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Abstract: On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and 81 
Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and 82 
severely damaging two hydropower projects. Over 200 people were killed or are missing. Our 83 
analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos 84 
reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti 85 
Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile 86 
debris flow that transported boulders >20 m in diameter, and scoured the valley walls up to 220 87 
m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure 88 
resulted in a disaster, which highlights key questions about adequate monitoring and sustainable 89 
development in the Himalaya as well as other remote, high-mountain environments. 90 

 91 
One-Sentence Summary: The Chamoli disaster was triggered by an extraordinary rock and ice 92 
avalanche and debris flow, that destroyed infrastructure and left 204 people dead or missing. 93 
	94 
Main	Text: Steep slopes, high topographic relief, and seismic activity make mountain regions 95 
prone to extremely destructive mass movements (e.g. 1). The sensitivity of glaciers and 96 
permafrost to climate changes is exacerbating these hazards (e.g. 2–7). Hazard cascades, where 97 
an initial event causes a downstream chain reaction (e.g. 8), can be particularly far-reaching, 98 
especially when they involve large amounts of water (7, 9, 10). An example is the 1970 99 
Huascarán avalanche, Peru, that was one of the largest, farthest-reaching, and deadliest (~6000 100 
lives lost) mass flows (11). Similarly, in 2013, over 4,000 people died at Kedarnath, 101 
Uttarakhand, India, when a moraine-dammed lake breached following heavy rainfall and 102 
snowmelt (12–14). Between 1894 and 2021, the Uttarakhand Himalaya has witnessed at least 16 103 
major disasters from flash floods, landslides, and earthquakes (14, 15). 104 

Human activities that intersect with the mountain cryosphere can increase risk (16) and are 105 
common in Himalayan valleys where hydropower development is proliferating due to growing 106 
energy demands, the need for economic development, and efforts to transition into a low-carbon 107 
society (17, 18). Hydropower projects in Uttarakhand and elsewhere in the region have been 108 
opposed over their environmental effects, public safety, and issues associated with justice and 109 
rehabilitation (19, 20). 110 

On 7 Feb 2021, a massive rock and ice avalanche from the 6063 m-high Ronti Peak generated a 111 
cascade of events that caused more than 200 deaths or missing persons, as well as damage or 112 
destruction of infrastructure that most notably included two hydropower projects in the 113 
Rishiganga and Dhauliganga valleys (Fig. 1, table S1) (21). Here, we present a rapid and 114 
comprehensive reconstruction of the hazard cascade. We leveraged multiple types of remote 115 
sensing data, eyewitness videos, numerical modeling, seismic data, and reconnaissance field 116 
observations in a collaborative, global effort to understand this event. We also describe the 117 
antecedent conditions and the immediate societal response, allowing us to consider some wider 118 
implications for sustainable development in high-mountain environments. 119 

February 7 2021 hazard cascade 120 
At 4:51 UTC (10:21 Indian Standard Time [IST]), about 26.9x106 m3 (95% confidence interval: 121 
26.5-27.3x106 m3) of rock and ice (Fig. 1, 2) detached from the steep north face of Ronti Peak at 122 
an elevation of about 5,500 m asl, and impacted the Ronti Gad (‘gad’ means rivulet) valley floor 123 
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about 1,800 m below. We estimated the onset of this avalanche and its velocity by analyzing 124 
seismic data from two distant stations, 160 and 174 km southeast of the source (Fig. S6) (22, 125 
§5.1). The initial failure happened between 4:51:13 and 4:51:21 UTC, based on a source-sensor 126 
wave travel-time correction. We attributed a high-frequency signal 55 to 58 seconds later to the 127 
impact of the avalanche on the valley bottom, indicating a mean speed of the rock and ice 128 
avalanche of between 57 and 60 ms-1 (205 to 216 km h-1) down the ~35° steep mountain face.  129 
 130 
 131 

