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Abstract. Due to the impact of the global COVID-19, supply chain
(SC) risk management under the ripple effect is becoming an increas-
ingly hot topic in both practice and research. In our former research,
a robust dynamic bayesian network (DBN) approach has been devel-
oped for disruption risk assessment, whereas there still exists a gap
between the proposed simulated annealing (SA) algorithm and commer-
cial solver in terms of solution quality. To improve the computational
efficiency for solving the robust DBN optimisation model, a tabu search
heuristic is proposed for the first time in this paper. We design a novel
problem-specific neighborhood move to keep the search in feasible solu-
tion space. The computational experiments, conducted on randomly gen-
erated instances, indicate that the average gap between our approach and
commercial solver is within 0.07%, which validates the performance of
the proposed method.
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1 Introduction

In recent years, supply chain (SC) risk management has been a widely discussed
topic in both industry and academia as a result of severe impact of the COVID-
19 epidemic and some other natural or man-made disasters on SCs. Due to the
growth structural complexity and increasing global scale of SC networks, the
disruption of a supplier caused by these unpredictable disasters will probably
propagate to the downstream manufacturers located in disaster-free areas. For
example, the Japanese tsunami and earthquake in 2011 disrupted the production
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of auto parts and image sensors suppliers, leading to the cease of production of
auto companies and smart electronic devices manufacturers in other countries
due to the shortage of necessary parts [7]. In another recent example, the sud-
den Texas winter storm strikes chip foundries, such as South Korea’s Samsung
Electronics Co., one of the world’s biggest chip makers with about 28% of its
overall production capacity in Austin facilities1. The impact of the disruption in
the fragile chip industry, caused by the global COVID-19 epidemic and winter
storm, propagates to auto automobile, mobile phone, game consoles and other
downstream industries. These above facts embody the impact of a disruption or
a series of disruptions along the SCs, i.e. the ripple effect. The ripple effect is
introduced by Ivanov et al. [9], meaning the disruption risk of upstream partners
in the SCs propagating to downstream partners. For a comprehensive review of
this research area, interested readers may refer to surveys by Hosseini et al. [6]
and Dolgui et al. [3].

To reduce adverse impact of the ripple effect and mitigate it at minimal
costs, it is crucial to measure quantitatively the risk of disruptions propagat-
ing along SCs. Bearing this in mind, more and more researchers have proposed
novel mathematical models and optimization methods to estimate adverse con-
sequences of ripple effects [2]. Among these techniques, bayesian network (BN),
capable of describing the ripple effect via a directed acyclic graph, is introduced
for the disruption risk evaluation by Hosseini and Barker [5]. Due to the com-
plexity of global SCs, it is worth noting that the disruptions of source suppliers
have continuous effect, which can affect the SCs over several time periods [8].
To assess the disruption risk in a SC with two suppliers and one manufacturer
over a time horizon with several periods, Hosseini et al. [7] further propose a
simulation model based on a dynamic bayesian network (DBN). In their work,
the inputs of DBN (i.e. the corresponding probability distributions) are assumed
to be perfectly known. To overcome data scarcity in some real situations, Liu
et al. [10] propose a new robust DBN optimisation model utilising the probability
intervals to evaluate the worst-case disruption risk.

The new robust DBN approach opens a new perspective for disruption risk
assessment, whereas the proposed algorithm in the former work can be improved
in terms of both solution quality and computational time. Besides, as a result of
the high level of complexity and uncertainty of global SC network, the state of
SC may change at any time. Accurate and timely decisions will make a difference
for mitigating the impact of disruptions. Motivated by the above two reasons, it
is necessary to design efficient solution algorithm that can obtain risk assessment
results within a reasonable amount of time.

As a main contribution of this paper, we propose a tabu search (TS) heuristic
for solving the robust DBN optimisation model efficiently, which can provide

1 Asa Fitch, 2021. Texas Winter Storm Strikes Chip Makers, Compounding Supply
Woes. The Wall Street Journal. https://www.wsj.com/articles/texas-winter-storm-
strikes-chip-makers-compounding-supply-woes-11613588617?mod=searchresults
pos3&page=1.
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higher quality solutions within a shorter run time compared to that obtained by
the simulated annealing (SA) algorithm developed in our former work.

