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Fast Unmixing and Change Detection in
Multitemporal Hyperspectral Data

Ricardo Augusto Borsoi, Student Member, IEEE, Tales Imbiriba,
José Carlos Moreira Bermudez, Senior Member, IEEE, Cédric Richard, Senior Member, IEEE

Abstract—Multitemporal spectral unmixing (SU) is a powerful
tool to process hyperspectral image (HI) sequences due to its
ability to reveal the evolution of materials over time and space
in a scene. However, significant spectral variability is often
observed between collection of images due to variations in
acquisition or seasonal conditions. This characteristic has to be
considered in the design of SU algorithms. Because of its good
performance, the multiple endmember spectral mixture analysis
algorithm (MESMA) has been recently used to perform SU in
multitemporal scenarios arising in several practical applications.
However, MESMA does not consider the relationship between
the different HIs, and its computational complexity is extremely
high for large spectral libraries. In this work, we propose
an efficient multitemporal SU method that exploits the high
temporal correlation between the abundances to provide more
accurate results at a lower computational complexity. We propose
to solve the multitemporal SU problem by separately addressing
the endmember selection and the abundance estimation problems.
This leads to a simpler solution without sacrificing the accuracy
of the results. We also propose a strategy to detect and address
abrupt abundance variations in time. Theoretical results demon-
strate how the proposed method compares to MESMA in terms
of quality, and how effective it is in detecting abundance changes.
This analysis provides valuable insight into the conditions under
which the algorithm succeeds. Simulation results show that
the proposed method achieves state-of-the-art performance at
a smaller computational cost.

Index Terms—Hyperspectral data, multitemporal, spectral un-
mixing, endmember variability, MESMA.

I. INTRODUCTION

Hyperspectral images (HI) have become a central tool
in an increasing number of applications due to their high
spectral resolution, which offers important information about
the materials in a scene [1]. However, inherent limitations of
imaging devices and large sensor-to-target distances typical of
many applications, such as remote sensing, lead to HIs with
low spatial resolution [2]. Hence, each pixel in an HI is usually
a mixture of spectral signatures of different pure materials, also
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called endmembers (EM) [3]. Spectral unmixing (SU) aims to
decompose an HI into a collection of endmembers and their
corresponding fractional abundances, thus revealing important
information on the distribution of the materials in the scene [4].

The Linear Mixing Model (LMM) is the simplest and most
widely used to represent the interaction between light and
the materials in a given scene [3]. The LMM represents the
reflectance of each pixel as a convex combination of the
endmembers in the scene. The combination coefficients can
then be interpreted as the fractional abundances contributed to
each pixel by the EMs. The simplest form of LMM models
each material in the whole scene by a single endmember.
Although allowing fast and simple SU strategies, such a model
fails to account for the important phenomenon of endmember
variability, observed in most practical scenes [5]–[7].

Spectral variability can be caused by many factors includ-
ing, for instance, atmospheric, illumination and seasonal varia-
tions, and can propagate significant abundance and endmember
estimation errors throughout the unmixing process [5], [6].
This motivated the use of more elaborated mixing models
and algorithms that explicitly address endmember variability
in SU [5], [6]. Several parametric and non-parametric models
have been recently proposed which account for EM spectra
variation within a single HI. These include Beta or mixture of
Gaussian distributions [8], [9], additive [10] and multiplicative
scaling factors [11]–[14], combinations of an uniform scaling
and an additive variability dictionary [15], reparameterizations
using deep neural networks [16], and low-rank tensor repre-
sentations [17]. Although these models were able to produce
promising results, the most prominent strategy to deal with
spectral variability in SU is to represent EMs as sets of
spectral signatures, called spectral libraries or bundles [7]. The
spectral libraries are usually constructed a priori from labo-
ratory or in situ measurements. They contain variants of the
spectral signatures of each material, to better represent various
acquisition conditions or physicochemical compositions. SU
can then be formulated as a problem of selecting from the
library the subset of spectral signatures that best represents
the observed HI. This usually entails the use of either sparse
unmixing [18], [19] or Multiple Endmember Spectral Mixture
Analysis (MESMA) [20] algorithms. The MESMA algorithm
is still the leading algorithm in practice due to its simplicity
and interpretability, and because it provides good results if the
spectral library adequately expresses the spectra contained in
the scene [7], [21]. This allowed MESMA to be applied to
many different environments and scenarios [7, p.1607].
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A. Multitemporal SU and change detection

More recently, multitemporal SU has become a topic of
great interest due to its ability to leverage temporal information
in HI sequences for monitoring the evolution of the different
materials and their distribution in the scene [22]–[25]. Spectral
variability becomes a more critical issue in multitemporal SU,
when compared to EM variations within a single HI, because
images are acquired at different instants [6], [26]. Some works
have proposed to extend parametric EM models developed
for single-image SU to the multitemporal case [27]–[31].
These works considered either uniform [27] or bandwise [31]
scaling variations of reference EMs, or additive temporal
perturbations over a mean EM matrix [28]–[30]. Such works
attempt to estimate the EMs from the data by employing batch
(centralized [30], [31] or distributed [29]) or online [27], [28]
processing strategies. Nonetheless, the multitemporal exten-
sion of MESMA remains the most frequently used solution in
practical applications [22]–[24], [32], and naturally addresses
both the spatial and temporal variations of EM spectra.

