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Abstract 37 

Objectives. To assess the extent to which food items are a source of extended-spectrum β-38 

lactamase (ESBL)-producing Escherichia coli (ESBL-Ec) and ESBL-producing Klebsiella 39 

pneumoniae (ESBL-Kp) for humans in five European cities. 40 

Methods. We sampled 122 human polluted (hp)-environments (sewers and polluted rivers, as 41 

a proxy of human contamination) and 714 food items in Besançon (France), Geneva 42 

(Switzerland), Sevilla (Spain), Tübingen (Germany), and Utrecht (The Netherlands). 43 

254 ESBL-Ec and 39 ESBL-Kp isolates were cultured. All genomes were fully sequenced to 44 

compare their sequence types (ST) and core genomes, along the distribution of blaESBL genes 45 

and their genetic supports (i.e. chromosome or plasmid). 46 

Results. Sequence data revealed that ESBL-Ec and ESBL-Kp isolates from hp-environment 47 

were genetically different from those contaminating food items. ESBL-Ec ST131 was 48 

widespread in the hp-environment (21.5% of the isolates) but absent from the food items 49 

tested. ESBL-Ec ST10 was in similar proportions in hp-environment and food items (15 and 50 

10 isolates, respectively) but mostly carried reservoir-specific blaESBL. blaCTX-M-1 and blaSHV-12 51 

predominated in food-related E. coli isolates (32% and 34% of the isolates, respectively), 52 

while blaCTX-M-15 and blaCTX-M-27 predominated in isolates from hp-environment (52% and 53 

15% of the isolates, respectively).  54 

Conclusions. We found a very limited connection between ESBL-Ec and ESBL-Kp 55 

populations and blaESBL, retrieved in food items and from hp-environment. This suggests that 56 

human-to-human contamination, rather than the food chain, is possibly the most frequent 57 

route of ESBL-Ec and ESBL-Kp transmission in high-income countries.  58 
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Introduction 59 

Antimicrobial resistance is a global health issue and extended-spectrum β-lactamase 60 

producing Enterobacterales (ESBL-PE) are a major cause of AMR dissemination. 61 

Escherichia coli (ESBL-Ec) and Klebsiella pneumoniae (ESBL-Kp) are the two major ESBL-62 

PE species causing infections in humans with third-generation cephalosporin resistant 63 

bacteria, limiting therapeutic options for patients [1]. ESBL-PE carriage by healthy people is 64 

frequent, with a prevalence of ~10% in Europe [2]. In addition, some populations, such as 65 

those found in long-term care facilities (LTCFs), are at higher risk of colonization and 66 

infections [3]. ESBL-PE have also been widely reported in slaughter animals [4], associated 67 

with a large proportion of the derived retail meat contaminated with these antibiotic-resistant 68 

pathogens. To a lesser extent, ESBL-PE can also be found in fresh vegetables [5,6]. Sewage 69 

systems bring ESBL-PE found in human faeces to the surface water [7]. There are many 70 

routes for ESBL-PE dissemination and the One Health concept supports the idea that bacterial 71 

populations found in animals, humans, and environment are heavily interconnected [8]. 72 

However, the extent of transmission between these compartments remains uncertain, 73 

especially in high-income countries where hygiene standards probably limit the 74 

contaminations from non-human sources [9]. In particular, the role of the food chain is under 75 

debate [9–12].  76 

Most studies neglected ESBL-Kp, also contaminating food items [13] and responsible for an 77 

important burden in human [14] with a rate of human-to-human transmission higher than of 78 

ESBL-Ec [15]. 79 

The exact identification of the route of contamination of an individual is nearly impossible to 80 

establish and requires the use of population-level proxies. In European countries, human-81 

polluted (hp-) environments, and especially wastewaters, constitute a good proxy of human 82 

contamination [10,16,17].  83 



4 

 

