
HAL Id: hal-03361317
https://hal.science/hal-03361317

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time computer-generated hologram calculation
using pre-computed angular spectra

Antonin Gilles, Patrick Gioia

To cite this version:
Antonin Gilles, Patrick Gioia. Real-time computer-generated hologram calculation using pre-
computed angular spectra. Optics, Photonics and Digital Technologies for Imaging Applications VI,
Apr 2020, Online Only, France. pp.3, �10.1117/12.2554537�. �hal-03361317�

https://hal.science/hal-03361317
https://hal.archives-ouvertes.fr

Real-time computer-generated hologram calculation using
pre-computed angular spectra

Antonin Gillesa and Patrick Gioiaa,b

aResearch and Technology Institute b<>com, Cesson-Sévigné, France
bOrange Labs, Cesson-Sévigné, France

ABSTRACT

Due to its ability to reproduce the correct focus cues, holography is considered as a promising display technology
for Augmented Reality glasses. However, since it contains a large amount of data, the calculation of a hologram
is a time-demanding process, resulting in prohibiting head-motion-to-photon latency. In this paper, we propose
a real-time hologram calculation method based on two modules: an offline pre-computation module and an
on-the-fly hologram synthesis module. In the offline calculation module, the omnidirectional light field scattered
by each scene object is individually pre-computed and stored in a Look-Up Table (LUT). Then, in the hologram
synthesis module, the light waves corresponding to the viewer’s position and orientation are extracted from the
LUT in real-time to compute the hologram. Contrarily to previously proposed methods, our approach handles
several independent scene objects and arbitrary user positions and orientations. Experimental results show that
the proposed method is able to compute full-HD holograms at more than 256 frames per second, enabling its
use in Augmented Reality applications.

Keywords: Real-time Hologram Calculation, Computer-Generated Holography, 3D Imaging

1. INTRODUCTION

Holography is often considered as the most promising 3D visualization technology since it creates the most
natural depth illusion to the viewer. Indeed, it provides all the Human Visual System (HVS) depth cues without
the need for special viewing devices and without causing eye-strain.1 To create the depth illusion, a hologram
diffracts an illuminating light beam to create the light wave that would be transmitted or reflected by a given
scene.2 As a consequence, the viewer perceives the scene as if it was physically present in front of him.

Holograms can be either optically acquired by interfering two coherent laser beams in a dark room,3 or
numerically synthesized using Computer-Generated Hologram (CGH) calculation algorithms.4 Thanks to its
attractive features in terms of 3D visualization, CGH may find application in the field of Augmented Reality
(AR) glasses to solve the focus issues of conventional stereoscopic Head-Mounted Displays (HMD).5 However,
due to the large amount of data to process, real-time hologram calculation is still a very challenging topic,
especially for AR applications where head-motion-to-photon latency under 20 milliseconds is required.6

To synthesize a hologram, most state-of-the-art methods sample the 3D scene geometry by a set of primi-
tives and compute the hologram as the sum of light waves scattered by each primitive in the hologram plane.
Commonly used primitives include points,7 planar layers8,9 and tilted polygons.10 To reduce the hologram cal-
culation time, several algorithms have been proposed, including using look-up tables,11–13 wavefront recording
planes14,15 and redundancy removal techniques16,17 for the point-source approach, color-space conversion,18,19

fraction methods20 and hybrid methods21,22 for the layer-based approach, and using pre-computed light waves23

or analytic formulas24–26 for the polygon-based approach. Since they sample the scene using 3D primitives, the
computational complexity of the aforementioned methods is always dependent on the number of primitives. As
a consequence, computing holograms of highly detailed scenes is more time-consuming than for simple-shaped
objects.