A closely related problem to SU consists of detecting and
monitoring changes in material composition across an HI
sequence [33]. While many methods are focused on detecting
only abrupt changes [33], [34], having detailed subpixel abun-
dance evolution from which both subtle and abrupt variations
can be discerned is important for many applications [25], [35].
This motivated the development of unmixing-based change
detection strategies based on, e.g., linear [36], sparse [37]
and locally adaptive [25] SU, where the estimated abundance
results can be analyzed to detect abrupt changes [38]. The
ability of MESMA to produce good quality abundance esti-
mates while addressing spatio-temporal EM variability makes
it an important tool for this task. It is also important to
note that learning-based approaches have recently shown good
performance in classification [39], [40] unmixing [41], [42]
and related tasks in hyperspectral imaging [43], [44]. Such
approaches usually leverage the capability of deep neural
networks to improve the quality of the results. However, the
combination of simplicity, interpretability and robustness that
underlies MESMA and related library-based approaches still
makes them appealing, especially due to their potential for
out-of-the-box solutions.

Nevertheless, the advantages offered by MESMA do not
come without compromises. Besides depending on a spectral
library, a significant drawback of MESMA lies in its high
computational complexity, which increases very quickly with
the size of the libraries and with the number of materials.
This goes against the need for online processing of large
amounts of hyperspectral data [45], [46], and motivates the
search for new algorithms that are both efficient and accurate.
An alternating angle minimization (AAM) approach has been
recently proposed to provide an approximate but accurate
solution to the MESMA problem with a significant reduction
in computational complexity for large libraries [47]. Despite
its merits, the AAM algorithm does not scale well with the
number of materials in the scene, and thus may also lead
to a large computational complexity in practical scenarios.
Moreover, AAM and other existing multitemporal MESMA

methods do not exploit the temporal correlation between the
abundance maps, nor do they account for abrupt abundance
variations.

B. Contributions and organization

In this paper, we propose a fast multitemporal SU algorithm,
named FM-MESMA. Differently from previous works such as
MESMA and AAM [20], [47], the proposed method explores
the abundance temporal information to deliver high-quality
estimates at a lower complexity. Moreover, unlike previous
change detection methods based on SU [25], [36], [38], we
integrate change detection in a specific EM selection stage of
the algorithm, which allows us to account for EM variability
while maintaining a small computational cost. In contrast to
deep learning-based frameworks, the proposed method yields
a simple, low-cost and robust solution which comes with
rigorous theoretical guarantees. The main contributions of this
paper are:

a) We explicitly characterize slow and abrupt abundance
variations in the multitemporal mixing model. This allows
us to exploit abundance temporal correlation to propose
an efficient and accurate SU algorithm. Differently from
previous works, this is achieved by performing SU in two
separate tasks: EM selection and abundance estimation,
each of which can be solved more efficiently. This
significantly reduces the complexity of SU compared to
MESMA or AAM, with little impact on the results.

b) We propose a methodology to detect pixels that undergo
abrupt abundance changes based on the results of the
EM selection task. Such pixels, which would otherwise
degrade the performance of the proposed method, are then
handled separately using a more sophisticated strategy.
Unlike typical SU-based change detection, the changed
pixels are identified by taking spectral variability into
account but without solving the full SU problem, leading
to a lower complexity. The resulting algorithm is robust
and interpretable, and has only a single tuning parameter.

c) We derive theoretical guarantees concerning the perfor-
mance of FM-MESMA, both in the presence and in the
absence of changes. Specifically, we first show under
which conditions the proposed method is guaranteed to
recover the correct EMs from the library. Then, we derive
conditions under which the FM-MESMA correctly de-
tects abrupt abundance changes. These theoretical results
provide insight into which conditions are necessary for
the proposed method to reach an accurate result.

d) We provide an analysis of the computational complexity
of FM-MESMA, MESMA and AAM, and show how they
scale with the number of spectral bands, the size of the
spectral libraries and the number of EMs.

Simulation results with synthetic and real data illustrate the
performance of FM-MESMA when compared to MESMA,
AAM, and approaches that do not rely on spectral libraries.

The paper is organized as follows. Section II reviews the lin-
ear mixing model, MESMA and its multitemporal extensions.
Section III presents the multitemporal mixing model and our
algorithm. Section IV provides theoretical guarantees for the



PUBLISHED IN THE IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 3

reconstruction accuracy and robustness of FM-MESMA, and
an analysis of its computational complexity. Section V presents
simulation results and comparisons. Conclusions are presented
in Section VI.

II. SPECTRAL UNMIXING WITH MESMA

The basic idea behind the MESMA algorithm is to find the
EMs and the fractional abundances that best represent each
pixel with the LMM. The LMM represents each L-band pixel
yn ∈ RL of an HI, for n = 1, . . . , N , as a convex combination
of the spectral signatures of P endmembers:

yn = Man + en, s.t. 1>an = 1 and an ≥ 0 (1)

where matrix M ∈ RL×P contains the spectral signatures
of the EMs as its columns mp, p = 1, . . . , P , an is the
abundance vector, and en is an additive noise term.