The remainder of this paper is organized as follows. In Sect. 2, the robust
DBN optimisation model is briefly presented for review. In Sect. 3, an efficient
TS heuristic is designed for solving the problem, and computational experiments
are conducted to evaluate its performance in Sect. 4.

2 Problem Formulation

In this section, we only restate the robust DBN optimisation formulation intro-
duced in the paper [10] for simplicity. For a comprehensive description of the
robust DBN approach, readers may refer to Liu et al. [10] and Hosseini et al. [7].

The notations and problem variables are defined the same as former research
as follows:

Parameters

I: the set of suppliers, I = {1, . . . , I}, indexed by i;
I + 1: the manufacturer;
T : the set of periods, T = {1, . . . , T}, indexed by t;
Si: the set of states for the supplier or manufacturer i, Si =

{si1, . . . , sij , . . . , sini
}, indexed by j, where ni is the number of possible states

of SC member i ∈ I ∪ {I + 1};
sij : the jth state of the supplier or the manufacturer i, where sij ∈ Si, i ∈

I ∪ {I + 1}, j ∈ {1, . . . , ni};
Mi: Markov transition matrix of supplier i, where i ∈ I;
dom(c): the domain of the state-combination-index c, i.e. dom(c) =

{1, 2, . . . , n1 · n2 · · · nI};

C(•): unique bijection mapping S1 ×· · ·×SI

C(•)
−−−→ dom(c) in the prior BN which

maps a state combination to a state-combination-index;

C−1(•): the inverse mapping of C(•), dom(c)
C−1(•)
−−−−→ S1 × · · · × SI , which maps

a state-combination-index to a state combination;
C−1(c)(i): the corresponding state of supplier i, i ∈ I, for a give state-

combination-index c in the prior bayesian network (BN);
dom(g): the domain of the state-combination-index g, i.e. dom(g) =

{1, 2, . . . , n1 · n2 · · · nI · nI+1};

G(•): unique bijection mapping S1 × · · · × SI × SI+1
G(•)
−−−→ dom(g) in each

two-time bayesian network (2TBN) which maps a state combination to a
state-combination-index;

G−1(•): the inverse mapping of C(•), dom(g)
G−1(•)
−−−−−→ S1 ×· · ·×SI ×SI+1, which

maps a state-combination-index to a state combination;
G−1(g)(i): the corresponding state of supplier (or the manufacturer) i, i ∈ I ∪

{I + 1}, for a give state-combination-index g in each 2TBN;
x1

ij : the lower bound of the probability interval in the jth state for the supplier
i in time period 1, where i ∈ I, j ∈ {1, . . . , ni};
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x̄1
ij : the upper bound of the probability interval in the jth state for the supplier

i in time period 1, where i ∈ I, j ∈ {1, . . . , ni};
y

jc
: the lower bound of the probability interval in the jth state for the man-

ufacturer, conditional on the cth state combination in the prior BN, where
j ∈ {1, . . . , nI+1}, c ∈ dom(c);

ȳjc: the upper bound of the probability interval in the jth state for the man-
ufacturer, conditional on the cth state combination in the prior BN, where
j ∈ {1, . . . , nI+1}, c ∈ dom(c);

zjg: the lower bound of the probability interval in the jth state for the man-
ufacturer, conditional on the gth state combination in each 2TBN, where
j ∈ {1, . . . , nI+1}, g ∈ dom(g);

z̄jg: the upper bound of the probability interval in the jth state for the man-
ufacturer, conditional on the gth state combination in each 2TBN, where
j ∈ {1, . . . , nI+1}, g ∈ dom(g);

Problem Variables

xt
ij : the probability in the jth state for the supplier or manufacturer i in time

period t, where i ∈ I ∪ {I + 1}, j ∈ {1, . . . , ni}, t ∈ T ;
yjc: the probability in the jth state for the manufacturer, conditional on the cth

state combination in the prior BN, where j ∈ {1, . . . , nI+1}, c ∈ dom(c);
zjg: the probability interval in the jth state for the manufacturer, conditional

on the gth state combination in each 2TBN, where j ∈ {1, . . . , nI+1}, g ∈
dom(g);

