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2 IBISC, Univ Évry, University of Paris-Saclay, Évry, France
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Abstract. Dynamic Bayesian network (DBN), combining with proba-
bility intervals, is a valid tool to estimate the risk of disruptions propagat-
ing along the supply chain (SC) under data scarcity. However, since the
approach evaluate the risk from the worst-case perspective, the obtained
result may be too conservative for some decision makers. To overcome
this difficulty, a new robust DBN model, considering bounded devia-
tion budget, is first time to be developed to analyse the disruption risk
properly. We first formulate a new robust DBN optimization model with
bounded deviation budget. Then a linearization technique is applied to
linearize the nonlinear bounded deviation budget constraint. Finally, a
case study is conducted to demonstrate the applicability of the proposed
model and some managerial insights are drawn.

Keywords: supply chain · dynamic bayesian network · bounded devia-
tion budget.

1 Introduction

The COVID-19 epidemic causes extreme disturbances for people’s daily life.
Supply chain (SC) is no exception. Especially, due to high structural complexity
and increasing global scale, supply chain is fragile under disruptions, such as
natural or man-made disasters. One example comes from the Japanese tsunami
in 2011, which affected the production of auto parts’ suppliers, leading to the
reduce of production of auto companies [5]. Another example comes from the
explosion and subsequent fires of BASF facility in Ludwigshafer, the disaster
stops the production of raw materials, and its downstream manufacturer has a
great difficulty to maintain production. According to [1], the propagation of the
disruption results in a revenue loss of 10-15% compared to the previous year.
All these facts embody the impact of a disruption along the supply chain, i.e.
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the ripple effect. The ripple effect introduced by [9] means the disruption risk
of upstream partners in the SC propagates to downstream partners. Due to the
adverse consequences of ripple effects, the disruption risk propagation along the
SC is the most notorious challenge that each enterprise must confront.

To mitigate the adverse results of ripple effects and maintain competitiveness
for enterprises, disruption risk assessment has been given a high priority in SCM
[10,7]. It is indispensable to adopt appropriate optimization methods to estimate
the disruption risk quantitatively. Bayesian network (BN), first introduced by
[3], is an outstanding representative. The BN describe the ripple effect via a
directed acyclic graph. However, the temporal nature of the disruption propa-
gation is not studied in his work. Considering the dynamics of the disruption
risk propagation over a time horizon, [5] propose a dynamic Bayesian network
(DBN). [11] indicate further that the probability distribution of each supplier’s
state and the disruption propagation in the SC can not be perfectly known under
data scarcity. Thus they propose a new robust DBN approach, integrating the
DBN and probability intervals, to evaluate the worst-case oriented disruption
risk under data scarcity. However, [11]’s model focus on the worst-case situation
in given probability intervals, which is too conservative for some decision makers.
Therefore, in this work, we incorporate a bounded deviation budget constraint
into [11]’s model.The bounded deviation budget constraint denotes the total sum
of deviation (i.e., the part of decision variables deviates from the mean value of
given intervals) no greater than the budget, which can reduce the robust prop-
erly. Moreover, the SC structure is built on partner relationships following [11]’s
work. This study aims to aid decision makers to properly assess SC risk with
bounded deviation budget. The main contributions of this paper include:

(1) To the best of our knowledge, we are first to combine DBN with bounded
deviation budget, to evaluate the disruption risk propagation along th SC.

(2) A new robust DBN optimization formulation considering bounded deviation
budget is developed.

(3) The linearization technique is applied to linearize the nonlinear constraint.

The rest of this paper is organized as follows. In Section 2, a brief literature
review is given. Section 3 describes the addressed problem in detail and formulate
a new robust DBN model for the worst-case oriented disruption risk estimation
considering bounded deviation budget. In Section 4, the linearization technique
is applied to linearize the nonlinear constraint. A case study is conducted in
Section 5. Section 6 concludes this paper and outlines future research directions.

2 Literature review

Since our study falls within the scope of SC disruption risk management prob-
lems, only most related works are reviewed.

The ripple effect is first introduced by [9]. [8] proposed an optimal con-
trol framework combined with a mathematical programming method to perform
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planning and execution control for SC resilience. Based on [8]’s work, [13] inves-
tigate the ripple effect in the SC from the structural perspective. [6] consider the
structural and operational vulnerabilities of the SC under ripple effect simulta-
neously. [12] formulates a stochastic programming moodel and proposes multiple
SC management strategy to mitigate the disruption risks under ripple effect.