Most SU strategies use a single spectral signature to rep-
resent each material in the scene. This can lead to signifi-
cant abundance estimation errors in the presence of spectral
variability. MESMA, on the other hand, considers P spectral
libraries known a priori, one for each endmember, defined as:

Mp = {mp,1, . . . ,mp,Cp}, mp,j ∈ RL, p = 1, . . . , P (2)

where Cp is the number of available variations of spectral
signatures of the p-th endmember. Then, for each pixel n, only
one endmember is selected from each setMp to compose the
endmember matrix Mn for that pixel.

We define the set of all possible endmember matrices that
can be composed this way as:

M =
{[
m1, . . . ,mP

]
: mp ∈Mp, p = 1, . . . , P

}
(3)

AssumingM known, the MESMA SU problem corresponds
to the search for the EM matrix (also called EM model) inM
that best represents each pixel in the scene. This translates into
the following optimization problem for the n-th pixel:

min
Mn∈M

min
an

∥∥yn −Mnan
∥∥, s.t. an ≥ 0, 1>an = 1. (4)

Despite its widespread use and good performance in practi-
cal scenarios, the computational cost of MESMA is extremely
high. Since solving (4) amounts to perform SU for every
possible matrix Mn extracted from M, its computational
complexity scales with the product of the sizes of librariesMp

as it consists of solving
∏P
p=1 |Mp| FCLS (Fully Constrained

Least Squares) problems [47].
Several works have attempted to circumvent this limitation

by seeking approximate solutions to (4). The first approaches
consisted of solving (4) for matrices Mn randomly cho-
sen from M until obtaining a reconstruction error below a
threshold and well distributed across all spectral bands [20].
Another approach ignores both constraints in (4) and performs
unconstrained least squares for every possible Mn ∈ M,
and then selects the EM model resulting in the smallest
reconstruction error without any negative abundances [48].

Although these approaches are simple, they are not guaran-
teed to achieve a good accuracy at a reduced processing cost,
as only a relatively small subset of M could be tested. Also,

ignoring the abundance constraints can make the results more
sensitive to noise. Recent strategies attempt to provide low-
complexity alternatives to MESMA with minimal impact on
unmixing results. For instance, the approach in [47] employs
an angle minimization strategy. A significant reduction of
the computational complexity is obtained for P small and
Cp possibly very large, with unmixing accuracy similar to
MESMA. Another approach formulates problem (4) as a
mixed-integer optimization problem in order to benefit from
advanced software packages [49]. However, none of these
works consider the multitemporal formulation of MESMA.

MESMA has recently been applied to multitemporal SU
problems such as monitoring of rainforests [22], [24], [32]
and shrublands [23]. Some of these methods improve MESMA
performance by employing strategies such as band selection
and weighting [22], [24], or library construction from multiple
time instants [32]. However, they do not explicitly explore
temporal correlation between the abundance maps at adjacent
time instants. In the following, we propose a model for the
evolution of the abundance maps over time, accounting for
both small and large variations. This will allow us to devise
an efficient algorithm to address multitemporal SU problems.

III. FAST MULTITEMPORAL MESMA

The multitemporal SU problem can be introduced with
generic terms as follows: given a sequence of image pix-
els {yt,n}, for t = 1, . . . , T time instants and n = 1, . . . , N
pixels, and a spectral library M as defined in (3), estimate
the corresponding fractional abundances {at,n} and EM mod-
els M t,n. For simplicity, we shall assume that all the images
are spatially aligned, such that for each n ∈ {1, . . . , N} the
pixels yt,n, t = 1, . . . , T refer to the same spatial location.
A simple solution to this problem would be to directly apply
the techniques discussed in Section II to each pixel individ-
ually. This, however, ignores important temporal information
contained in the image sequence which can be used in order
to devise an efficient algorithm.

We propose to model the evolution of the abundance maps
by considering its changes to be composed of a small additive
signal, and of large sparse changes. That is, the observation
model represents the pixels at time t and t+ 1 as follows:

yt,n = M t,nat,n + et,n, (5a)

yt+1,n = M t+1,n

(
at,n + δt,n + st,n

)
+ et+1,n (5b)

= M t+1,nat+1,n + et+1,n,

whereM t,n is the (true) endmember matrix for pixel n at time
instant t, and et,n is an additive noise vector. Changes taking
place in the abundances between time t and time t + 1 are
modeled as a combination of a small magnitude term δt,n and
a spatially sparse, high magnitude term st,n, which represents
abrupt variations taking place in a small number of image
pixels. Note that, although model (5) dictates the relationship
between a single pair of images, the extension to multiple
images is trivial and is thus omitted here for simplicity.

It turns out that the structure outlined in the model (5) can
be explored in order to devise an efficient MESMA-based SU
algorithm. We propose to use an online strategy to estimate
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the abundances and the EM matrices at time instant t+1 based
on an estimate ât,n of the abundances at time instant t. The
procedure is a two-step one:

1) Considering at,n ≡ ât,n, estimate M t+1,n, δt,n and
st,n that best represent pixel yt+1,n in the model (5);

2) Set ât+1,n = ât,n + δ̂t,n + ŝt,n and repeat for the next
image.