To overcome this issue, a fast calculation method based on the 3D Fourier spectrum of a voxel-based object
has been proposed.27 This method comprises two steps: an offline pre-computation step and an on-the-fly

Authors can be reached at: {antonin.gilles, patrick.gioia}@b-com.com

hologram calculation step. During the pre-computation step, the 3D spectrum of the scene is computed using
a 3D Fast Fourier Transform (FFT) algorithm. Then, during the hologram calculation step, the 2D spectrum
of the diffracted wavefront in a given radial direction is extracted from the 3D spectrum and inverse Fourier
transformed to yield the hologram. The authors later enhanced this method with a hidden-surface removal
algorithm28 and applied it to the calculation of cylindrical holograms.29 Since the calculation time of the second
step only depends on the hologram resolution and not on the sampling of the scene, this approach enables the
fast calculation of highly detailed scenes.

However, this approach still presents two limitations. First, it is limited to the calculation of holograms from
scenes containing a single voxel-based object. More importantly, the hologram cannot have any arbitrary position
and orientation: its optical axis must intersect the center of the scene. These two limitations are incompatible
with Augmented Reality applications. In this paper, we propose a real-time calculation method based on a
pre-computed Angular Spectrum per scene object. Similarly to,27 the proposed method consists of an offline
and on-the-fly calculation steps. In the offline calculation step, the Angular Spectrum of each scene object is
individually pre-computed on a uniformly-sampled cube and stored in a Look-Up Table (LUT). In the hologram
synthesis step, the light waves corresponding to the viewer’s position and orientation are extracted from the
LUT in real-time to compute the hologram. Contrarily to previously proposed methods, our approach handles
several independent scene objects and arbitrary user positions and orientations.

In the rest of the paper the 3D space will be identified to R3 by means of an arbitrary world coordinate system.
The following of this paper is organized as follows: Section 2 presents the proposed method and Section 3 gives
a detailed description of the Graphics Processing Unit (GPU) implementation. Finally, experimental results are
analyzed in Section 4.

2. PROPOSED METHOD

2.1 Overview

Figure 1 shows the overall block-diagram of the proposed method, which consists of two modules: an offline
pre-computation module and an on-the-fly hologram synthesis module.

In the offline calculation module, the omnidirectional angular spectrum of each scene object is individually
pre-computed and stored in a Look-Up Table (LUT). The omnidirectional angular spectrum corresponds to
the plane wave decomposition of the light field scattered by an object in every direction. Each plane wave
is represented by a three-dimensional frequency vector corresponding to its direction of propagation and by its
complex amplitude. During the offline pre-computation, the self-occlusions are approximated for a few viewpoints
only. In the hologram synthesis module, the light waves corresponding to the viewer’s position and orientation
are extracted from the LUT in real-time to compute the hologram. The calculation time of this step does not
depend on the complexity or the sampling of the scene. This makes it possible to maintain a constant framerate
while ensuring a good visual quality. In the following, these two modules are described.

Figure 1: Overall block-diagram of the proposed method.

Figure 2: Block-diagram of the offline pre-computation module.

2.2 Module 1: Offline pre-computation

The block diagram of the offline pre-computation module is given in Figure 2. It consists of three steps.

First, for each object n ∈ {1, . . . , N} in the scene, a number of viewing directions M ∈ N from which the
self-occlusions will be approximated is defined. M can be set depending on the geometry of each scene object: an
object containing non-convex surfaces will require a larger number of viewing directions than an simple-shaped
object. For each viewing direction −−→wm ∈ R3, with m ∈ {1, . . . ,M}, a 2D-plus-depth orthographic projection of
object n is synthesized, as shown in Figure 3a. During this 2D-plus-depth rendering, the object self-occlusions are
removed thanks to z-buffering.30 We call In,m and Dn,m the rendered intensity and depth images, respectively.

