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Abstract: Ising machines are novel computing devices for
the energy minimization of Ising models. These combina-
torial optimization problems are of paramount importance
for science and technology, but remaindifficult to tackle on
large scale by conventional electronics. Recently, various
photonics-based Ising machines demonstrated fast
computing of a Ising ground state by data processing
through multiple temporal or spatial optical channels.
Experimental noise acts as a detrimental effect in many of
these devices. On the contrary, here we demonstrate that
an optimal noise level enhances the performance of
spatial-photonic Ising machines on frustrated spin prob-
lems. By controlling the error rate at the detection, we
introduce a noisy-feedback mechanism in an Ising ma-
chine based on spatial lightmodulation.We investigate the
device performance on systems with hundreds of individ-
ually-addressable spins with all-to-all couplings and we
found an increased success probability at a specific noise
level. The optimal noise amplitude depends on graph
properties and size, thus indicating an additional tunable
parameter helpful in exploring complex energy landscapes
and in avoiding getting stuck in local minima. Our exper-
imental results identify noise as a potentially valuable
resource for optical computing. This concept, which also
holds in different nanophotonic neural networks, may be
crucial in developing novel hardware with optics-enabled
parallel architecture for large-scale optimizations.

Keywords: Isingmachines; optical computing; optimization
problems; spatial light modulation.

1 Introduction

Solving large combinatorial problems is crucial for wide-
spread applications in fields such as artificial intelligence,
cryptography, biophysics, and complex networks. How-
ever, finding the optimal solution to many of these tasks
causes the required resources to grow exponentially with the
problem size, a reason why such problems are considered as
computationally intractable for traditional computing ar-
chitectures [1]. A promising approach to efficiently solve
these problems is to recast them in terms of an Isingmodel [2,
3], which describes a system of classical interacting spins,
and searching its ground state by an artificial network of
spins evolving according to an Ising Hamiltonian. Ising
machines are physical platforms made of electronic or
photonic elements that can be programmed to encode Ising
problems with known coupling values, and the ground state
obtained after the system’s relaxation provides the optimal
solution. They have been realized in a variety of quantum
and classical systems including cold atoms [4, 5], single
photons [6, 7], superconducting [8, 9] andmagnetic junctions
[10], electromechanical [11] and CMOS circuits [12], polariton
and photon condensates [13, 14], or lasers and nonlinear
waves [15–17], but with practical difficulties in scalability,
connectivity, or in engineering the spin interaction.

Photonic Ising machines encode the spin state in the
phase or amplitude of the optical field. Realized photoni-
cally, such Ising machines hold the prospect of processing
data in parallel at high speed through active optical com-
ponents and hence bemuch faster than those based on other
encoding schemes [18]. Various prototypes have recently
been realized with sizes spanning from few to thousands
of spins. In the class of photonic optimizers known as
coherent Ising machines (CIMs), the nonlinear dynamics of
time-multiplexed optical parametric oscillators [19–23], fiber
lasers [24], or simple opto-electronic oscillators [25], is
exploited to solve NP-hard optimization problems with
notable performance [26]. CIMs are dissipative optical net-
works in which the ground-state search is performed in
reverse direction by slowly raising the gain, according to a
general non-equilibrium bifurcation mechanism that
currently inspires novel algorithms and settings [27–37]. On
the other hand, optimization platformsbased onwaveguides
circuits [38, 39] and integrated nanophotonic processors
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[40–43] operate as optical recurrent neural networks [44]
converging to Ising energy minima.

Spatial-photonic Isingmachines are a different class of
optical devices for Ising problems that have been demon-
strated very recently [45]. They make use of spatial light
modulation for encoding an unprecedented number of
spins [46] and the programmed Hamiltonian is optically
evaluated by measuring the intensity distribution after
propagation in free-space [45] or through nonlinear media
[47]. These devices take advantage of optical vector-matrix
multiplications and by the large pixel density of spatial
light modulators (SLMs), thus enabling the implementa-
tion of large-scale neuromorphic computing [48–53].

Noise is an unavoidable ingredient in any hardware. In
CIMs it represents one of the main error sources and can
induce dynamics beyond the regime of Ising spins [55]. On
the contrary, in recurrent algorithms and artificial neural
networks for Ising problems, noise furnishes a finite
effective temperature, and it is expected to facilitate and
speed up convergence to the ground state if noise ampli-
tude is adequately leveraged [40, 54]. The effect has been
recently observed in a platform with few photonic spins
and various competing interactions [41]. Noise-tolerant
settings are especially important when scaling the device
to solve systems withmany units. Nevertheless, the impact
of noise in large-scale photonic Ising machines remains
mainly unexplored.