Taking into consideration the prior information stated about
the properties of δt,n and st,n, and the knowledge of the
spectral library M, this can be translated into the following
objectives and constraints for an optimization problem:

• Minimize the reconstruction error w.r.t. M ∈ M, δt,n,
and st,n, given by

∥∥yt+1,n −M
(
ât,n + δt,n + st,n

)∥∥;
• Preserve the nonnegativity and sum-to-one constraints on
at+1,n = ât,n + δt,n + st,n;

• Consider that ‖δt,n‖ should be small and st,n spatially
sparse (i.e., nonzero only in a small number of pixels).

Rather than accounting for all objectives outlined above at
once by devising a single computationally demanding opti-
mization problem, we adopt an alternative strategy to obtain
an efficient solution. First, let us assume that st,n = 0. If δt,n
is sufficiently small and ât,n is a good estimate of the true
abundance at,n, we have:

at,n + δt,n ≈ at,n
≈ ât,n.

(6)

In that case, we can isolate the problem of estimatingM ∈M
from that of estimating δt,n and st,n in order to solve
it separately in a much simpler manner. We formulate the
optimization problem as follows:

REt+1,n = min
M∈M

∥∥yt+1,n −M ât,n
∥∥ . (7)

The endmember matrix M̂ t+1,n obtained by solving prob-
lem (7) can then be used to compute abundance vector ât+1,n

with a single run of the FCLS algorithm.
However, this strategy relies on a strong hypothesis, namely,

st,n = 0 and ât,n ≈ at,n, in order for the approximation in (6)
to hold. This hypothesis may not be satisfied for all pixels.
Fortunately, it turns out that we can devise a simple strategy
to address those cases without significantly compromising the
performance of the algorithm. Specifically, by evaluating the
magnitude of the reconstruction error REt+1,n in (7), we can
indirectly identify if there were any significant changes in the
abundance vector by testing whether REt+1,n is larger than
a given threshold RE0 and, if so, estimate the corresponding
abundance vector from scratch using MESMA or, alternatively,
an algorithm such as AAM.

Intuitively, the reason this works is that, if the spectral
library M is not too large, and if at+1,n ≈ ât,n is not
satisfied, then we cannot accurately reconstruct yt+1,n from
problem (7). In the next section, we shall formalize this
intuition by providing a deeper theoretical analysis of this
method. Setting the threshold RE0 offers a trade-off between

accuracy (which tends to MESMA’s for small RE0) and
computational performance. We propose to choose it as:

RE0 =
K

U

∑
y∈U

(
min

M∈M
min

a≥0, 1>a=1

∥∥y −Ma
∥∥) , (8)

where U = {y1, . . . ,yU} is a set with U pixels and K ∈ R+.
The pixels in U should be similar to those contained in the
image sequence {yt,n} to be unmixed, so that RE0 approaches
K times the average optimal reconstruction error of the data.
The proportion K controls how much the REt+1,n of (7) can
deviate from the estimated optimal value before we decide
an abrupt change occurred. The inner optimization problem
in (8) can be solved using MESMA or AAM. The complete
procedure is detailed in Algorithm 1.

Algorithm 1: FM-MESMA Algorithm
Input : Multitemporal HS images {yt,n}, endmember

library M, threshold proportion parameter K.
1 Perform SU for the first HI y1,n, using the MESMA or

AAM algorithms to obtain â1,n and M̂1,n, for
n = 1, . . . , N ;

2 Compute RE0 according to (8) ;
3 Initialize the change maps indicator function as ι̂s,t,n = 0,

t = 1, . . . , T , n = 1, . . . , N ;
4 for t = 1, . . . , T − 1 do
5 for n = 1, . . . , N do
6 Solve problem (7) to obtain the EM matrix M̂ t+1,n

and the reconstruction error REt+1,n ;
7 if REt+1,n ≤ RE0 then
8 Estimate ât+1,n using the FCLS method with

M̂ t+1,n as the EM matrix;
9 else

10 Estimate ât+1,n and M̂ t+1,n using MESMA or
AAM and set ι̂s,t,n = 1 ;

11 end
12 end
13 end
14 returnEstimated abundances

{
ât,n

}
, detected change maps{

ι̂s,t,n
}

, and endmembers
{
M̂ t,n

}
;

IV. THEORETICAL GUARANTEES

FM-MESMA (Algorithm 1) relies on important assumptions
(such as (6)) in order to split SU into EM selection and abun-
dance estimation, and to correctly detect abundance changes
while maintaining a small complexity. This raises questions
regarding how the accuracy of the method is affected by the
underlying assumptions and by the different variables involved
in the model, such as: the noise et,n, the small and abrupt
abundance changes δt,n and st,n, the library M, and the
accuracy of the estimated abundances at the previous time in-
stants. To investigate these questions, in this section we derive
theoretical results in the form of two theorems, which provide
conditions under which 1) the EM matrix can be correctly
recovered from (7), and 2) the abrupt abundance changes
st,n can be correctly identified based on the reconstruction
error REt+1,n. Informally, the main findings related to each
theorem can be summarized as:

1) When st,n = 0, FM-MESMA recovers the correct
EMs from (7) if the pairwise difference between the
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signatures in each libraryMp is sufficiently large when
compared to a measure related to the coherence between
signatures at different libraries, to the noise et,n and to
the abundance temporal variations δt,n (or to the errors
in ât,n).