 132 
Fig. 1. Overview of the Chamoli disaster, Uttarakhand, India. (A) 3D rendering of the local 133 
geography, with labels for main place names mentioned in the text. HPP stands for hydropower 134 
project. (B-D) Pre- and post-event satellite imagery of the site of the collapsed rock and glacier 135 
block, and the resulting scar. Note snow cover in the region just before the event (C). The red 136 
arrows in (C) mark the fracture that became the headscarp of the landslide (22, §3.2 and fig. S4). 137 
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The arrow in D points to a remaining part of the lower eastern glacier. (E) 3D rendering of the 138 
scar. (F) Schematic of failed mass of rock and ice. Satellite imagery in (A–D) and (E) is from 139 
Sentinel-2 (Copernicus Sentinel Data 02-10-2021) and Pléiades-HR (© CNES 02-10-2021, 140 
Distribution AIRBUS DS), respectively. 141 
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 143 
Fig. 2. Satellite-derived elevation data of the Chamoli hazard cascade. (A) Perspective 144 
view of the area, from the landslide source at Ronti Peak to the Rishiganga and Tapovan 145 
Vishnugad hydropower projects (black stars). (B) Elevation change over the landslide scar 146 
based on DEM-differencing between September 2015 and February 10-11, 2021. (C) The 147 
proximal valley floor, with geomorphic interpretations of the flow path. (D) Confluence of 148 
Ronti Gad and Rishiganga River. (E-J) Topographic profiles showing elevation change due to 149 
rock/icefall and sediment deposition for locations shown in (B-D). Elevation loss on the inner 150 
bank in (J) is primarily due to the destruction of forest. 151 
 152 
Differencing of high-resolution digital elevation models (DEMs) revealed a failure scar that 153 
has a vertical difference of up to 180 m and a slope-normal thickness of ~80 m on average, 154 
and a slab width up to ~550 m, including both bedrock and overlying glacier ice (Fig. 2). The 155 
lowermost part of the larger eastern glacier is still in place and was not eroded by the rock and 156 
ice avalanche moving over it (Fig. 1D), suggesting that the avalanche may have become 157 
airborne for a short period during its initial descent. Optical feature tracking detected 158 
movement of the failed rock block as early as 2016, with the largest displacement in the 159 
summer months of 2017 and 2018 (fig. S4). This movement opened a fracture up to 80 m 160 
wide in the glacier and into the underlying bedrock (Fig. 1, fig. S5). Geodetic analysis and 161 
glacier thickness inversions indicate that the collapsed mass comprised ~80% rock and ~20% 162 
glacier ice by volume (22, §5.2, fig. S10). Melt of this ice was essential to the downstream 163 
evolution of the flow, as water transformed the rock and ice avalanche into a highly mobile 164 
debris flow (cf. 23, 24). Media reports (25) suggest that some ice blocks (diameter <1 m) were 165 
found in tunnels at the Tapovan Vishnugad hydropower site (hereafter referred to as the 166 
Tapovan project), and some videos of the debris flow (22, §5.3) show floating blocks that we 167 
interpret as ice, indicating that some of the ice survived at considerable distance downstream. 168 
Notably, and in contrast to most previously documented rock avalanches, very little debris is 169 
preserved at the base of the failed slope. This is likely due to the large volumes of water (22, 170 
§5.5) that resulted in a high mobility of the flow. 171 
 172 
Geomorphic mapping based on very high-resolution satellite images (Table S2) acquired 173 
during and immediately after the event, provides evidence of the flow evolution. We detected 174 
four components of the catastrophic mass flow, beginning with the main rock and ice 175 
avalanche from Ronti Peak described above (component one).  176 
 177 
The second component is “splash deposits” (cf. 26–28), which are relatively fine-grained, wet 178 
sediments that became airborne as the mass flow ran up adjacent slopes. For example, the 179 
rock and ice avalanche traveled up a steep slope on the east side of the valley opposite the 180 
source zone, and some material became airborne, being deposited at a height of about 120 m 181 
above the valley floor. These deposits include boulders up to ~8 m (a-axis length). The bulk of 182 
the flow then traveled back to the proximal (west) side of the valley and rode up a ridge ~220 183 
m above the valley floor, before becoming airborne and splashing into a smaller valley to the 184 
west (Fig. 2C, figs. S15, S18). Boulders up to 13 m (a-axis length) were deposited near the top 185 
of the ridge. Vegetation remained intact on the lee side of some ridges that were overrun by 186 
the splashing mass. 187 
 188 
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A third component of the mass flow is reflected in airborne dust deposition. A dust cloud is 189 
visible in PlanetScope imagery from 5:01 UTC and 5:28 UTC February 7 (10:31 and 10:58 190 
IST). A smooth layer of debris, estimated from satellite imagery to be only a few cm in 191 
thickness, was deposited higher than the splash deposits, up to ~500 m above the valley floor, 192 
