of neutrophils (75). After migration to the
site of inflammation, exposure of neutrophils to ‘eat me’ signals,
such as PS and calreticulin, results in the polarization to pro-
inflammatory phenotype and, consequently, to cytotoxicity
towards remaining cancer cells that survived the therapy (11).
Therefore, we speculate that the observed infiltration of
neutrophils might further support our multimodal therapy’s
anti-tumor potential.

Finally, we demonstrated that cell death induced by GIHT
alone or in combination with gamma irradiation resulted in the
activation of DCs, which stimulated the proliferation of CD4+ T
cells in vitro. This suggests that released ATP and HMGB1-DNA
complexes are potent supporters of T cell activation. Employing
dead and dying cells in an immunization/challenge experiment,
we observed a decreased tumor volume in the group of mice
immunized with the combined treatment. Contrarily, gamma
irradiation alone fails to induce protection against tumor
growth. We suggest that the significant release of several
DAMPs significantly contributes to increased immunogenicity
of B16F10 melanoma cells. Therefore, GIHT could be
implemented in multimodal therapies since it may take
advantage of radio sensitization of tumor cells by inducing the
timely release of ATP and HMGB1-DNA complexes during the
progress of cell death.

The melanoma B16F10 clone implanted in immunocompetent
syngeneic mice al lows the study of tumor growth
preserving the interactions between cancer cells and the
microenvironment (76–78). However, this clone has the
disadvantage to have a high proliferative and metastasizing
capability (79) that precludes the use of viable cells for
immunization. Therefore, the antigenic load at the
immunization site might be insufficient to trigger immune
responses that resulted in tumor free mice after the challenge.
Nevertheless, our observations are significant enough to
propose the study of the principle of radiosensitation using
nanosheets-targeted hyperthermia in other solid tumors
models in future research. When biocompatible rGO-PEG
nanosheets are applied intravenously, they become enriched
in well-vascularized tumors by the enhanced permeability and
retention effect. These nanosheets can be then stimulated with
deep penetrating NIR irradiation to achieve fine-tuned
localized hyperthermia (GITH) in solid tumors.
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