2) When an abrupt abundance change occurs, the value of
REt+1,n will be significantly larger than when st,n = 0
(thus making it easy to detect) as long as st,n is
sufficiently large compared to δt,n, to et,n, and to the
maximum pairwise difference between the signatures of
each EM in the library.

To proceed further, we shall assume that the true EM matrix
M t+1,n in (5) is an element of the library M1.

Theorem 1. Let us assume that ât,n = at,n, st,n = 0 and
that M t+1,n ∈ M. Also assume that ‖et,n‖ < Ωe, that
maxM∈M ‖Mδt,n‖ < Ωδ and that the libraries Mp satisfy:

min
p

min
m,m′∈Mp

m6=m′

∥∥m′ −m∥∥2 > ΩM (9)

max
p,q

max
m,m′∈Mp

m̃,m̃′∈Mq

∣∣〈m′ −m, m̃
′ − m̃〉

∣∣ ≤ µ (10)

Then, if 2
√
P (Ωe + Ωδ) <

√
ΩM − (P − 1)µ the solution of

the optimization problem (7) is M = M t+1,n.

Proof. Under these assumptions, optimization problem (7) can
be written equivalently as

min
M∈M

∥∥yt+1,n −M ât,n
∥∥

= min
M∈M

∥∥M t+1,n(at,n + δt,n) + et+1,n −Mat,n
∥∥ (11)

= min
M∈M

∥∥(M t+1,n −M)at,n +M t+1,nδt,n + et+1,n

∥∥ .
In order for the solution M∗ to problem (7) to be the correct
endmember model, we need the reconstruction error to be
minimal only when M t+1,n −M∗ = 0. In that case, the
reconstruction error is: RE∗t+1,n = ‖M t+1,nδt,n + et+1,n‖.
Equivalently, this means that ∀M ′ ∈M,M ′ 6= M t+1,n, the
following condition must be verified:∥∥M t+1,nδt,n + et+1,n

∥∥ (12)

<
∥∥(M t+1,n −M ′)at,n +M t+1,nδt,n + et+1,n

∥∥.
Using the Reverse Triangle Inequality with the r.h.s. of the

above expression leads to:∥∥(M t+1,n −M ′)at,n
∥∥− ∥∥M t+1,nδt,n + et+1,n

∥∥ (13)

≤
∥∥(M t+1,n −M ′)at,n +M t+1,nδt,n + et+1,n

∥∥ .
Now, we can lower bound the l.h.s. of the previous expres-

sion. First, note that by hypothesis we have:∥∥M t+1,nδt,n + et+1,n

∥∥ ≤ ‖M t+1,nδt,n‖+ ‖et+1,n‖
< Ωe + Ωδ .

Before proceeding to bound the first term in (13), let us first
derive the following auxiliary result concerning the matrix

1Without loss of generality, one can always assume that M t+1,n ∈ M
by incorporating any error ∆M t+1,n into the additive noise term et+1,n

by adding ∆M t+1,nat+1,n.

M t+1,n −M ′. Since L > P , the Geršhgorin circle theo-
rem [50], [51] can be used to derive a lower bound on the
smallest singular value of M t+1,n −M ′ as follows:

σ2
min(M t+1,n −M ′) = λmin

(
Ξ
)

≥ min
p

Ξpp −
∑
j:j 6=p

|Ξpj | , (14)

for Ξ =
(
M t+1,n−M ′)>(M t+1,n−M ′) with Ξij being its

(i, j)-th element, where we used the fact that Ξ is diagonaliz-
able. Functions σmin(·) and λmin(·) denote the smallest singu-
lar value and the smallest eigenvalue of a matrix, respectively.
Using condition (10) (i.e., the differences between signatures
belonging to distinct EM libraries have low coherence), the
second term in (14) satisfies∑
j:j 6=p

|Ξpj | =
∑
j:j 6=p

∣∣〈mp
t+1,n − (m′)p,mj

t+1,n − (m′)j〉
∣∣

≤ (P − 1)µ , (15)

where mp
t+1,n and (m′)p denote the p-th column of M t+1,n

and M ′, respectively. This leads to the following lower bound
of (14):

min
p

Ξpp −
∑
j:j 6=p

|Ξpj | ≥ min
p

∥∥mp
t+1,n − (m′)p

∥∥2 − (P − 1)µ

> ΩM − (P − 1)µ , (16)

since minp
∥∥mp

t+1,n − (m′)p
∥∥2 > ΩM due to condition (9).

Since ΩM − (P − 1)µ > 0, by combining the above equa-
tion with (14) and taking the square root we can bound
σmin(M t+1,n −M ′) as:√

ΩM − (P − 1)µ < σmin(M t+1,n −M ′) . (17)

Due to at,n being confined to the unit simplex, its L2 norm
satisfies (1/

√
P ) ≤ ‖at,n‖. When combined with (17), this

leads to:

(1/
√
P )
√

ΩM − (P − 1)µ < (1/
√
P )σmin(M t+1,n −M ′)

≤ ‖at,n‖σmin(M t+1,n −M ′)

≤ ‖(M t+1,n −M ′)at,n‖. (18)

This last equation constitutes the desired bound on the
first term of (13). Note that by hypothesis 2(Ωe + Ωδ) <
(1/
√
P )
√

ΩM − (P − 1)µ, which implies that:

2
∥∥M t+1,nδt,n + et+1,n

∥∥ < ∥∥(M t+1,n −M ′)at,n
∥∥ .