The second step of the offline pre-computation module is to reconstruct the 3D object geometry from the
2D-plus-depth images, as shown in Figure 3b. Let Rn = (On;~x, ~y,~z) be the local coordinates system of object
n, whose origin On = (xn, yn, zn) is located at the center of object n and whose axes are parallel to the world
coordinates axes. Since Dn,m is encoded as an 8-bits gray level image, each pixel (uk, vk) can be projected back
to a 3D point k of coordinatesxkyk

zk

 = ∆

(
uk −

Mx

2

)
−→um + ∆

(
vk −

My

2

)
−→vm +

(
dk
255

(zmax − zmin) + zmin

)
−−→wm, (1)

(a) (b)

Figure 3: Computing steps of the offline calculation module: (a) orthographic 2D-plus-depth rendering, (b)
inverse orthographic projection and omnidirectional angular spectrum computation.

Figure 4: Block-diagram of the hologram synthesis module.

where (Mx,My) is the resolution of In,m and Dn,m, ∆ is the pixel pitch size, zmin and zmax are the minimal and
maximal distances recorded in Dn,m, dk = Dn,m(uk, vk), and

(−→um,−→vm,−−→wm

)
are the camera coordinates axes.

Finally, once the geometry of object n has been reconstructed from the 2D-plus-depth projection m, the
corresponding omnidirectional angular spectrum is computed on the surface of a cube whose center matches On,
with a side length of 2

λ and a sampling pitch of 1
2S , where S is the object’s spatial extent. The procedure is

shown in Figure 3b. The omnidirectional angular spectrum is given by the sum of plane waves scattered by
individual points in the point-cloud, such that

An,m(x, y, z) =

MxMy∑
k=1

√
In,m(uk, vk) exp(jφk)× exp

(
−j 2π

λ
(fxxk + fyyk + fzzk)

)
, (2)

where φk ∈ [0, 2π[is the phase of point k, set to a random value to render a diffuse scene, andfxfy
fz

 =
1√

x2 + y2 + z2

xy
z

 (3)

is the plane wave propagation vector. If M > 1, then for each viewing direction −−→wm we only compute the
omnidirectional angular spectrum at coordinates x = (x, y, z) such that −−→wm·x > 0. In that way, the occlusions are
properly taken into account. These steps are computed for each object n ∈ {1, . . . , N}, and the omnidirectional
angular spectrum is accumulated for all the viewing directions m ∈ {1, . . . ,M}, such that

An(x, y, z) =

M∑
m=1

An,m(x, y, z). (4)

2.3 Module 2: On-the-fly hologram synthesis

Once the omnidirectional angular spectrum of each scene object has been computed, the hologram is computed
in real-time during the user navigation. Let Rh = (Oh;−→xh,−→yh,−→zh) be the local coordinates system of hologram
H, whose origin Oh = (x0, y0, z0) is located at the center of the hologram and whose axes defined by

−→xh =

xh0xh1
xh2

 , −→yh =

yh0yh1
yh2

 , −→zh =

zh0zh1
zh2

 (5)

correspond to the horizontal, vertical and optical axes of the hologram, respectively. The block diagram of the
hologram synthesis module is given in Figure 4. It consists of two steps.

The first step is to build the angular spectrum of the hologram Ĥ = F {H}. To this end, the light waves
scattered by scene objects towards the hologram are extracted from their omnidirectional angular spectrum, such
that

Ĥ (fhx, fhy) =

N∑
n=1

An

(
fx

λfmax
,

fy
λfmax

,
fz

λfmax

)
exp (−j2π (sxfhx + syfhy + szfhz)) , (6)

where fxfy
fz

 =

xh0 yh0 zh0
xh1 yh1 zh1
xh2 yh2 zh2

fhxfhy
fhz

 (7)

are the hologram frequency coordinates expressed in Rn,sxsy
sz

 =

xh0 xh1 xh2
yh0 yh1 yh2
zh0 zh1 zh2

xi − x0yi − y0
zi − z0

 (8)

are the coordinates of object n expressed in Rh, and fmax and fhz are given by{
fmax = max (fx, fy, fz)

fhz =
√
λ−2 − f2hx − f2hy

(9)

Once the angular spectrum of the hologram has been computed, the last step is to compute its inverse Fourier
Transform to obtain the hologram, such that

H(x, y) = F−1
{
Ĥ
}

(x, y). (10)