To estimate the contribution of foodborne ESBL-Ec and ESBL-Kp to human colonization, we 84 

used whole genome sequences to assess the genetic relationships, and compared the identity 85 

of blaESBL between the isolates from retail food and from hp-environments in five European 86 

cities.  87 
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Methods 88 

Study design. We conducted a multicentre study involving five European cities: Besançon 89 

(France), Geneva (Switzerland), Sevilla (Spain), Tübingen (Germany), and Utrecht (The 90 

Netherlands). We collected samples of food products and from the hp-environment between 91 

January 2018 and August 2019, as part of the multicentre MODERN project. Samples from 92 

food products and hp-environment were collected within a prospective cohort study of ESBL-93 

Ec and ESBL-Kp carriage in four LTCFs (manuscript in preparation) and during a four-month 94 

follow-up of ESBL-Ec and ESBL-Kp carriers after hospital discharge [15].  95 

 96 

Food and environmental samples. The contamination by ESBL-Ec or ESBL-Kp was 97 

assessed in 714 food samples collected in LTCF kitchens before any processing (representing 98 

collective catering) and in 35 supermarkets located in or nearby each study site representing 99 

food bought by ESBL-PE carriers [18] (Supplementary Methods). The contamination of the 100 

hp-environment by ESBL-Ec or ESBL-Kp was assessed by collecting samples (n=122) eight 101 

times over a 32-week period in (i) the LTCF discharge sewer, (ii) the inflow of the 102 

downstream WWTP, and (iii) the river 200 m downstream of the WWTP outflow and >5 m 103 

from the riverbank (Supplementary Methods). 104 

 105 

Microbiological analysis. For food samples, 25 g of meat or vegetables were incubated 106 

overnight at 35°C in 250 mL of tryptic soy broth supplemented by 8 mg/l vancomycin and 107 

0.25 mg/l cefotaxime. One hundred µL were then streaked on ESBL-specific plates 108 

(bioMérieux, Marcy-l’Etoile, France) and incubated overnight at 35°C.  109 

Samples from WWTPs were diluted 1:10 in sterile water, 10 µL and 100 µL were streaked on 110 

ESBL-specific plates and incubated overnight at 35°C. One hundred mL of river and LTCF 111 
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sewage samples were filtrated on a 0.45-µm filter deposited on ESBL-specific plates and 112 

incubated overnight at 35°C.  113 

Bacterial colonies suspected to be E. coli or K. pneumoniae were identified by MALDI-TOF 114 

mass spectrometry (Microflex LT, Bruker Daltonik GmbH, Bremen, Germany) with a log 115 

value ≥ 2 according to the manufacturer’s recommendations. We kept a maximum of three 116 

E. coli or K. pneumoniae isolates with different morphotypes per sample. ESBL production 117 

was confirmed by double disk synergy tests (DDST20 and DDST30) as recommended by 118 

EUCAST (EUCAST guidelines for detection of resistance mechanisms and specific 119 

resistances of clinical and/or epidemiological importance, version 2.0). All isolates were 120 

stored in bead-containing cryotubes (Microbank, PRO-LAB Diagnostics, ON, Canada) at 121 

-80°C until further analysis. 122 

 123 

Genome sequencing and analysis. Bacterial DNA extraction and sequencing, read assembly, 124 

Sequence types (STs) determination with in silico multi-locus sequence typing (MLST), 125 

blaESBL identification, and the identification of incompatibility (Inc) groups of plasmids are 126 

detailed in the Supplementary Methods.  127 

Core genomes of ESBL-Ec and ESBL-Kp isolates were determined using existing schemes 128 

(https://www.cgmlst.org/ncs). The homemade pipeline pyMLST analysed the cgMLST 129 

(https://github.com/bvalot/pyMLST) by aligning genes present in >95% of the isolates and 130 

phylogenetic trees were then constructed (Supplementary Methods). A network was built with 131 

the package igraph on R 3.6.2 software to link genetically related ESBL-Ec, which genomes 132 

were distant by <10 genes.  133 

 134 

Statistics. The proportions of food samples contaminated by ESBL-Ec and ESBL-Kp were 135 

compared with non-parametric tests (Kruskal-Wallis test coupled with a post-hoc Dunn test). 136 