The robust DBN optimisation model can be formulated as follows:

[Robust DBN] : max

⎧

⎨

⎩

∑

g∈dom(g)

znI+1,g ·
∏

i∈I

xT
i,G−1(g)(i) · xT−1

I+1,G−1(g)(I+1)

⎫

⎬

⎭

(1)

Subject to:

(

xt
i1, . . . , x

t
ini

)

=
(

x1
i1, . . . , x

1
ini

)

· (Mi)
t−1

, ∀i ∈ {1, . . . , I}, t ∈ T /{1} (2)

x1
(I+1)j =

∑

c∈dom(c)

yjc ·
I

∏

i=1

x1
i,C−1(c)(i), ∀j ∈ {1, . . . , nI+1} (3)

xt
(I+1)j =

∑

g∈dom(g)

zjg ·
I

∏

i=1

xt
i,G−1(g)(i) · xt−1

(I+1),G−1(g)(I+1),

∀j ∈ {1, . . . , nI+1} , t ∈ T /{1}

(4)

∑

j∈{1,...,ni}

x1
ij = 1, ∀i ∈ I (5)

∑

j∈{1,...,nI+1}

yjc = 1, ∀c ∈ dom(c) (6)

4



∑

j∈{1,...,nI+1}

zjg = 1, ∀g ∈ dom(g) (7)

x1
ij ∈

[

x1
ij , x̄

1
ij

]

, ∀i ∈ I, j ∈ {1, . . . , ni} (8)

0 ≤ xt
ij ≤ 1, ∀i ∈ I, j ∈ {1, . . . , ni} , t ∈ T /{1} (9)

0 ≤ xt
(I+1)j ≤ 1, ∀j ∈ {1, . . . , nI+1} , t ∈ T (10)

yjc ∈ [yjc, ȳjc] , ∀j ∈ {1, . . . , nI+1} , c ∈ dom(c) (11)

zjg ∈
[

zjg, z̄jg

]

, ∀j ∈ {1, . . . , nI+1} , g ∈ dom(g) (12)

The objective function (1) is to maximise the worst-case disruption risk, i.e. to
estimate the robustness of the manufacturer in the final period T under disrup-
tions. Constraint (2) represents the Markov transition equation for each supplier
i. Constraints (3) describes the probability in each state for the manufacturer in
the prior BN. Constraint (4) calculates the probability in each state for the man-
ufacturer in each 2TBN. Constraints (5)–(7) guarantee the second Kolmogorov
axiom of probability, i.e., the sum of probabilities in all states for a supplier or the
manufacturer is equal to 1. Constraints (8)–(12) are the domains of probabilities
in each state in all periods.

3 Solution Approach

Tabu search (TS) is an efficient iterative metaheuristic for finding optimal or
near-optimal solution via memory structures and exploration strategies that can
help escape from local optima [4]. Because of its outstanding performance, TS
has become a popular tool for solving various difficult problems in many research
fields. In the field of SC management and optimisation, researchers have applied
TS for production and distribution planning problem [1] and multi-product,
multi-echelon and multi-objective SC network design problem [11,12].

To solve the robust DBN optimisation model more efficiently, we devise a TS
heuristic based on the characteristics of the model. In the following, the main
components of the proposed TS heuristic are presented.

3.1 Solution Representation

From constraint (2), we know that the values of variables xt
ij , where t ∈ T /{1},

can be obtained once variables x1
ij have been determined. Thus, only variables

x1
ij , yjc, and zjg are encoded for representing the solution.

3.2 Initial Solution Generation

According to constraints (8), (11) and (12), the initial variables are randomly
generated between their lower and upper bounds. Note that the solution may
be infeasible due to violations of constraints (5)–(7) in the random generation
process. Therefore, to guarantee feasibility of initial solution, the probability
correction procedure proposed in paper [10] is applied after random generation.
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3.3 Neighborhood and Move

As the number of suppliers gets larger, the number of variables increases expo-
nentially due to the increase of the number of state-combinations in the prior BN
and 2TBN. All neighborhoods of the incumbent solution, therefore, cannot be
enumerated in bounded time. Besides, it has also been indicated that exploring
complete neighborhoods may not be an efficient use of computing resources [13].
Thus, we merely generates partial neighboring solutions in each iteration.