Finally, subtracting ‖M t+1,nδt,n + et+1,n‖ from both sides
of the previous expression leads to:∥∥M t+1,nδt,n + et+1,n

∥∥
<
∥∥(M t+1,n −M ′)at,n‖ − ‖M t+1,nδt,n + et+1,n

∥∥
≤
∥∥(M t+1,n −M ′)at,n +M t+1,nδt,n + et+1,n

∥∥ ,
for any M ′ ∈ M, M ′ 6= M t+1,n, which is precisely the
necessary condition stated in equation (12). Therefore, any
M ′ 6= M t+1,n leads to a larger reconstruction error than
using M = M t+1,n, which is the optimal solution to (7).

The rationale behind Theorem 1 is that, when the changes
between the abundances at,n and at+1,n are small, then the
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variations observed between the pixel spectra yt,n and yt+1,n

are due to 1) changes between the EM signatures M t,n and
M t+1,n, and 2) to the presence of additive noise. Thus, if the
signal to noise ratio is high, which is common in HIs, and
the EM matrices contained in the library M are sufficiently
different from one another, then the EM matrix in M that
best reconstructs the new image yt+1,n (with at+1,n ≈ ât,n)
as the optimal solution to problem (7) will be the correct EM
matrix M t+1,n, since the increase in reconstruction error due
to the choice of any other matrix in M will be greater than
that due to the noise and abundance variations.

Although Theorem 1 clarifies the circumstances under
which the optimization problem (7) provides the correct EM
matrix, another important question is whether the detection
strategy in FM-MESMA can correctly identify the cases when
it fails, so that the solution must then be processed using
MESMA. Recall this mechanism allows the algorithm to deal
with abrupt abundance variations. It turns out that under
similar assumptions to those made in Theorem 1, if the EM
matrices contained in M are not too different from one
another, then abrupt abundance variations can be correctly
identified by means of the behavior of the reconstruction error
of problem (7), as stated in the following theorem.

Theorem 2. Assume that ât,n = at,n, that st,n 6= 0 and
satisfies minM∈M ‖Mst,n‖ > Ωs and that M t+1,n ∈ M.
Assume that ‖et,n‖ < Ωe, that maxM∈M ‖Mδt,n‖ < Ωδ
and that the maximum distances between signatures in each
EM library is bounded as

max
p

max
m,m′∈Mp

∥∥m′ −m∥∥ < Ω′M . (19)

Then, if
√
P Ω′M +Ωδ +Ωe < Ωs/(F +1) the reconstruction

error will be at least F times larger than if st,n = 0.

Proof. Under these assumptions, the optimization problem (7)
can be written equivalently as:

min
M∈M

∥∥yt+1,n −M ât,n
∥∥

= min
M∈M

∥∥M t+1,n(at,n + δt,n + st,n) + et+1,n −Mat,n
∥∥

Using the Reverse Triangle Inequality, we have:

∥∥M t+1,nst,n
∥∥− ∥∥M t+1,n(at,n + δt,n) + et+1,n −Mat,n

∥∥
≤
∥∥M t+1,n(at,n + δt,n + st,n) + et+1,n −Mat,n

∥∥ (20)

for any solution M ∈M.
We can upper bound the second term in the l.h.s. of the

above expression, that is, the reconstruction error without the
effect of st,n, as follows:

∥∥M t+1,n(at,n + δt,n) + et+1,n −Mat,n
∥∥ (21)

=
∥∥(M t+1,n −M)at,n +M t+1,nδt,n + et+1,n

∥∥
≤
∥∥(M t+1,n −M)at+1

∥∥+
∥∥M t+1,nδt,n

∥∥+
∥∥et+1,n

∥∥.

Since at+1 is confined to the unit simplex, its L2 norm satisfies
‖at+1‖ ≤ 1, which allows us to bound the first term above
using the properties of matrix norms as:∥∥(M t+1,n −M)at+1

∥∥ ≤ ∥∥M t+1,n −M
∥∥‖at+1‖

≤
∥∥M t+1,n −M

∥∥
F

≤ max
p

√
P
∥∥mp

t+1,n −mp
∥∥

≤ max
p

max
m,m′∈Mp

√
P
∥∥m−m′∥∥ < √P Ω′M (22)

where mp
t+1,n and mp are the p-th columns of M t+1,n and

M , respectively. Thus, (21) can be bounded as:∥∥M t+1,n(at,n + δt,n) + et+1,n −Mat,n
∥∥

<
√
P Ω′M + Ωδ + Ωe

< Ωs (F + 1)−1

<
∥∥M t+1,nst,n

∥∥ (F + 1)−1 (23)

Now, by multiplying both sides of (23) by F + 1, subtracting
‖(M t+1,n−M)at,n+M t+1,nδt,n+et+1,n‖ from each side,
and finally using the result in (20), we obtain:

F
∥∥(M t+1,n −M)at,n +M t+1,nδt,n + et+1,n

∥∥
<
∥∥M t+1,nst,n‖
− ‖(M t+1,n −M)at,n +M t+1,nδt,n + et+1,n

∥∥
≤ RE∗t+1,n

≤
∥∥M t+1,n(at,n + δt,n + st,n) + et+1,n −Mat,n

∥∥
for any solution M ∈ M, where RE∗t+1,n is the optimal
reconstruction error of problem (7). This result means that, if
st,n 6= 0, the reconstruction error RE∗t+1,n will be at least F
times larger than it would be if st,n = 0.