We then performed a test of equal proportions to determine in which cases the contamination 137 
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was higher or lower. The distribution and association of blaESBL genes and plasmid 138 

incompatibility groups was also assessed. The α value was set to 0.05. All analyses were 139 

performed with R 3.6.2 software (R Core Team Package 2019).  140 
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Results 141 

ESBL-Ec and ESBL-Kp isolated from food and hp-environment. Overall, we obtained 142 

265 food samples from the LTCF kitchens and 449 food samples from 35 supermarkets 143 

(Table 1). Overall, ESBL-Ec or ESBL-Kp contaminated 26.7% (93/349) of the meat samples 144 

and 1.9% (7/365) of the vegetable samples. Among these samples, chicken (33.2% 145 

positive; n=63) and turkey (75.0% positive; n=20) were more frequently contaminated than 146 

other types of food products (p = 2e-16; Table 1). We also collected 122 samples from hp-147 

environment (Table 1). We retrieved 293 isolates: 254 ESBL-Ec and 39 ESBL-Kp. The 148 

contamination of food samples by ESBL-Kp was infrequent with only 12 isolates retrieved in 149 

the 714 samples analysed (Table 1). Except for two chicken samples, all other food samples 150 

positive to ESBL-Kp came from Tübingen. The country-specific distribution of positive 151 

samples is shown in the Table S1.  152 

 153 

Genomic comparison of ESBL-producing E. coli cultured from food and hp-154 

environment. 155 

The 254 ESBL-Ec isolated from food (n=96) and hp-environment (n=158) were distributed 156 

into 77 different STs (Table 2). Twenty-two and 45 STs were exclusively represented by 157 

isolates found in food and in hp-environment, respectively. In contrast, 10 STs (99/254 158 

isolates) were found in both food and hp-environment samples (Table 2). ST131 was 159 

specifically found in samples of the hp-environment where it accounted for 21.5% of total 160 

ESBL-Ec.  161 

We assessed the genetic relatedness of ESBL-Ec isolates retrieved from food and hp-162 

environment by constructing a Bio Neighbor Joining (BioNJ) tree from the 254 genomes. It 163 

showed that although the genomes of isolates cultured from food and hp-environment were 164 

intermixed in the tree, the cgMLST distances were generally high between the two reservoirs 165 
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(Fig. 1). We identified only five clusters that contained ESBL-Ec isolates from both hp-166 

environment and food, having a cgMLST distance <40 genes. They were represented by ten 167 

genomes of ESBL-Ec from the hp-environment and seven genomes of ESBL-Ec from food 168 

(see the green sectors in Fig. 1). 169 

To evaluate the interconnections between the ESBL-Ec populations contaminating food and 170 

hp-environment, we built a network linking reservoirs with ESBL-Ec isolates whose genomes 171 

had a cgMLST distance <10 genes (Fig. 2). To define the cut-off value under which genomes 172 

were considered as genetically related, we created epidemiological groups based on the cities 173 

of isolation of the ESBL-Ec, considering that links between cities were epidemiologically 174 

unlikely. We then built networks that link the different sources: two sources were linked if 175 

each of them included at least one genome having less than 10, 15, 20, 30, or 40 differences in 176 

core genes. We then counted the number of unlikely links for each cut-off value. The cut-off 177 

value of 10, confirming previous findings [20], was chosen since it minimized the number of 178 

mistakenly connected compartments (Fig. S1). 179 

Most of the links connected sources of the same type (food or hp-environment) and from the 180 

same city. Indeed, we found 15 clusters of hp-environment isolates, one cluster of nine 181 

isolates, one of five isolates, and 13 clusters of two isolates. Besides, there were 20 clusters of 182 

food isolates, one cluster of seven isolates, two of five isolates, four of three isolates, and 13 183 

of two isolates). The only link between the two compartments involved genomes of three 184 

meat-contaminating isolates and that of an isolate found in the receiving river in Tübingen 185 