although the boundary between the airborne dust deposition and other mass flow deposits is 193 
indistinct in places. Signs of the largely airborne splash and dust components can be observed 194 
over ~3.5 km downstream of the valley impact site. The avalanche also generated a powerful 195 
air blast (cf. 1) that flattened about 0.2 km2 of forest on the west side of the Ronti Gad valley 196 
(Fig. 2C).  197 
 198 
After the rock and ice avalanche impacted the valley floor, most of it moved downvalley in a 199 
northwesterly direction. Frictional heating of the ice in the avalanche generated liquid water 200 
that allowed the transition in flow characteristics, becoming more fluid downvalley, creating a 201 
flow consisting of sediment, water, and blocks of ice. The uppermost part of the valley floor 202 
deposits is around 0.75 x106 m3, with remarkably few large boulders that typically form the 203 
upper surface of rock avalanches (e.g. 29, 30) (Fig. 2G, fig. S16). The mass flow traveled 204 
downvalley and superelevated (runup elevation) up to ~130 m above the valley floor around 205 
bends (fig. S17). Clear trimlines, at some places at multiple levels, are evident along much of 206 
the flow path (e.g. Fig. 2C, D).  207 
 208 
At the confluence of the Ronti Gad and Rishiganga River, a ~40 m thick deposit of debris 209 
blocked the Rishiganga valley (Fig. 2H, I). Deposition in this area probably resulted from 210 
deceleration of the mass flow at a sharp turn to the west. During the days following the event, 211 
a lake ~700 m long formed behind these deposits in the Rishiganga valley upstream of its 212 
confluence with Ronti Gad. The lake was still present two months later and had grown since 213 
the initial formation. Substantial deposition occurred about 1 km downstream of the 214 
confluence, where material up to ~100 m thick was deposited on the valley floor (Fig. 2J). 215 
DEM differencing shows that the total deposit volume at the Ronti Gad-Rishiganga River 216 
confluence and just downstream was ~8x106 m3. These large sediment deposits likely indicate 217 
the location where the flow transitioned to a debris flow (31) - the fourth component. 218 
 219 
A field reconnaissance by co-authors from the Wadia Institute of Himalayan Geology 220 
indicates that the impact of debris flow material (sediment, water, ice, woody debris) at the 221 
confluence of Rishiganga River with Dhauliganga River created a bottleneck and forced some 222 
material 150-200 m up the Dhauliganga (fig. S15). The release of the water a few minutes 223 
later led to the destruction of a temple on the north bank of the Dhauliganga. 224 
 225 
A substantial fraction of the fine-grained material involved in the event was transported far 226 
downstream. This more dilute flow could be considered a fifth component. Approximately 24 227 
hours after the initial landslide, the sediment plume was visible in PlanetScope and Sentinel-2 228 
imagery in the hydropower project’s reservoir on the Alaknanda River at Srinagar, about 150 229 
km downstream from the source. About 2½ weeks later, increased turbidity was observed at 230 
Kanpur on the Ganges River, ~900 km from the source. An official of the Delhi water quality 231 
board reported that 8 days after the Chamoli disaster, a chief water source for the city - a canal 232 
drawing directly from the Ganga River - had an unprecedented spike in suspended sediment 233 
(turbidity) 80 times the permissible level (32). The amount of corresponding sedimentation in 234 
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hydropower reservoirs and rivers is unknown, but possibly substantial, and may contribute to 235 
increased erosion on turbine blades, and infilling of reservoirs in the years to come. 236 
 237 
Analysis of eyewitness videos permitted estimation of the propagation of the flow front below 238 
the Ronti Gad-Rishiganga River confluence (Fig. 3, 22, §5.3). The maximum frontal velocity 239 
reconstructed from these videos is ~25 m s-1 near the Rishiganga hydropower project (fig. 240 
S11, table S5), which is about 15 km downstream of the rock and ice avalanche source. Just 241 
upstream of the Tapovan project (another ~10 km downriver), the velocity decreased to ~16 m 242 
s-1, and just downstream of Tapovan (26 km from source), the velocity was ~12 m s-1. The 243 
large reduction in frontal velocity is likely related to impoundment behind the Tapovan 244 
project dam. Analysis of PlanetScope images (at 5:01 UTC and 5:28 UTC) suggests that the 245 
average frontal velocity between Raini (at Rishiganga hydropower project) and Joshimath (16 246 
km downstream) was ~10 m s-1. We also estimated mean discharge from the videos to be 247 
between ~8,200 and ~14,200 m3 s-1 at the Rishiganga hydropower project and between ~2,900 248 
and ~4,900 m3 s-1 downstream of the Tapovan project. Estimates for the debris flow duration 249 
are complicated by uncertain volumes, water contents, discharge amounts, and shapes of 250 
discharge curves at specific locations. For Rishiganga, for example, we estimate a duration 251 
of 10-20 minutes, a number that appears realistic from the information available. 252 
 253 