Take the neighborhood move for variable x1
ij as an example. Two variables

x1
ij1

and x1
ij2

for each supplier i are randomly selected and the values of them
are changed as follows:

{

x1
ij1

= x1
ij1

+ α
x1

ij2
= x1

ij2
− α

(13)

where α = min
{

β · x1
ij1

, x̄1
ij1

− x1
ij1

, x1
ij2

− x1
ij2

}

, and β is the adjustment rate,
which is set to be 0.2 after initial experiments. The variation α will keep the
neighborhood move within the feasible solution space. Likewise, for each state-
combination c (g), the neighborhood move for variable yjc (zjg) is conducted by
randomly selecting two variables yj1,c and yj2,c (zj1,g and zj2,g), and changing
their values in a similar way. Therefore, the number of neighboring solutions in
each iteration is I + n1 · n2 · · · nI + n1 · n2 · · · nI · nI+1.

3.4 Tabu List Management and Aspiration Criterion

Based on initial experiments, the length of tabu list is set to be |SI+1| ·I
2, which

is dependent on problem size. In the iterative procedure, tabu list is managed in
a cyclical way using the first-in-first-out (FIFO) strategy. Besides, as a special
case, whenever a move in tabu list yields a candidate solution better than the
best solution so far, the new solution will be accepted and this move will be
replaced at the end of the tabu list.

3.5 Stop Criterion

The search procedure stops when it reaches the maximum number of iterations
or the maximum number of iterations without improving the best solution.

4 Computational Results

In this section, computational results on randomly generated instances are
reported to demonstrate the performance of the solution method. The proposed
TS heuristic is programmed in Python, and the commercial solver Yalmip (using
Gurobi and Matlab built-in functions to compute lower bound and upper bound)
is called in Matlab 2019a as a comparison. The computational experiments have
been conducted on a personal computer with 2.4 GHz Core i5 and 16 GB Ram.

We generated 12 random instances with 1 manufacturer, 2–4 suppliers and
2–5 time periods, as the same way in our former research [10]. The numerical
results are as follows:
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Table 1. The Computational results.

Yalmip TS

Number of suppliers Number of periods Objective Time (sec.) Objective Time (sec.) gap(%)

2 2 0.3512 3.60 0.3512 1.06 0.00

3 0.2782 7.61 0.2782 1.76 0.00

4 0.3710 13.96 0.3710 3.90 0.00

5 0.2353 21.41 0.2353 3.97 0.00

3 2 0.3548 52.13 0.3548 16.49 0.00

3 0.3327 176.68 0.3327 33.15 0.00

4 0.3310 200.03 0.3310 45.21 0.00

5 0.2932 278.40 0.2932 58.70 0.00

4 2 0.3511 414.14 0.3502 181.34 0.26

3 0.3248 2038.50 0.3242 264.68 0.18

4 0.3107 3356.10 0.3097 467.40 0.32

5 – 3600.00 0.3445 439.84 –

Average 0.3213 596.60 0.3230 126.46 0.07∗

‘–’: means Yalmip cannot output solutions within a time limit of 3600 s;

‘*’: the average gap is calculated except the ‘–’ cases.

From Table 1, we can observe that the TS heuristic can provide almost the
same solutions with an average gap of only 0.07% compared to the commercial
solver Yalmip. In terms of computational time, our approach outperforms the
commercial solver clearly. Especially when the solver cannot output optimal
solution for the instance with 4 suppliers and 5 periods in 3600 s, the TS heuristic
still can obtain good solution.

Compared with the SA proposed in former work [10], whose average gap
with Yalmip on the same sized problems is 6.56%, the new solution approach
proposed in this paper can provide better disruption risks assessment for SC
managers to make better decisions to reduce adverse impact of the ripple effect.
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