(Fig. 2). 186 

 187 

blaESBL distribution in E. coli cultured from food and hp-environment. Thirteen different 188 

blaESBL were identified. blaSHV-2 was specific to food-related isolates while blaCTX-M-3, blaCTX-189 

M-8, blaCTX-M-24, and blaCTX-M-65 were specific to isolates from hp-environments (Fig. S2). 190 
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blaSHV-12 and blaCTX-M-1 were more often associated with food-related isolates (34% and 32% 191 

of the isolates, respectively) compared to isolates from hp-environments (3% [p = 1e-11] and 192 

12% [p = 8e-5] of the isolates, respectively). blaCTX-M-15 and blaCTX-M-27 dominated in ESBL-193 

Ec from hp-environments (52% and 15% of the isolates, respectively) in contrast with food-194 

related ESBL-Ec (11% [p = 1e-13] and 6% [p = 0.043] of the isolates, respectively). Although 195 

we found the ST10 clone in similar proportions in the ESBL-Ec populations in food and in the 196 

hp-environment (11.5% and 9.5% of the isolates, respectively; p = 0.62), ST10 isolates 197 

generally harboured different blaESBL genes (11/15 hp-environment samples harboured blaCTX-198 

M-15 while 1/10 food-related isolates harboured this gene). Moreover, we found only one hp-199 

environment isolate belonging to ST10 that had <40 different core genes with two food 200 

isolates, with these three isolates being collected in distinct cities (Geneva, Besancon, and 201 

Tübingen).  202 

We then analysed the distribution of plasmid incompatibility groups and we found that it was 203 

homogeneous among the ESBL-Ec isolates of the two reservoirs except for IncB/O/K/Z - 204 

more often associated with food-related isolates (p = 3e-7), and IncFIA groups - more 205 

frequent in isolates from the hp-environment (p = 0.019) (Table S2). 206 

.  207 

 208 

Comparison of genomes and blaESBL of ESBL-producing K. pneumoniae isolates cultured 209 

from food and hp-environment. Among the 39 ESBL-Kp isolates retrieved in this study, 12 210 

were found in food and 27 in the hp-environment. We identified 22 different STs among 211 

which 16 were singletons. Eight STs were specific to the food, 13 were specific to hp-212 

environment, and one ST was shared between the two reservoirs. Indeed, ST219 isolates were 213 

found in one river sample of Geneva and Sevilla and in two meat samples (one chicken and 214 

one turkey) in Tübingen. We built a maximum-likelihood tree to investigate the relatedness of 215 
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all ESBL-Kp genomes (Fig. 3). Only the ST219 was found in both food and the hp-216 

environment, but of different cities: two isolates collected from food products in Tübingen 217 

had <40 different core genes with one isolate collected in the river in Sevilla. We identified 218 

six different ESBL-encoding genes with an overrepresentation of blaCTX-M-15, carried by 219 

87.2% of the ESBL-Kp isolates (Fig. 3).   220 
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Discussion 221 

We compared the genomes of ESBL-Ec and ESBL-Kp isolates cultured from food items (96 222 

ESBL-Ec and 12 ESBL-Kp) with those from hp-environment (158 ESBL-Ec and 27 ESBL-223 

Kp) in five European cities. The main finding of this international study was that the 224 

population of these ESBL-Ec and ESBL-Kp cultured from these two reservoirs were 225 

genetically different, and that ESBL-Ec had generally blaESBL genes of different nature.  226 

Samples were collected in five European cities distributed from North to South of Western 227 

Europe to reflect the diversity of climate, food production, and veterinary antibiotic 228 

consumption that could affect the contamination level of the different reservoirs by ESBL-PE. 229 

Our collection of ESBL-Ec found in hp-environment, dominated by ST131 and ST38 mostly 230 

carrying blaCTX-M-15 and blaCTX-M-27, mirrored that of ESBL-Ec found in humans 231 