3. GRAPHICS PROCESSING UNIT IMPLEMENTATION

3.1 CUDA thread organization and memory model

The proposed method was implemented using the Unity game engine on a PC system employing an Intel Core
i7-4930K CPU operating at 3.40 GHz, a main memory of 16 GB, three GPUs NVIDIA GeForce GTX 780Ti, and
an operating system of Microsoft Windows 8. To compute the CGH patterns for the three colors simultaneously,
we used one CPU thread and one GPU per color. In the implementation, all the CGH computation is done by
the GPUs using the CUDA application programming interface. The CPU threads are only used to load the input
3D scene and launch CUDA kernels. Finally, to achieve best performance on the GPU, all the computations are
performed using single precision.

Figure 5: CUDA thread organization and memory model

Figure 5 shows the CUDA thread organization and memory model used by the GPU. The parallel code
portions which are executed on the GPU are called kernels. Each kernel is composed by several threads, which
are organized in blocks. Threads within a single block can exchange data through the on-chip shared memory,
which has a short-latency but limited capacity. The CPU and GPU threads exchange data through the global
memory, which has a large capacity but long latency and limited bandwidth. Additionally, the GPU threads
can also access to a read-only texture memory, which is cached on-chip. The texture cache is optimized for 2D
spatial locality, so threads that read texture addresses that are close together will achieve best performance.

3.2 Implementation as a native plugin for Unity

Figure 6 shows the overall block diagram of our implementation, which consists of two parts: the Unity engine
game code, written in C# and Cg, and the native plugin code, written in C++ and CUDA.

Figure 6: Block diagram of our proposed implementation.

In the offline pre-computation module and for each 3D object in the scene, the game code synthesizes
orthographic 2D+depth projections from several viewpoints using a moving virtual camera with a resolution
of (Mx,My). The rendered 2D+depth images are then sent to the native plugin code, which performs the
inverse orthographic projections and Angular Spectrum computation. The resulting spectra are then stored in
CUDA structures called cubemap textures, which are optimized for 2D spatial locality and texel interpolation.
Cubemap textures are addressed using three texture coordinates x, y, and z that are interpreted as a direction
vector emanating from the center of the cube and pointing to one face of the cube.

In the hologram synthesis module, the game code manages the user’s keyboard and mouse navigation. A
script, written in C#, updates the hologram position and orientation according to the keyboard and mouse inputs
and calls the plugin code to compute the hologram. In the plugin code, the light waves corresponding to the
hologram position and orientation are extracted from the cubemap textures in parallel, using one GPU thread
per pixel. The hologram is finally obtained by computing the inverse Fourier Transform of the resulting light
field using the CUDA cuFFT library by NVIDIA. This library uses the Cooley-Tukey algorithm31 to optimize
the performance of any transform size that can be factored as 2a3b5c7d, where a, b, c and d are non-negative
integers.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we compared it with a GPU implementation of the layer-
based approach described in,8 using four sliced layers. Table 1 shows the two different hologram configurations
used in the experiments. The hologram is sampled on a regular 2D grid of resolution 1920 × 1080 (full-HD) in
the first configuration and 3840× 2160 (4k2k) in the second, with a pixel pitch of 1.0µm. The wavelengths are
set to 640nm, 532nm and 473nm for the Red, Green and Blue channels, respectively.

Parameter Value
Hologram resolutions (1920× 1080) and (3840× 2160)
Pixel pitch 1.0µm
Red wavelength 640nm
Green wavelength 532nm
Blue wavelength 473nm
Table 1: Hologram parameters used for the experiments

4.1 Hologram parameters and input 3D scenes

Figure 7 shows the five different test scenes used for the experiments. These scenes contain a 3D Mushroom
House model surrounded by a set of zero to four trees: Oak Tree, Poplar Tree, Fir Tree and Palm Tree, whose
omnidirectional angular spectrum memory occupations are shown in Table 2. As shown in this table, the pre-
computed angular spectra require from 83 MB up to 266 MB per scene object and color. As a consequence, the
total memory occupation of each 3D scene ranges from 83 MB to 1164 MB for each color, as shown in Table 3.