Based on the dependence relationships between suppliers and manufactures,
[2] propose a Bayesian network (BN) approach for measuring the resilience of
SCs. Based on the BN approach, [4] propose a metric for quantifying the re-
silience of the SC. [5] joint consider the structural and temporal nature of the
disruption propagation under ripple effect, and propose a dynamic BN (DBN)
approach to analyze the disruption propagation in an SC. [11] develop a new
robust DBN model for SC risk assessment under data scarcity.

Concluding, to the best of our knowledge, there is no result for evaluating
SC disruption risks considering bounded deviation budget under data scarcity
in the literature.

3 Problem description and formulation

For the addressed problem, we study an SC with multiple suppliers and one
manufacturer, and the SC structure is based on partner relationships. When
disruptions occur in suppliers, the disruptions propagate from the suppliers to
the manufacturer. To emulate the disruption and recovery of each SC mem-
ber, the Markov process is utilized to describe the temporal propagation of
disruptions. We mathematically restate the DBN method proposed by [5] and
adopt the same notation developed by [11]. We study an SC with a set I =
{1, · · · , i, · · · , I} of suppliers and a manufacturer, denoted as I + 1, over a time
horizon T = {1, · · · , t, · · · , T}. When an SC member suffers a disruption, its
state can be represented by one in the set Si = {si1, · · · , sij , · · · , sini

} of possi-
ble states, where i ∈ {1, · · · , I, I + 1}, j ∈ {1, · · · , ni}, and ni is the number of
possible states of SC member or partner i. The states in the set Si are sorted
in an increasing order of severity degree, i.e., si1 signifies a fully operational
state and sini denotes a fully disrupted state. The states of the suppliers and
the manufacturer in time period t ∈ T are denoted as Xt

1, · · · , Xt
I and Xt

I+1,
respectively. For notation simplicity, the probability of random event Xt

i = sij
is denoted as xtij (i.e., xtij = P{Xt

i = sij}).
According to the DBN introduced by [5], the transition of the supplier i’s

state from sij in the previous time period t − 1 into sij′ in the present time

period t can be described by a probability msijsij′
, where t ∈ {2, · · · , T}, j, j′ ∈

{1, · · · , ni}. All state transition relationships for the supplier i can be represented
by a Markov transition matrix Mi. In general, the probabilities in different states
for the supplier i in time period t can be calculated as follows:

(xti1, · · · , xtini
) = (x1i1, · · · , x1ini

) · (Mi)
t−1, ∀i ∈ {1, · · · , I}, t ∈ T /{1} (1)

where (x1i1, · · · , x1ini
) and (xti1, · · · , xtini

) are the probability distribution of the
supplier i in time period 1 and time period t, respectively.
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Besides, the DBN structure consists of T sub-BNs, i.e., one prior BN and
(T − 1) two-time temporal Bayesian networks (2TBNs). The state transition
relationships for the manufacturer can be described by a conditional probability
table (CPT). Especially, there are two types of CPTs, i.e., the CPTpriorBN and
CPT2TBNs. Accordingly, the probability in jth state for the manufacturer I + 1
in the prior BN and 2TBN can be described as formula (2) and (3), respectively.

x1(I+1)j =
∑

c∈dom(c)

yjc ·
I∏

i=1

x1i,C−1(c)(i), ∀j ∈ {1, · · · , nI+1} (2)

xt(I+1)j =
∑

g∈dom(g)

zjg ·
I∏

i=1

xti,G−1(g)(i) · x
t−1
(I+1),G−1(g)(I+1),

∀j ∈ {1, · · · , nI+1}, t ∈ T /{1}

(3)

The detailed notations and problem variables are defined as follows. More-
over, we formulate a novel robust DBN model with bounded deviation budget.
Input parameters

I: the set of suppliers, I = {1, · · · , I}, indexed by i;
I + 1: the manufacturer;
T : the set of periods, T = {1, · · · , T}, indexed by t;

Mi: Markov transition matrix of supplier i, where i ∈ I;
dom(c): the domain of the state-combination-index c, i.e. dom(c) = {1, 2, · · · , n1 ·n2 ·

· · nI};
C(•): unique bijection mapping S1 × · · · × SI

C(•)−→ dom(c) in the prior BN which
maps a state combination to a state-combination-index;