 254 
Fig. 3. Sample video frames used to analyse flood velocity and discharge. (A,B) Flow 255 
front arrives and rushes through the valley upstream of the Rishiganga project (location P1 in 256 
Fig. 4). (C) Flow front arrives at Tapovan project’s dam (location P3). (D) The reservoir is 257 
being filled quickly; spillways are damaged. (E) The dam is overtopped. (F) Collapse of 258 
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remaining structures. (G-J) Flow front proceeds down the valley below the Tapovan dam 259 
(location P4); spreading into the village in (J).  260 
 261 
We conducted numerical simulations with r.avaflow (22, §5.4), which indicate that the rock 262 
and ice avalanche could not have transitioned to the debris flow seen farther downstream 263 
without an accompanying reduction in the debris volume. If such a direct transition had 264 
occurred, the modeling suggests that the flow discharge would be approximately one order of 265 
magnitude higher than the estimates derived from video recordings (22, §5.4). The deposition 266 
patterns we observed in satellite imagery support the hypothesis that the vicinity of the Ronti 267 
Gad-Rishiganga River confluence played a key role in flow transition. Our numerical 268 
simulations are consistent with the escape of a fluid-rich front from the rock and ice avalanche 269 
mass near this confluence (Fig. 4A), reproducing mapped trimlines and estimated flow 270 
velocities and discharges down to Tapovan (Fig. 4B, C). Our simulated discharge estimates at 271 
P1–P4 are within the ranges derived from the video analysis (Fig. 4D, 22, §5.3), and 272 
simulated travel times between P0-P3 (Fig. 4D) show excellent agreement (<5% difference) 273 
with travel times inferred from seismic data, videos, and satellite imagery. We found less 274 
agreement between the numerical model results and the reconstructions from videos farther 275 
downstream due to the complex effects of the Tapovan project in slowing the flow, which are 276 
at a finer scale than is represented by our model.  277 
 278 
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 279 
Fig. 4. Flow evolution scenarios and simulation. (A) Schematic of the evolution of the flow 280 
from the source to Tapovan. (B) Maximum flow height simulated with r.avaflow, showing the 281 
observed trim lines for comparison. P0 is the location of the velocity estimate derived from 282 
seismic data, P1-P4 are locations of velocity estimates based on videos and satellite images. 283 
(C) Along-profile evolution of flow velocity and fractions of rock/debris, ice, and water 284 
simulated with r.avaflow. (D) Simulated and estimated peak discharges and travel times at 285 
above locations. In the legend labels, (front) refers to the flow front whereas (main) refers to 286 
the point of maximum flow momentum.  287 
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Causes and implications 288 