Object Red (MB) Green (MB) Blue (MB)
Mushroom House 83 120 152
Oak Tree 126 182 231
Poplar Tree 151 218 277
Fir Tree 145 211 266
Palm Tree 130 188 238

Table 2: Pre-computed angular spectrum memory occupation of the different scene objects

Scene Red (MB) Green (MB) Blue (MB)

Scene 1 83 120 152
Scene 2 209 302 383
Scene 3 360 520 660
Scene 4 505 731 926
Scene 5 635 919 1164

Table 3: Total memory occupation of the five different scenes

Most current consumer GPUs have more than 3 GB of global memory, so the proposed method does not
require the use of a professional GPU. However, since the memory occupation depends on the spatial extent of
each individual object, their size is limited by the available global memory on the GPU. In a future work, we
will attempt to reduce the angular spectra memory occupation using Gabor wavelet-based compression.32

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

(e) Scene 5

Figure 7: Input 3D scenes used for the experiments. In this figures, the hologram position path is shown in red.

4.2 Analysis of the calculation time

To analyze the hologram calculation framerate, we differentiate the offline and on-the-fly computation steps. The
omnidirectional angular spectrum calculation times of the different objects is shown in Table 4. As shown in this
table, the pre-computation step takes about one minute for each scene object, depending on their spatial extent.
This calculation time is incompatible with real-time computation. However, since this step does not depend on
the hologram resolution and pixel pitch, the omnidirectional angular spectrum of each scene object can be used
to compute many different holograms. This step is therefore performed only once per object and can be done
offline on a CPU or GPU cluster.

Table 5 shows the calculation times and framerates of the layer-based and proposed methods for full-HD and
4k2k holograms, respectively. For a given resolution, the hologram calculation time of the layer-based method
remains constant. This is due to the fact that the computational complexity of this approach depends only on

Object Pre-computation time
Mushroom House 33.7 s
Oak Tree 54.1 s
Poplar Tree 62.8 s
Fir Tree 60.4 s
Palm Tree 54.8 s

Table 4: Omnidirectional angular spectrum calculation time for the different scene objects

Scene
Full-HD holograms 4k2k holograms

Layer-based Proposed Layer-based Proposed
Scene 1 65.6 ms (15.2 Hz) 2.1 ms (476 Hz) 249.8 ms (4.00 Hz) 6.8 ms (147 Hz)
Scene 2 65.2 ms (15.3 Hz) 2.5 ms (400 Hz) 249.6 ms (4.01 Hz) 8.5 ms (118 Hz)
Scene 3 65.0 ms (15.4 Hz) 3.0 ms (333 Hz) 249.4 ms (4.01 Hz) 10.3 ms (97.1 Hz)
Scene 4 65.4 ms (15.3 Hz) 3.5 ms (286 Hz) 249.6 ms (4.01 Hz) 12.1 ms (82.6 Hz)
Scene 5 65.5 ms (15.3 Hz) 3.9 ms (256 Hz) 249.7 ms (4.00 Hz) 13.9 ms (71.9 Hz)

Table 5: Calculation times and framerates for full-HD and 4k2k holograms using the layer-based and proposed
methods.

the number of sliced layers, which is set to four for every scene. Using this method, the computation takes about
65ms and 249.5ms for full-HD and 4k2k holograms of resolution, respectively. This is incompatible with AR
applications, where head-motion-to-photon latency under 20 milliseconds is required.6

As shown in Table 5, the calculation time of the proposed method is much lower than the layer-based approach,
but increases linearly with the number of scene objects. For a full-HD hologram, it takes from 2.1ms to 3.9ms,
leading to framerates between 476Hz and 256Hz. For a 4k2k hologram, it varies from 6.8ms to 13.9ms, leading
to framerates between 147Hz and 71.9Hz. These experimental results demonstrate that the proposed method
can be used in holographic AR applications.