[10,16,17,21–23]. Similarly, we identified pandemic clones of ESBL-Kp (i.e. ST37, ST307) 232 

in the hp-environments. Food samples were gathered from LTCF kitchens and supermarkets 233 

to enable the collection being representative for most consumed food, both in collective 234 

catering and by ESBL-PE carriers [18] (Table 1 and Table S1). The contamination frequency 235 

of meat products and vegetables found in this study was consistent with those observed in the 236 

literature, with infrequent contamination of vegetables and more frequent contamination of 237 

poultry products [5,6,10,24]. 238 

The cgMLST analysis revealed that the populations of ESBL-Ec cultured from food and hp-239 

environment are generally dissociated, with only six isolates out of 254 (four from food 240 

products and two from the hp-environment) that could be linked (Fig. 1 and Fig. 2). We found 241 

a majority of blaCTX-M-15 carriers among ESBL-Kp. The dominance of blaCTX-M-15 in 242 

wastewater and retail meat has been previously described [16,25]. The population of ESBL-243 

Kp was mostly represented by distinct clones, with 22 different STs and with no linked 244 

isolates (i.e. which genomes had <10 different core genes between the reservoirs). Overall, 245 
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this suggests that transmission of ESBL-Ec and ESBL-Kp strains from food items to humans 246 

is a rare event. This supports the idea that E. coli ST131 and other B2 clonal groups are not 247 

food-related and are mostly transmitted from human to human [10,15,24,26]. ST10 has been 248 

previously detected in humans, animals, and in the environment [27]. Here, ESBL-Ec ST10 249 

was equally distributed between food and the hp-environment but the isolates were 250 

genetically distinct and carried reservoir-specific blaESBL genes, which limits the chance of a 251 

common origin [12]. 252 

We further compared the distribution of blaESBL genes in isolates from food and hp-253 

environment (Fig. S2) and found that 5 out of 13 genes were specific to a compartment. 254 

Among the other genes, blaSHV-12 and blaCTX-M-1 predominated in food isolates, as reported by 255 

others [22,26,28]. Overall, distinct blaESBL genes predominated in the two reservoirs. Plasmids 256 

carrying blaESBL can spread between phylogenetically distinct E. coli populations possibly 257 

contributing to the human contamination with ESBL through the food chain [29]. It has been 258 

hypothesized that other food-related clones might serve as the source for plasmids or mobile 259 

genetic elements with resistance determinants to supply the major clone ST131, which is wide 260 

open for plasmid exchange [30]. Even if distinct genes predominated in the two reservoirs, 261 

plasmid reconstruction with long-read sequencing could help to identify transfer between the 262 

two reservoirs for the other genes. 263 

We found here a limited concordance between the food and hp-environment reservoirs. This 264 

is in line with previous studies [10,12] but might appear as contrasting with a monocentric 265 

modelling study of the source distribution in a high-income country [9] where food products 266 

accounted for 18.9% of human contamination. However, this contribution could have been 267 

overestimated since using a model based on identity of bla genes, while we also considered 268 

their bacterial vehicle. Although we cannot exclude the possibility of human colonization with 269 

food-borne ESBL-Ec and ESBL-Kp, our data suggest that, in Western Europe, human-to-270 
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human transmission plays a more important role in colonization of humans rather than a 271 

contamination by food items. However, the situation may be radically different in low- and 272 

middle-income countries where interconnections between human, animals, and the 273 

environment are stronger [8]. 274 

Our study has several limitations. Although we isolated the two most relevant ESBL 275 

producers in the community and in hospitals (ESBL-Ec and ESBL-Kp, respectively), we have 276 

neglected blaESBL borne by other species [22,31]. The ultimate identification of HGT events 277 

requires plasmid reconstruction from long-read sequencing data and the comparison of 278 

plasmids carrying identical blaESBL gene (manuscript in preparation). However, long-read 279 

sequencing would have not changed the main conclusions because there is a limited similarity 280 

between blaESBL genes carried by the isolates of the two reservoirs.  281 

Overall, we found a very limited connection between ESBL-Ec and ESBL-Kp populations 282 

and blaESBL genes retrieved in retail food and that retrieved from hp-environment. This 283 

suggests that the human-to-human contamination, rather than the food chain, is likely the 284 

most frequent route of transmission for ESBL-Ec and ESBL-Kp in high-income countries. 285 
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Figure and table legends 458 