C−1(•): the inverse mapping of C(•);
C−1(c)(i): the corresponding state of supplier i for a given state-combination-index c

(in the CPT) in the prior BN;
dom(g): the domain of the state-combination-index g, i.e. dom(g) = {1, 2, · · · , n1 ·

n2 · · · nI · nI+1};
G(•): unique bijection mapping S1 × · · · × SI × SI+1

G(•)−→ dom(g) in each 2TBN
which maps a state combination to a state-combination-index;

G−1(•): the inverse mapping of G(•);
G−1(g)(i): the corresponding state of supplier (or manufacturer) i, i ∈ I ∪ {I + 1}, for

a given state-combination-index g (in the CPT) in each 2TBN;
x1ij , x̄

1
ij : the lower and upper bound of the probability interval in the jth state for

the supplier i in time period 1, where i ∈ {1, · · · , I}, j ∈ {1, · · · , ni};
y
jc
, ȳjc: the lower and upper bound of the probability interval in the jth state for

the manufacturer, conditional on the cth state combination in the prior BN,
where j ∈ {1, · · · , nI+1}, c ∈ dom(c);

zjg, z̄jg: the lower and upper bound of the probability interval in the jth state for
the manufacturer, conditional on the gth state combination in each 2TBN,
where j ∈ {1, · · · , nI+1}, g ∈ dom(g);
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budget: the deviation budget.

Decision variables

xtij : the probability in the jth state for the supplier or manufacturer i in time
period t, where i ∈ I ∪ {I + 1}, j ∈ {1, · · · , ni}, t ∈ T ;

yjc: the probability in the jth state for the manufacturer, conditional on the cth
state combination (in the CPT) in the prior BN, where j ∈ {1, · · · , nI+1}, c ∈
dom(c);

zjg: the probability in the jth state for the manufacturer, conditional on the gth
state combination (in the CPT) in each 2TBN, where j ∈ {1, · · · , nI+1}, g ∈
dom(g).

max xT(I+1),nI+1
(4)

s.t. (1)− (3)
ni∑
j=1

x1ij = 1, ∀i ∈ I (5)

nI+1∑
j=1

yjc = 1, ∀c ∈ dom(c) (6)

nI+1∑
j=1

zjg = 1, ∀g ∈ dom(g) (7)

ni∑
j=1

∑
i∈I

∣∣x1ij − 1

2
(x1ij + x̄1ij)

∣∣+

nI+1∑
j=1

∑
c∈dom(c)

∣∣yjc − 1

2
(y

jc
+ ȳjc)

∣∣+
nI+1∑
j=1

∑
g∈dom(g)

∣∣zjg − 1

2
(zjg + z̄jg)

∣∣ ≤ budget (8)

x1ij ∈ [x1ij , x̄
1
ij ], ∀i ∈ I, j ∈ {1, · · · , ni} (9)

0 ≤ xtij ≤ 1, ∀i ∈ I, j ∈ {1, · · · , ni}, t ∈ T /{1} (10)

0 ≤ xt(I+1)j ≤ 1, ∀j ∈ {1, · · · , nI+1}, t ∈ T (11)

yjc ∈ [yjc, ȳjc], ∀j ∈ {1, · · · , nI+1}, c ∈ dom(c) (12)

zjg ∈ [zjg, z̄jg], ∀j ∈ {1, · · · , nI+1}, g ∈ dom(g) (13)

The objective function (4) is to estimate the worst-case disruption risk, i.e.,
to evaluate the robustness of the manufacturer in the final time period T un-
der disruptions. Constraint (1) denotes the Markov transition equation for each
supplier i. Constraint (2) and (3) calculate the probability in each state for the
manufacturer in the prior BN and each 2TBN, respectively. Constraint (5) - (7)
guarantee the second Kolmogorov axiom of probability, i.e., the sum of proba-
bilities for a supplier or the manufacturer is equal to 1. Constraint (8) ensure
the total sum of deviation no greater than the budget. Constraint (9) - (13) give
the domains of probabilities in each state (in all time periods).
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4 Solution method

The above proposed model can not be solved by off-the-shelf solver, due to the
Constraint (8). Therefore, we equivalently transform this constraint into a set of
linear constraints which can be solved by GUROBI.