The rationale behind Theorem 2 is that, when there are large
abundance changes between two consecutive time instants,
that is, st,n is large, then as long as the maximum pairwise
difference between the elements in M is not too large, it
will not be possible to reconstruct the pixel yt+1,n with good
accuracy with any EM matrix inM because ât,n is too distant
from at+1,n. This will lead to a large reconstruction error,
what can be explored in order to identify such changes.

An important aspect of FM-MESMA is the assumption that
an accurate estimate of the abundances is available at time
t (i.e., ât,n ≈ at,n). Due to the sequential nature of FM-
MESMA, this approximation affects the results at time t+ 1.
Since problem (7) actually relies on the approximation ât,n ≈
at+1,n to perform EM selection, errors in ât,n will affect it in
the same way as δt,n (or, in the case of large errors, as st,n).
Thus, while errors in ât,n can impact the performance of the
method negatively, their effect can be controlled: if the errors
are large and K is properly selected, they will have the same
effect as sudden changes, and cause the algorithm to reprocess
the given pixel with MESMA or AAM.

A. Computational complexity analysis

In this section we show how the computational complexity
of the proposed algorithm compares to that of MESMA and
AAM. Before proceeding, let us denote by κ ∈ [0, 1] the
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average proportion of pixels that undergo changes between
consecutive time instants t and t+ 1.

The operations in FM-MESMA at each time instant t with
non-negligible computational complexity consist of 1) solving
of optimization problem (7) for all N image pixels, and 2)
running MESMA or AAM to estimate the abundances of pixels
that did undergo significant changes. For the first step, a simple
enumeration strategy can be employed to solve problem (7) by
testing all possible EM models, which results in a complexity
of about O(

∏P
p=1 CpLP ). For the second step, the complexity

will be on average κ times the one of MESMA or of AAM,
which will be discussed below.

Determining the computational complexity of MESMA is
less direct, since the optimization problem (4) does not have
a closed form solution and depends on iterative algorithms.
For simplicity, we assume that the inner FCLS problem in
MESMA (4) is solved by approximately translating it into
a nonnegative least squares (NNLS) problem of dimensions
(L+1)× (P +1) [52]. Different methods have been proposed
to solve NNLS problems, including the active set methods,
the interior point method, and other iterative approaches [53].
Although iterative approaches perform better in large scale
problems, the interior point method works well for problems
like MESMA and can give us an idea of its complexity [54].

The interior point method needs O(ln(ε−1)) iterations, each
with complexity (P +1)3, in order to achieve a reconstruction
error that is ε-close to the global optimum [55, p. 393], i.e.,

‖yn −Mân‖2 − ‖yn −Ma∗n‖2 ≤ ε (24)

where a∗n is abundance vector that minimizes the NNLS
problem for a given M . Thus, since this problem is solved for
each EM model, the computational complexity of MESMA is
approximately O(

∏P
p=1 CpP

3 ln(ε−1)).
It can be seen that although the complexity of the pro-

posed method and MESMA scale similarly as the size of
the libraries Cp increases, as long as κ is small the proposed
algorithm can handle scenarios with moderately large P much
more easily since problem (7) scales linearly with P . This
characteristic needs to be emphasized because, while several
methods can effectively address the problem of reducing the
size Cp of the libraries by removing redundant signatures [56]–
[58], a larger number P of EM classes cannot be so easily
circumvented. The AAM algorithm [47], for instance, requir-
ing O(P2P (L3 +PLmaxp Cp)) operations at every iteration,
has a larger base cost depending on terms such as L3 and
scales quickly with P , making it costly in scenarios where P
is large and Cp is small. Such cases in which the proposed
algorithm is particularly faster (i.e., small Cp) are of special
practical interest. This is because recently proposed state of the
art approaches to spectral library reduction for MESMA have
reported experimental results indicating that libraries could be
reduced to between two and five (averaging three) signatures
per EM without an appreciable drop in performance [59].
Finally, we note that the best choice, in terms of complexity,
among using MESMA or AAM to unmix the changed pixels
in the proposed algorithm may depend on each scenario. If
P or Cp is small, MESMA can be a good choice due to its

smaller base cost compared to AAM, whereas for moderate
Cp AAM will perform faster.