 459 

Figure 1. BioNJ tree based on the core genome of the 254 ESBL-Ec isolates cultured 460 

from food items and hp-environment (Europe, 2018-2019). The tree was based on HKY85 461 

distances calculated from the core genome constituted of 2275 genes. Source (LTCF: long-462 

term care facility; WWTP: wastewater treatment plant), city of isolation (TUB, Tübingen; 463 

BES, Besançon; SEV, Sevilla; UTR, Utrecht; GEN, Geneva), STs, and blaESBL gene are 464 

indicated for each isolate. The yellow sectors indicate clusters of isolates retrieved from the 465 

same LTCF discharge sewer at different time points. The green sectors indicate clusters of 466 

isolates which genomes had <40 different core genes. 467 

 468 

Figure 2. Network analysis of the genomes of ESBL-Ec cultured from food and hp-469 

environment (Europe, 2018-2019). The network connects the sources with ESBL-Ec which 470 

genomes had <10 core genes of difference. The rectangles represent the sources of the 471 

samples with hp-environments in green, food in blue (n = number of isolates of the source 472 

linked with isolate(s) of other sources). Only sources linked with ≥1 other source are shown. 473 

Figures indicate the number of ESBL-Ec genomes of the corresponding source linked to the 474 

other source. STs and blaESBL genes of the isolates linked are indicated.  475 

 476 

Figure 3. Maximum likelihood tree based on SNPs in the core genes (n=2279) of 39 477 

K. pneumoniae isolates producing extended-spectrum β-lactamase cultured from food 478 

samples and hp-environment (Europe, 2018-2019). Source (LTCF: long-term care facility; 479 

WWTP: wastewater treatment plant), city of isolation (TUB, Tübingen; BES, Besançon; SEV, 480 

Sevilla; UTR, Utrecht; GEN, Geneva), STs, and blaESBL gene(s) are indicated for each isolate. 481 

*: only one mutation in allele phoE (A314G) differentiates ST5366 from ST219.  482 
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Table 1. Contamination of food and human-polluted environment with ESBL-Ec and 483 

ESBL-Kp (Europe, 2018-2019). The Table shows the number and nature of food and hp-484 

environment samples collected in the five European cities (Besançon, Geneva, Sevilla, 485 

Tübingen and Utrecht), the number and proportion of samples positive for extended-spectrum 486 

β-lactamase producing E. coli (ESBL-Ec) or K. pneumoniae (ESBL-Kp) and the number of 487 

ESBL-Ec and ESBL-Kp isolated from each type of sample. The distribution of the samples 488 

according to the city of isolation is detailed in the Table S1.  489 

 490 

Table 2. Distribution of STs among extended-spectrum β-lactamase producing E. coli 491 

found in the human-polluted environment and food (Europe, 2018-2019). Hp-492 

environment, human-polluted environment; STs, sequence types. 493 
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Table 1. Contamination of food and human-polluted environment with ESBL-Ec and 1 

ESBL-Kp (Europe, 2018-2019). The Table shows the number and nature of food and hp-2 

environment samples collected in the five European cities (Besançon, Geneva, Sevilla, 3 

Tübingen and Utrecht), the number and proportion of samples positive for extended-spectrum 4 

β-lactamase producing E. coli (ESBL-Ec) or K. pneumoniae (ESBL-Kp) and the number of 5 