The February 7 rock and ice avalanche was a very large event with an extraordinarily high fall 289 
height that resulted in a disaster due to its extreme mobility and the presence of downstream 290 
infrastructure. The ~3700 m vertical drop to the Tapovan HPP is surpassed clearly by only 291 
two known events in the historic record, namely the 1962 and 1970 Huascaran avalanches 292 
(11), while its mobility (H/L = 0.16 at Tapovan, where H is fall height and L is flow length) is 293 
exceeded only by a few recent glacier detachments (10). The location of the failure was due to 294 
the extremely steep and high relief of Ronti Peak. The sheared nature of the source rocks and 295 
contrasting interbedded rock types likely conditioned the failure (22, §1). The large and 296 
expanding fracture (Fig 1B, C) at the head scarp may have allowed liquid water to penetrate 297 
into the bedrock, increasing pore-water pressures or enhancing freeze-thaw weathering. 298 
 299 
Nearly all (190) of the 204 people either killed or missing in the disaster (22, §2, Table S1) 300 
were workers at the Rishiganga (13.2 MW) and Tapovan (520 MW) project sites (33). Direct 301 
economic losses from damage to the two hydropower structures alone are over 223 million 302 
USD (34, 35). The high loss of human life and infrastructure damage was due to the debris 303 
flow, and not the initial rock and ice avalanche. However, not all large, high-mountain rock 304 
and ice avalanches transform into highly mobile debris flows that cause destruction far from 305 
their source (9).  306 
 307 
Our energy balance estimates indicate that most of the ~5-6x106 m3 volume of glacier ice first 308 
warmed (along with a portion of the rock mass) from approximately -8ºC to 0ºC and then 309 
melted through frictional heating during the avalanche as it descended to the Rishiganga 310 
valley, involving a drop of approximately 3400 m (22, §5.5). Potential other sources of water 311 
were considered, including glacier lake outburst floods, catastrophic drainage of water from 312 
reservoirs such as surface lakes, ice deposited by earlier avalanches, and enlithic reservoirs. 313 
No evidence for such sources was observed in available remote sensing data. A slow-moving 314 
storm system moved through the area in the days before Feb 7. We estimate that a ~220,000–315 
360,000 m3 contribution from precipitation over the Ronti Gad basin was a minor component 316 
of the flow, representing only 4-7% of the water equivalent contained in the initial glacier ice 317 
detachment. Similarly, while water already present in the river, water ejected from 318 
groundwater, melting snow, wet sediment, and water released from the run-of-the-river 319 
hydroelectric project may have all contributed to the debris flow, even when taken together 320 
(with generous error margins), these sum to a small amount compared to the probable range of 321 
water volumes in the mass movement. The major effect of ice melt on the mobility of rock 322 
and ice avalanches is documented (9, 10), but it appears that the combination of the specific 323 
rock/ice fraction (~80/20% by volume) and large fall height of the rock and ice avalanche led 324 
to a rare, severe event during which nearly all of the ice melted.  325 
 326 