In the present article, we investigate the effect of
experimental noise on a spatial-photonic Ising machine
with hundreds of spins, proving the existence of an optimal
noise level. The precise impact of noise depends on each
problem’s particular features. Specifically, we found that it
enhances the machine’s success probability on problems
with both positive and negative interactions, while it is
detrimental for models having only positive couplings. By
providing amechanism to escape from local minima, noise
represents an additional parameter with beneficial prop-
erties for our optical computing device. Our findings
demonstrate noise as a valuable resource in large-scale
photonic computing.

2 Ising machine by spatial light
modulation

In our Ising machine the spin variables are encoded on a
coherent laser wavefront via binary values of the optical
phase and processed by spatial light modulation [45]. As
schematically illustrated in Figure 1(a), our optical setting
employs an optical path in which an SLM encodes spins
σi � ±1 by 0, π phase delays over an amplitude-modulated

beam. Linear interaction between spins occurs by interfer-
ence on the detection plane and its strength is controlled by
spatial modulation of the input intensity. The optical ma-
chineworks via ameasurement and feedback scheme.Once
initialized to a given problem, feedback from the detected
intensity allows the phase distribution on the SLM to
converge towards a state minimizing an Ising Hamiltonian

H � −∑
ij
Jijσiσj (1)

with couplings Jij � ξ iξ j ĨT , where ξ i is the amplitude illu-
minating the ith spin [45]. ĨT is the Fourier transformof a pre-
determined target image, and the difference between IT and
the image detected on the camera is the cost function. At
eachmachine iteration,wemeasure the intensity on the CCD
modes [Figure 1(b)] and the spins are updated in order to
minimize the cost function. Importantly, and other than
for CIMs [20, 21, 25], our machine avoids electronically
computing the energy aswell as thefield actingoneachspin.

Due to the intrinsic noise of each experimental setup,
the machine always behaves as coupled to a thermal bath.
Noise therefore provides an effective temperature for the
final spin ground state, as reported in Ref. [45]. Sources of
noise come from intensity discretization and processing in
each CCD mode, as well as from the imperfect spatial light
modulation. As detailed below, we here control the noise
level by means of a tunable error rate in the machine’s
measurement and feedback scheme.

2.1 Experimental setup and noisy-feedback
method

The experimental device follows the setup illustrated in
Figure 1(a). Light from a CW laser at λ = 532 nm is expanded
and polarization controlled. The beam is first spatially
modulated in amplitude and then in phase by a single
reflective modulator (Holoeye LC-R 720, 1280 × 768 pixels,
pixel pitch 20× 20 μm). A section of themodulator operates in
amplitude mode to generate the profiles ξ i. A 4-f system then
images this state on the second SLM section that performs
binaryphasemodulation,whichwe realizewith less than 10%
residual intensity modulation. We select an active area of
approximately 200 × 200 SLM pixels and divide it into N
addressable optical spins by grouping several pixels. Modu-
lated light is spatially filtered using an holographic grating
and focused by a f = 500 mm lens on a CCD camera. The
intensity is detected on 18× 18 spatialmodes,where the signal
in eachmode isobtainedaveragingover 10× 10camerapixels,
a size comparable with the spatial extent of a speckle grain.

The measured intensity pattern determines the feed-
back signal. At eachmachine cycle a single spin is randomly

4110 D. Pierangeli et al.: Noise-enhanced spatial-photonic Ising machine



selected and flipped; the recorded image is compared with
the reference IT on the same set ofmodes, and the spin state
is updated to minimize the difference between the two im-
ages. Due to errors at the readout, there always exists a finite
probability to update the spin configuration. The rate at
which readout errors occur determines the noise level,
which therefore is ultimately related to themagnitude of the
intensity fluctuations on the detection plane. We exert
control over the noise level by tuning the camera exposure
time, where shorter exposure corresponds to larger error
amplitudes. Fixing the CCD settings and analyzing the ma-
chine’s behavior, we map the exposure time into a normal-
ized noise level ρ ∈ [0,  1], which indicates the probability at
each iteration to measure a false decrease of the cost func-
tion and to erroneously flipping a spin. The minimum noise
level available, ρ � 0, corresponds to faults in the feedback
loop coming from spontaneous optical fluctuations in the
setup.