(a) Frame 26 (b) Frame 115 (c) Frame 244

Figure 8: Numerical reconstructions of 4k2k holograms computed from Scene 5 using the layer-based method.

(a) Frame 26 (b) Frame 115 (c) Frame 244

Figure 9: Numerical reconstructions of 4k2k holograms computed from Scene 5 using the proposed method.

(a) Frame 26 (b) Frame 115 (c) Frame 244

Figure 10: (Video1) Computer Graphics images synthesized from the same viewpoints. http://dx.doi.org/

doi.number.goes.here

http://dx.doi.org/doi.number.goes.here
http://dx.doi.org/doi.number.goes.here

4.3 Numerical reconstructions

To assess the proposed method in terms of visual quality, we used a hologram moving along a semi-circle path
shown in red in Figure 7, with the optical axis oriented towards the Mushroom House center. Figures 8 and 9
show the numerical reconstructions of 4k2k holograms computed from Scene 5 for different viewpoints using
the layer-based method and proposed method, respectively. The numerical reconstructions are focused on the
Mushroom House door. For the sake of comparison, Computer Graphics images synthesized from the same
viewpoints are shown in Figure 10.

As shown in Figure 8, the Mushroom House appears all in focus in the numerical reconstructions of holograms
computed using the layer-based method. This is due to the fact that since we used only four sliced layers, the
Mushroom House is entirely located within one slice. As a consequence, the 3D geometry of individual objects
is completely discarded using this method, appearing as flat 2D shapes in optical reconstructions. Moreover, as
shown in this figure, when objects span across two different slices, the separation between consecutive layers is
clearly visible, creating strong visual artifacts in the numerical reconstructions. To overcome these issues, the
number of layers should be set to at least 50. However, in that case, the calculation time increases to several
seconds per frame for a 4k2k hologram, preventing this method from being used for real-time hologram synthesis.

On the contrary, as shown in Figure 9, the proposed method accurately reproduces the 3D scene geometry
and colors with a continuous depth of focus. Moreover, while the optical axis of the hologram is always oriented
towards the Mushroom House center, the trees surrounding the house are accurately reproduced as well, showing
that the hologram can have any arbitrary position and orientation relative to scene objects. Nevertheless, the
proposed method does not handle occlusions between independent objects, limiting the realism of the displayed
images. To overcome this issue, light shielding techniques will be investigated in a future work.

5. CONCLUSION

In this paper we proposed, implemented and tested a novel approach for real-time calculation of holograms based
on the omnidirectional Angular Spectrum decomposition of a 3D scene. Unlike previously proposed methods, our
approach provides accurate geometry and color reproduction for several independent scene objects and arbitrary
user positions and orientations. Experimental results demonstrate the computation of full-HD holograms at
more than 256 frames per second and 4k2k holograms at 72 frames per second, paving the way for Augmented
Reality applications.

Despite its many advantages, our method could benefit from several further investigations. First, while
self-occlusions within each object are accurately reproduced, it does not take into account occlusions between
independent scene objects, urging the need for light shielding techniques specifically dedicated to this approach.
Another limitation lies on the fact that since the omnidirectional Angular Spectra memory occupation depends
on the spatial extent of each individual object, their size is limited by the available global memory on the GPU.
In a future work, we will investigate data compression techniques to reduce this memory usage.

Finally, a possible further investigation could target the optimal derivation of initial directions for the Angular
Spectrum representation. This could take into account the geometry of the objects and in particular their
convexity. These directions could also be denser in areas with high specularity. Altogether, an automatic
shape/material adaptive derivation of the Angular Spectrum directions could lead to visually optimize the
method.

ACKNOWLEDGMENTS

The Mushroom House, Oak Tree, Poplar Tree, Fir Tree and Palm Tree 3D models were downloaded from the
Unity Asset Store (https://assetstore.unity.com).