Soon after the disaster, media reports and expert opinions started to circulate, postulating links 327 
of the event to climate change. Recent attribution studies demonstrated that glacier mass 328 
loss on global, regional and local scales is to a large extent attributable to anthropogenic 329 
greenhouse gas forcing (36, 37). High-mountain slope failures in rock and ice, however, 330 
pose additional challenges to attribution due to multiple factors and processes involved in 331 
such events. While long-term trends of increasing slope failure occurrence in some regions 332 
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could be attributed to climate change (16, 38, 39), attribution of single events such as the 333 
Chamoli event remains largely elusive. Nevertheless, certain elements of the Chamoli event 334 
have potential links to climate, and weather, as described below. Furthermore, the Chamoli 335 
event may be seen in the context of a change in geomorphological sensitivity (40) and 336 
might therefore be seen as a precursor for an increase in such events as climate warming 337 
proceeds. 338 
 339 
The stability of glacierized and perennially frozen high-mountain slopes is indeed particularly 340 
sensitive to climate change (16). Our analysis suggests regional climate and related 341 
cryospheric change could have interacted in a complex way with the geologic and topographic 342 
setting to produce this massive slope failure. Air and surface temperatures have been 343 
increasing across the Himalayan region, with greater rates of warming during the second half 344 
of the 20th Century and at higher elevations (41, 42). Most glaciers in the Himalaya are 345 
shrinking and mass loss rates are accelerating across the region (22, §1, 43–46). Glacier 346 
shrinkage uncovers and destabilizes mountain flanks and strongly alters the hydrological and 347 
thermal regimes of the underlying rock. 348 
 349 
The detachment zone at Ronti Peak is about 1 km higher than the regional lower limit of 350 
permafrost at around 4,000 to 4,500 m asl., as indicated by rock glaciers in the region and 351 
global permafrost maps (47, 48). Exposed rock on the north face of Ronti Peak likely contains 352 
cold permafrost with rock temperatures several degrees below 0°C. In connection with 353 
glaciers, however, ground temperatures can be locally higher. The ice-free south face of Ronti 354 
Peak is certainly substantially warmer with rock temperatures perhaps around or above 0°C, 355 
causing strong south-to-north lateral heat fluxes (49). Permafrost temperatures are increasing 356 
worldwide, in particular in cold permafrost (16, 50, 51), leading to long-term and deep-seated 357 
thermal anomalies, and even permafrost degradation (49). Increasing ground temperatures at 358 
the failure site of the Chamoli avalanche could have resulted in reduced strength of the frozen 359 
rock mass by altering the rock hydrology and the mechanical properties of discontinuities and 360 
the failed rock mass (52).  361 
 362 
The geology of the failed rocks includes several observed or inferred critical attributes (22, 363 
§1): (i) The rocks are cut by multiple directions of planar weaknesses; the failed mass 364 
detached along four of these. (ii) The rock mass is close to a major thrust fault, with many 365 
local shear fractures, which - along with other discontinuities - would have facilitated aqueous 366 
chemical weathering. (iii) The rock types (schist and gneiss), even when nominally 367 
unweathered, contain abundant soft, platy, oriented, and geomechanically anisotropic minerals 368 
(phyllosilicates and kyanite especially); Weathering will further weaken these rocks, and they 369 
will be more likely to disintegrate into fine material upon impact, which would influence the 370 
rheology and likely enhance the mobility of the mass flow.    371 
 372 
Importantly, the 7 Feb failure considerably changed the stress regime and thermal conditions 373 
in the area of the detachment zone. Only detailed investigations and monitoring will 374 
determine whether rock or ice adjacent to the failed block (including a large hanging rock 375 
block above the scarp) were destabilized due to these changes and present an ongoing hazard. 376 
Similarly, the impoundment at the Ronti Gad-Rishiganga River confluence requires careful 377 
monitoring as embedded ice in the dam deposits may melt with warmer temperatures, 378 
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increasing the risk of an outburst flood by reducing lake freeboard of the dam, and/or reducing 379 
structural coherence of the dam. 380 
 381 
Videos of the event, including the ones broadcast on social media in real time (22, §5.3), 382 
showed that the people directly at risk had little to no warning. This leads us to question what 383 
could have happened if a warning system had been installed. We estimate that a suitably 384 
designed early warning system might have allowed for 6 to 10 minutes of warning before the 385 
arrival of the debris flow at the Tapovan project (perhaps up to 20 minutes if situated near the 386 
landslide source, or if a dense seismic network was leveraged (53)), which may have provided 387 
enough time to evacuate at least some workers from the power project. After the event, a new 388 
flood warning system was installed near Raini (22, §2.1, fig. S15D). Studies show that early 389 
warning system design and installation is technically feasible but rapid communication of 390 
reliable warnings and appropriate responses by individuals to alerts, are complex (54). 391 
Previous research indicates that effective early warning requires public education, including 392 
drills, which would increase awareness of potential hazards and improve ability to take action 393 
when disaster strikes (55, 56). Considering the repeated failures from the same slope in the 394 
past two decades (22, §1), public education and drills in the Chamoli region would be very 395 
beneficial.  396 