2.2 Optimization with spontaneous noise

We first quantify the solutions found by our Ising machine
for ρ � 0, a condition analogous to previously reported
experiments [45]. We optically implement two different
classes of Ising systems: mean-field and Mattis spin
glasses. In a mean-field Ising model, also known as infin-
ite-range Ising model, the spins are all-to-all coupled with

the same positive interaction strength. We realize such
coupling using a plane wave of constant amplitude ξ i � E0

and maximizing the intensity detected on a single CCD

mode, such that ĨT � c, being c an arbitrary constant and

J̄ � cE2
0. In Mattis spin glasses the pairwise interaction is

given as a product of two independent variables Jij ∝ ξ iξ j
[56, 57]. In this case, since the couplings are both positive
and negative, a minimal amount of noise introduces frus-
tration [57]. In our spatial optical setting, pairs of nega-
tively-coupled spins correspond to points of the optical
field that give destructive interference on a fixed CCDmode
[see bottom panel in Figure 2(d)]. Sparsity is implemented
all-optically by decoupling a random subset of spins via
amplitude modulation (i. e., ξ i � 0 for blocks of spins).
Since the interaction matrix is given in any case as a
product of separate amplitude values, the sparse Ising
Hamiltonian still maintains the form of a Mattis model.

Optical ground states found by the device for a mean-
field system of N � 100 spins are reported in Figure 2(a–c).
The evolution of a spin configuration initialized to a
random distribution is shown in Figure 2(b) for a single
machine run; after thousand iterations, a low-temperature
ferromagnetic state is measured. The energy probability
distribution of these ground states is reported in
Figure 2(c); a peak close to the known minimum energy
value [red line in Figure 2(c)] indicates that ground states of
the IsingHamiltonian are successfully found. In Figure 2(d)

random state

ground state

a b

Figure 1: Photonic Ising machine by spatial light modulation. (a) The spins σi � ±1 are encoded by a spatial light modulator (SLM) into binary
optical phases ϕ � 0,  π in separated spatial points of the optical wavefront. Intensity modulation is employed to set the spin interaction via
the amplitude distribution ξ i. Recurrent feedback from the far-field camera allows evolution of the phase configuration towards the Ising
ground state. (b) Intensity detected on the camera (CCD) modes for a random spin state and for the ground state of a ferromagnetic Ising
model. Insets are illustrations of the corresponding spin state in energy landscape. Experimental fluctuations allow spontaneous changes in
the spin configuration.

D. Pierangeli et al.: Noise-enhanced spatial-photonic Ising machine 4111



we show the graph for a Mattis spin glass instance along
with the corresponding target image. In agreementwith the
programmed Hamiltonian [57], the spin evolution in
Figure 2(e) exhibits the formation of two domains with
opposite magnetization and equal size. However, from the
ground-state energies in Figure 2(f), we observe a reduced
ability of themachine in solving such frustratedmodels. As
we demonstrate hereafter, increasing the noise level is an
effective way to improve the machine performance on
problems affected by trapping in local energy minima.

3 Effect of the noise level on the
Ising machine performance

To introduce controllable noise, we exploit the detection
process previously described. The Ising machine is made
to operate under different noise levels. To quantify the
performance when the setup is initialized to different
parameters, we use two distinct and complementary

quantities: the success probability ps and the Hamming
distance h. To evaluate the success of the computation,
we consider the correlation between the measured spin
configuration and the known optimal solution, being
C = ±1 for the zero-temperature spin system in the lowest
energy state [57]. A machine run is defined as successful if
its final state gives |C| > a, being a any fixed accuracy; the
success probability ps is the fraction of repeated experi-
ments with random initial conditions that converged
successfully. The Hamming distance is a metric used in
information theory. Here, h indicates the number of units
(spins) that need to be inverted to reach the minimum
energy configuration [9]. We would like to point out that
using this quantity to characterize the quality of Ising
machines is significantly more accurate than the ground-
state energy. In fact, spin configurations very far from the
known solution can still have energies comparable with
the optimal one.

Figure 3 illustrates the performance of the spatial-
photonic Ising machine as we vary the noise level. For the
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Figure 2: Ising machine’s ground states without noise control. (a–c) Results for ferromagnetic and (d–f) frustrated models with 100 spins
(ρ � 0). Problem graphs for (a) mean-field (infinite-range) Ising model and (d) Mattis spin glass with positive and negative couplings. For
clarity, only links starting from the two black nodes are drawn. Insets show the corresponding target images IT . (b, e) Contour maps showing
the evolution of the spin configuration during a single run of themachine (green regions are domain walls). (c, f) Normalized histograms of the
ground-state energy obtained for the instances in (a) and (d), respectively. The red lines in (c) and (f) indicate theminimumenergy known from
exact solution of the models.
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infinite-range Isingmodel, we found a success probability
that decays as noise increases, a behavior independent of
the selected accuracy [Figure 3(a)]. The measured h in
Figure 3(b) has a growing trend, thus indicating that for
emulating such Hamiltonians the best performance is
obtained for minimum noise. A completely different pic-
ture emerges when solving frustrated Ising models. As
shown in Figure 3(c) for denseMattis spin glass instances,
the low success probability observed under spontaneous
noise rapidly increases as additional fluctuations are
introduced. ps has a maximum value and then decays to
zero for large noise levels. Moreover, the mean Hamming
distance as a function of the noise level exhibits a pro-
nounced minimum [Figure 3(d)], which indicates an
optimal noise level, ρopt ≈ 0.05. A similar behavior is

found on sparse Mattis spin glasses, as reported in
Figure 3(e–f), with ρopt ≈ 0.07. This demonstrates that an

optimal noise level promotes the exploration of energy
landscapeswithmanyminima during optimization on the
optical platform.