This work has been achieved within the Research and Technology Institute b<>com, dedicated to digital
technologies. It has been funded by the French government through the National Research Agency (ANR)
Investment referenced ANR-A0-AIRT-07.

REFERENCES

[1] Schnars, U. and Jüptner, W., [Digital Holography: Digital Hologram Recording, Numerical Reconstruction,
and Related Techniques], Springer Science & Business Media (Dec. 2005).

[2] Goodman, J. W., [Introduction to Fourier Optics], Roberts and Company Publishers, Englewood, Colo,
3rd ed. (2005).

[3] Leith, E. N. and Upatnieks, J., “Wavefront Reconstruction with Diffused Illumination and Three-
Dimensional Objects,” Journal of the Optical Society of America 54, 1295–1301 (Nov. 1964).

[4] Lohmann, A. W. and Paris, D. P., “Binary Fraunhofer Holograms, Generated by Computer,” Applied
Optics 6, 1739–1748 (Oct. 1967).

[5] Maimone, A., Georgiou, A., and Kollin, J. S., “Holographic Near-eye Displays for Virtual and Augmented
Reality,” ACM Trans. Graph. 36, 85:1–85:16 (July 2017).

[6] Bailey, R. E., Iii, J. J. A., and Williams, S. P., “Latency requirements for head-worn display S/EVS ap-
plications,” in [Enhanced and Synthetic Vision 2004], 5424, 98–109, International Society for Optics and
Photonics (Aug. 2004).

[7] Brown, B. R. and Lohmann, A. W., “Complex Spatial Filtering with Binary Masks,” Applied Optics 5,
967–969 (June 1966).

[8] Zhao, Y., Cao, L., Zhang, H., Kong, D., and Jin, G., “Accurate calculation of computer-generated holograms
using angular-spectrum layer-oriented method,” Optics Express 23, 25440 (Oct. 2015).

[9] Gilles, A. and Gioia, P., “Real-time layer-based computer-generated hologram calculation for the Fourier
transform optical system,” Applied Optics 57, 8508–8517 (Oct. 2018).

[10] Leseberg, D. and Frère, C., “Computer-generated holograms of 3-D objects composed of tilted planar
segments,” Applied Optics 27, 3020–3024 (July 1988).

[11] Lucente, M. E., “Interactive computation of holograms using a look-up table,” Journal of Electronic Imag-
ing 2, 28–34 (Jan. 1993).

[12] Kim, S.-C. and Kim, E.-S., “Effective generation of digital holograms of three-dimensional objects using a
novel look-up table method,” Applied Optics 47, D55–D62 (July 2008).

[13] Wei, H., Gong, G., and Li, N., “Improved look-up table method of computer-generated holograms,” Applied
Optics 55, 9255–9264 (Nov. 2016).

[14] Shimobaba, T., Masuda, N., and Ito, T., “Simple and fast calculation algorithm for computer-generated
hologram with wavefront recording plane,” Optics Letters 34, 3133–3135 (Oct. 2009).

[15] Hasegawa, N., Shimobaba, T., Kakue, T., and Ito, T., “Acceleration of hologram generation by optimizing
the arrangement of wavefront recording planes,” Applied Optics 56, A97–A103 (Jan. 2017).

[16] Plesniak, W., “Incremental update of computer-generated holograms,” Applied Optics 42, 1560–1571 (June
2003).

[17] Kwon, M.-W., Kim, S.-C., and Kim, E.-S., “Three-directional motion-compensation mask-based novel
look-up table on graphics processing units for video-rate generation of digital holographic videos of three-
dimensional scenes,” Applied Optics 55, A22 (Jan. 2016).

[18] Shimobaba, T., Nagahama, Y., Kakue, T., Takada, N., Okada, N., Endo, Y., Hirayama, R., Hiyama, D.,
and Ito, T., “Calculation reduction method for color digital holography and computer-generated hologram
using color space conversion,” Optical Engineering 53, 024108–024108 (Feb. 2014).