ESBL-Ec and ESBL-Kp isolated from each type of sample. The distribution of the samples 6 

according to the city of isolation is detailed in the Table S1.  7 

 8 

  
Number of 

samples 
Positives (%)  ESBL-Ec ESBL-Kp 

Food samples     

Beef 61 4 (6.6) 4 0 
Pork 51 3 (8.9) 3 0 

Chicken 190 63 (33.2) 64 3 
Fish 18 2 (11.1) 3 0 

Turkey 28 21 (75.0) 16 8 
Lamb 1 0 0 0 

Overall meat/fish 349 93 (26.7) 90 11 
Vegetables 365 7 (1.9) 6 1 
Food total 714 100 (14.0) 96 12 

     

Hp-environment     

LTCF sewages 30 22 (73.3) 19 10 
WWTP inflows 40 40 (100) 66 8 

Rivers downstream 
WWTPs 

52 47 (90.4) 73 9 

Hp-environment total 122 109 (89.3) 158 27 

Total 836 211 254 39 
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Table 2. Distribution of STs among extended-spectrum β-lactamase producing E. coli 10 

found in the human-polluted environment and food (Europe, 2018-2019). Hp-environment, 11 

human-polluted environment; STs, sequence types. 12 

 13 

All sources 
Overall  

hp-environment 
Overall food 

ST n (%) ST n (%) ST n (%) 
ST131 34 (13.4) ST131 34 (21.5) ST10 10 (11.5) 
ST10 26 (10.2) ST10 16 (9.5) ST155 10 (10.4) 
ST155 14 (5.5) ST38 11 (7) ST69 9 (9.4) 
ST38 14 (5.5) ST949 10 (6.3) ST1011 6 (6.3) 
ST69 13 (5.1) ST58 9 (5.7) ST354 5 (5.2) 
ST58 13 (5.1) ST1193 5 (3.2) ST58 4 (4.2) 
ST949 10 (3.9) ST155 4 (2.5) ST533 4 (4.2) 
ST1011 6 (2.4) ST69 4 (2.5) ST117 4 (4.2) 
ST354 5 (2.0) ST1431 4 (2.5) ST101 4 (4.2) 
ST533 5 (2.0) ST88 3 (1.9) ST115 4 (4.2) 
ST117 5 (2.0) ST44 3 (1.9) ST48 4 (4.2) 
ST1193 5 (2.0) ST3995 2 (1.3) ST38 3 (3.1) 
ST101 4 (1.6) ST405 2 (1.3) ST4981 2 (2.0) 
ST115 4 (1.6) ST410 2 (1.3) ST1249 2 (2.0) 
ST48 4 (1.6) ST227 2 (1.3) ST3519 2 (2.0) 
ST88 4 (1.6) ST23 2 (1.3) ST4937 2 (2.0) 
ST1431 4 (1.6) ST752 2 (1.3) ST602 2 (2.0) 
ST4981 3 (1.2) ST95 2 (1.3) ST746 2 (2.0) 
ST44 3 (1.2) ST1123 2 (1.3) ST398 2 (2.0) 
ST1249 2 (0.8) ST2253 2 (1.3) ST7204 2 (2.0) 
ST3519 2 (0.8) ST34 2 (1.3) Singletons 12 (12.5) 
ST4937 2 (0.8) ST3541 2 (1.3) - - 
ST602 2 (0.8) ST993 2 (1.3) - - 
ST746 2 (0.8) Singletons 32 (20.2) - - 
ST398 2 (0.8) - - - - 
ST7204 2 (0.8) - - - - 
ST362 2 (0.8) - - - - 
ST3995 2 (0.8) - - - - 
ST405 2 (0.8) - - - - 
ST410 2 (0.8) - - - - 
ST227 2 (0.8) - - - - 
ST23 2 (0.8) - - - - 
ST752 2 (0.8) - - - - 
ST95 2 (0.8) - - - - 
ST1123 2 (0.8) - - - - 
ST2253 2 (0.8) - - - - 
ST34 2 (0.8) - - - - 
ST3541 2 (0.8) - - - - 
ST993 2 (0.8) - - - - 
Singletons 38 (15.0) - - - - 
Total 254  158  96 