We first introduce a variable αij , where αij ≥ 0, i ∈ I, j ∈ {1, · · · , ni}. Since
we want to delete | • | notation, we let αij = |x1ij − 1

2 (x1ij + x̄1ij)|, so we have

αij ≥ x1ij −
1

2
(x1ij + x̄1ij), ∀i ∈ I, j ∈ {1, · · · , ni} (14)

αij ≥ −x1ij +
1

2
(x1ij + x̄1ij), ∀i ∈ I, j ∈ {1, · · · , ni} (15)

Notably, as the objective value wants us to minimize the value of αij , αij =
|x1ij − 1

2 (x1ij + x̄1ij)| can be guaranteed. Likely, given the auxiliary variables βjc
and γjg, where βjc, γjg ≥ 0, j ∈ {1, · · · , nI+1}, c ∈ dom(c), g ∈ dom(g). We let
βjc = |yjc − 1

2 (y
jc

+ ȳjc)| and γjg = |zjg − 1
2 (zjg + z̄jg)|, and we can induce

βjc ≥ yjc −
1

2
(y

jc
+ ȳjc), ∀j ∈ {1, · · · , nI+1}, c ∈ dom(c) (16)

βjc ≥ −yjc +
1

2
(y

jc
+ ȳjc), ∀j ∈ {1, · · · , nI+1}, c ∈ dom(c) (17)

γjg ≥ zjg −
1

2
(zjg + z̄jg), ∀j ∈ {1, · · · , nI+1}, g ∈ dom(g) (18)

γjg ≥ −zjg +
1

2
(zjg + z̄jg), ∀j ∈ {1, · · · , nI+1}, g ∈ dom(g) (19)

A new model can be developed as follow.
New decision variables

αij : auxiliary variables, where i ∈ I, j ∈ {1, · · · , ni};
βjc: auxiliary variables, where j ∈ {1, · · · , nI+1}, c ∈ dom(c);
γjg: auxiliary variables, where j ∈ {1, · · · , nI+1}, g ∈ dom(g);

max xT(I+1),nI+1
(20)

s.t. (1)− (7), (9)− (19),

ni∑
j=1

∑
i∈I

αij +

nI+1∑
j=1

∑
c∈dom(c)

βjc +

nI+1∑
j=1

∑
g∈dom(g)

γjg ≤ budget (21)

αij ≥ 0, ∀i ∈ I, j ∈ {1, · · · , ni} (22)

βjc, γjg ≥ 0, ∀j ∈ {1, · · · , nI+1}, c ∈ dom(c), g ∈ dom(g) (23)

Though the constructed model is still a nonlinear programming formulation, it
can be solved by using the commercial solver GUROBI.
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5 A case study

In this section, an illustrative example is presented to demonstrate the applicabil-
ity of the proposed model. The model are coded in PYTHON 3.7 and combined
with GUROBI 9.0 solver. Numerical experiments are conducted on a personal
computer with Core I5 and 2.11 GHz processor and 16 GB RAM under windows
10 operating system.

Especially, we focus on the situation that the SC has three suppliers and
one manufacturer, and the number of periods is set to be three. Each supplier
and the manufacturer has two states, i.e., state 1 denotes a fully operational
state and state 2 signifies a fully disrupted state. The Markov transition matrix
of supplier i and the lower bound and upper bound of probability intervals are
shown as follows.

Mi =

[
0.549 0.715
0.451 0.285

]
,∀i ∈ {1, 2, 3} x1ij =

0.209 0.360
0.000 0.151
0.073 0.046

 x̄1ij =

0.718 0.513
0.775 0.718
0.710 0.665


y
jc

=

[
0.275 0.354 0.145 0.255 0.446 0.448 0.063 0.104
0.026 0.220 0.015 0.228 0.325 0.139 0.338 0.295

]
ȳjc =

[
0.984 0.774 0.986 0.857 0.849 0.608 0.988 0.503
0.626 0.717 0.890 0.599 0.931 0.992 0.582 0.799

]

Table 1. Different disruption risk probabilities obtained by different deviation budgets

budget 5 6 7 8 9 10

obj 0.239 0.252 0.261 0.267 0.268 0.268

The different disruption risk probabilities obtained by different deviation budgets
are reported in Table 1. budget denotes the deviation budget and obj means the
disruption risk probabilities. We can observe that with the increase of budget, obj
increases first and remains unchanged later. It is natural that the worst-case risk
estimations with large deviation budget are greater than those with small one.
The experimental results are useful, since decision makers can adopt different
deviation budget in line with their risk preferences to evaluate the disruption
risk probability properly.
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