3.1 Scaling of the optimal noise level

We investigate how the noise-enhancedmachine operation
depends on the system size.While keeping the SLM’s active
area constant, we vary the total number of spins and, for
each system sizeN, we perform the experiments at different
noise levels. The results obtained on dense Mattis spin
glasses are shown in Figure 4.We observe an optimal noise
level that significantly depends on the spin number, with
values that grow and saturate as the system size increases.
For small-scale systems (N = 16) additional noise yields
only limited advantages due to finite size effects and the
small number of frustrated configurations. However, a
constant optimal level ρopt ≈ 0.07 enhances the optimiza-

tion for large scale Hamiltonians. This specific value is not
a general recipe to improve the Ising machine, but gua-
rantees improved performance on specific problem graphs
in our setup. Ising instances with distinct properties (graph
type, connection density etc.) would have diverse optimal
levels, having landscapes with different features. These

mean-field Ising model Mattis spin glass (sparse)

a

b

c e

d f

N=100 N=100

Mattis spin glass (dense)

N=100

Figure 3: Optimal noise level in spatial-photonic Isingmachines. (a, c, e) Success probability and (b, d, f) mean Hamming distance varying the
noise level for various N = 100 Ising models: (a–b) mean-field Ising model, (c–d) dense and (e–f) sparse Mattis spin glasses. The problem
graphs are inset. Different colors in (a, c, e) indicate data obtained at the specified accuracy level. Shaded regions indicate statistical error
intervals. The existenceof an optimal noise level for frustratedmodels is signaledby aminimum in theHammingdistance and a corresponding
maximum in the success probability [dotted line in (d) and (f)].
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findings establish the noise level as a hyperparameter of
the photonic computing device.

Another important fact is that residual errors do not
increase rapidly with N. To prove this property, Figure 4
shows the Hamming fraction h/N (i. e., the mean Hamming
distance normalized to the spin number) as a function of N.
Residual errors shows a sublinear increase with minor os-
cillations as N varies. This preliminary evidence suggest a
smooth dependence of the machine accuracy on the system
size, although larger systems naturally require more ma-
chine iterations to converge to their ground state. According
to thermodynamic considerations, this is consistentwith the
presence of an effective thermal bath for the spin state. It
suggests that lowering the effective temperature of the ma-
chine by improving the experimental setup can lead to larger
ground-state probabilities even for large-scale models.

4 Conclusions

Understanding the role of noise in optical Ising machines
and neuromorphic devices is crucial for their application
to large-scale computational tasks. In particular, noise-
tolerant settings are attractive candidates for developing
unconventional computing architectures. We have re-
ported the first evidence that spatial-photonic Ising ma-
chines can take advantage of noise in solving large-
scale optimization problems. Devices based on spatial light
modulation are scalable to larger sizes and can potentially
host systems consisting of millions of spins. In partic-
ular, our computing setting can exploit the potential of

nanophotonic light-modulation devices. Tunable dielectric
metasurfaces, which allow to control both phase and po-
larization of the optical wavefront with subwavelength
spatial resolution [58], can act as high-density phase
modulators, enabling the integration of SLM-based Ising
machines on a photonic chip. For example, more than 106

optical spins over square millimeter could be obtained
through the development of novel SLM technologies that
integrate nanoantennas into liquid crystal cells [59].
Alternative nanophotonic platforms that employ electro-
optic microcavity arrays would allow to achieve high fill
factors along with phase-only modulation at GHz speeds
[60]. At present, the iteration time of our Isingmachine can
be reduced to a few milliseconds by exploiting the most
recent microelectromechanical SLM technologies [61, 62].
Spatial-photonic Ising machines are thus a promising
approach for large-scale ultra-fast optical computing.

In conclusion, introducing a noisy-feedback mecha-
nism in an SLM-based scheme, we have demonstrated the
existence of an optimal noise level enhancing the machine
performance on frustrated Ising models. Noise can hence
be exploited as a tunable parameter to improve the
exploration of energy landscapes with many minima, an
interesting property that has been identified also in neural-
network-based nanophotonic Ising samplers [40, 41].
Photonic Ising machines with controllable noise represent
a route to realize photonic simulations of phase transition
and finite-temperature phenomena. Our results show that
noise is a valuable resource for optical computing, opening
important possibilities for realizing classical and quantum
annealing.
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