[19] Shimobaba, T., Makowski, M., Nagahama, Y., Endo, Y., Hirayama, R., Hiyama, D., Hasegawa, S., Sano, M.,
Kakue, T., Oikawa, M., Sugie, T., Takada, N., and Ito, T., “Color computer-generated hologram generation
using the random phase-free method and color space conversion,” Applied Optics 55, 4159–4165 (May 2016).

[20] Chen, J.-S. and Chu, D. P., “Improved layer-based method for rapid hologram generation and real-time
interactive holographic display applications,” Optics Express 23, 18143–18155 (July 2015).

[21] Gilles, A., Gioia, P., Cozot, R., and Luce Morin, “Fast generation of complex modulation video holograms
using temporal redundancy compression and hybrid point-source/wave-field approaches,” in [Applications
of Digital Image Processing XXXVIII], Proc. SPIE 9599, 95990J–95990J–14 (Sept. 2015).

[22] Gilles, A., Gioia, P., Cozot, R., and Morin, L., “Hybrid approach for fast occlusion processing in computer-
generated hologram calculation,” Applied Optics 55, 5459–5470 (July 2016).

[23] Yang, F., Kaczorowski, A., and Wilkinson, T. D., “Fast precalculated triangular mesh algorithm for 3D
binary computer-generated holograms,” Applied Optics 53, 8261–8267 (Dec. 2014).

[24] Ahrenberg, L., Benzie, P., Magnor, M., and Watson, J., “Computer generated holograms from three dimen-
sional meshes using an analytic light transport model,” Applied Optics 47, 1567–1574 (Apr. 2008).

[25] Park, J.-H., Kim, S.-B., Yeom, H.-J., Kim, H.-J., Zhang, H., Li, B., Ji, Y.-M., Kim, S.-H., and Ko, S.-
B., “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated
hologram,” Optics Express 23, 33893 (Dec. 2015).

[26] Askari, M., Kim, S.-B., Shin, K.-S., Ko, S.-B., Kim, S.-H., Park, D.-Y., Ju, Y.-G., and Park, J.-H., “Oc-
clusion handling using angular spectrum convolution in fully analytical mesh based computer generated
hologram,” Optics Express 25, 25867–25878 (Oct. 2017).

[27] Sando, Y., Barada, D., and Yatagai, T., “Fast calculation of computer-generated holograms based on 3-D
Fourier spectrum for omnidirectional diffraction from a 3-D voxel-based object,” Optics Express 20, 20962–
20969 (Sept. 2012).

[28] Sando, Y., Barada, D., and Yatagai, T., “Hidden surface removal of computer-generated holograms for
arbitrary diffraction directions,” Applied Optics 52, 4871 (July 2013).

[29] Sando, Y., Barada, D., Jackin, B. J., and Yatagai, T., “Fast calculation method for computer-generated
cylindrical holograms based on the three-dimensional Fourier spectrum,” Optics Letters 38, 5172–5175 (Dec.
2013).

[30] Straßer, W., Schnelle Kurven- und Flächendarstellung auf grafischen Sichtgeräten, thesis, Technischen Uni-
versität Berlin (Sept. 1974).

[31] Cooley, J. W. and Tukey, J. W., “An algorithm for the machine calculation of complex Fourier series,”
Mathematics of Computation 19(90), 297–301 (1965).

[32] El Rhammad, A., Gioia, P., Gilles, A., Cagnazzo, M., and Pesquet-Popescu, B., “Color digital hologram
compression based on matching pursuit,” Applied Optics 57, 4930–4942 (June 2018).

	Introduction
	Proposed method
	Overview
	Module 1: Offline pre-computation
	Module 2: On-the-fly hologram synthesis

	Graphics Processing Unit implementation
	CUDA thread organization and memory model
	Implementation as a native plugin for Unity

	Experimental results
	Hologram parameters and input 3D scenes
	Analysis of the calculation time
	Numerical reconstructions

	Conclusion