Conclusions 397 

On the morning of 7 Feb 2021, a large rock and ice avalanche descended the Ronti Gad 398 
valley, rapidly transforming into a highly mobile debris flow that destroyed two hydropower 399 
plants and left more than 200 people dead or missing. We identified three primary drivers for 400 
the severity of the Chamoli disaster: (1) the extraordinary fall height, providing ample 401 
gravitational potential energy; (2) the worst-case rock:ice ratio, which resulted in almost 402 
complete melting of the glacier ice, enhancing the mobility of the debris flow; and (3) the 403 
unfortunate location of multiple hydropower plants in the direct path of the flow. 404 

The debris flow disaster started as a wedge failure sourced in bedrock near the crest of Ronti 405 
Peak, and included an overlying hanging glacier. The rock almost completely disintegrated in 406 
the ~1 minute that the wedge took to fall (~5500 – 3,700 m asl), and the rock:ice ratio of the 407 
detached mass was almost exactly the critical value required for near-complete melting of the 408 
ice. As well as having a previous history of large mass movements, the mountain is riven with 409 
planes and points of structural weakness, and further bedrock failures as well as large ice and 410 
snow avalanches are inevitable. 411 

Videos of the disaster were rapidly distributed through social media, attracting widespread 412 
international media coverage and catalyzing an immediate response from the international 413 
scientific community. This response effort quickly leveraged images from modern 414 
commercial and civilian government satellite constellations that offer exceptional resolution, 415 
"always-on" cadence, rapid tasking, and global coverage. This event demonstrated that if 416 
appropriate human resources and technologies are in place, post-disaster analysis can be 417 
reduced to days or hours. Nevertheless, ground-based evidence remains crucial for clarifying 418 
the nature of such disasters.  419 
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Although we cannot attribute this individual disaster specifically to climate change, the 420 
possibly increasing frequency of high-mountain slope instabilities can likely be related to 421 
observed atmospheric warming and corresponding long-term changes in cryospheric 422 
conditions (glaciers, permafrost). Multiple factors beyond those listed above contributed to the 423 
Chamoli rock and ice avalanche, including the geologic structure and steep topography, 424 
possible long-term thermal disturbances in permafrost bedrock induced by atmospheric 425 
warming, stress changes due to the decline and collapse of adjacent and overlying glaciers, 426 
and enhanced melt water infiltration during warm periods.  427 

The Chamoli event also raises important questions about clean energy development, climate 428 
change adaptation, disaster governance, conservation, environmental justice, and sustainable 429 
development in the Himalaya and other high-mountain environments. This stresses the 430 
importance of a better understanding of the cause and impact of mountain hazards, leading to 431 
disasters. While the scientific aspects of this event are the focus of our study, we cannot 432 
ignore the human suffering and emerging socio-economic impacts that it caused. It was the 433 
human tragedy that motivated the authors to examine available data and explore how these 434 
data, analyses, and interpretations can be used to help inform decision-making at the ground 435 
level. 436 

The disaster tragically revealed the risks associated with the rapid expansion of hydropower 437 
infrastructure into increasingly unstable territory. Enhancing inclusive dialogues among 438 
governments, local stakeholders and communities, private sector, and the scientific 439 
community could help assess, minimize, and prepare for existing risks. The disaster indicates 440 
that the long-term sustainability of planned hydroelectric power projects must account for 441 
both current and future social and environmental conditions, while mitigating risks to 442 
infrastructure, personnel, and downstream communities. Conservation values carry elevated 443 
weight in development policies and infrastructure investments where the needs for social and 444 
economic development interfere with areas prone to natural hazards, putting communities at 445 
risk. 446 

 447 
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