V. EXPERIMENTAL RESULTS

We shall now evaluate the performance of the proposed FM-
MESMA algorithm using simulations with synthetic, semi-
real, and real data. Our method is compared with MESMA
and AAM [47], which are both library-based methods, with
fully constrained least squares (FCLS) algorithm, and with
the online unmixing algorithm (OU) [60]. The OU algorithm
estimates both the abundances and one set of EMs for each
time instant blindly from the HI using a two-stage stochastic
optimization procedure. The EMs are modelled in OU as tem-
porally smooth additive perturbation over a mean EM matrix.
FM-MESMA is implemented using MESMA to unmix the
significantly changed pixels in step 10. In all simulations, the
endmembers for the FCLS were extracted from the HI using
the VCA algorithm [61]. For FM-MESMA, we computed RE0

in (8) using the pixels in the HI at the initial time instant t = 1,
i.e., U = {y1,1, . . . ,y1,N}. To evaluate the performance of the
algorithms, different metrics were considered depending on
the simulation setups. Performance metrics that are specific
to the simulations with synthetic data will be defined in
Section V-A. For the simulations with semi-real and real data,
we considered as metrics the root mean squared error (RMSE)
and the spectral angle mapper (SAM). The RMSE between
two sequences of matrices Xt and X∗t , for t = 1, . . . , T , is
defined as:

RMSEX =

T∑
t=1

√
1

T NX
‖Xt −X∗t ‖2F

where NX is the number of elements in Xt. The SAM
between the true and estimated endmembers is defined as:

SAMM =
1

TNP

T∑
t=1

N∑
n=1

P∑
p=1

arccos

(
(mp

t,n)>m̂
p
t,n

‖mp
t,n‖‖m̂

p
t,n‖

)
,

where mp
t,n and m̂p

t,n are the p-th columns of the true and
the estimated endmembers, respectively.

A. Synthetic Data

The simulations with synthetic data were designed to illus-
trate how FM-MESMA performs when compared to MESMA
and AAM in four different ways, namely:

1) Its computational cost for different values of P and Cp
(Section V-A1);

2) Its accuracy when detecting abrupt abundance changes,
and the effect of the proportion of changed pixels (i.e.,
κ) on the computational cost of FM-MESMA (Sec-
tion V-A2);

3) Its accuracy when recovering the EMs from M for dif-
ferent amounts of abundance temporal variation δt,n and
different signal to noise ratios (SNRs) (Section V-A3);

4) Its accuracy when recovering the EMs from M for
different amounts of library variance σ2

M and different
SNRs (Section V-A4).



PUBLISHED IN THE IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 8

These different experiments provide an empirical assessment
of some of the theoretical results derived in Section IV.
For the general simulation setup, we considered sequences
of T = 11 images with L = 200 bands and N = 1000
pixels. Each pixel yt,n was generated according to the LMM
in (5a), where the true endmember matrix M t,n was sampled
uniformly from a library M, and et,n was a white Gaussian
noise. The EM libraryM was generated randomly. The mean
µp, p = 1, . . . , P of each material was first sampled from
a uniform distribution over interval [0, 1]L. Then each EM
signature in Mp, p = 1, . . . , P was generated as a sample
from an isotropic Gaussian distribution N (µp, σ

2
MI) and

truncated in the interval [0, 1]L. The abundances a1,n were
sampled from a Dirichlet distribution. Between each pair of
images at instants t and t + 1, a proportion κ of the N
pixels was changed with new samples, whereas the remaining
ones were kept constant unless otherwise specified. The other
parameters such as K, the SNR, the change ratio κ and the
library variance σ2

M will be specified in the following for each
experiment. In general, the library variance is defined as:

σ2
M =

1

LP

P∑
p=1

tr
{

cov(mp,mp)
}
, (25)

where tr{·} is the matrix trace operator and cov(mp,mp)
denotes the covariance matrix of the signatures from the p-
th EM, which can be estimated using the samples in the
library Mp if unknown.

1) Computational complexity analysis: We evaluated the
execution time of MESMA, AAM and FM-MESMA for
different values of P ∈ {2, . . . , 9} and Cp ∈ {2, . . . , 10},
p = 1, . . . , P . We considered an SNR of 40dB, a change ratio
of κ = 0.01, a library variance of σ2

M = 0.12 and K = 10
in Algorithm 1. The results are shown in Table I. It can be
seen that FM-MESMA has a significantly smaller execution
time when compared to MESMA. Moreover, there are also
significant improvements over AAM when P is large and
Cp is small or moderate. Note that although AAM performs
better when Cp is large, this situation is avoided in practice
without significant impact in the performance by removing
some redundant signatures from the library [56]–[58], [62].
However, this is not the case for larger P , in which case FM-
MESMA leads to a performance improvement. We solved (7)
using an exhaustive search procedure. More efficient solutions
will be devised in the future.

2) Large change detection analysis: We evaluated the
accuracy of FM-MESMA when detecting pixels containing
large abundance changes to reprocess them using the MESMA
or AAM algorithms. This experiment also allowed us to check
numerically the theoretical results in Theorem 2. The experi-
ment is divided in two parts. First, we evaluate the effect of
K and κ on the computational burden of the proposed method
by measuring the proportion of pixels marked as changes
depending on these variables. Afterwards, we compare the
change detection accuracy of FM-MESMA to that of the
other algorithms (where change detection was performed using
the strategy in [36]) by fixing κ = 0.2 and evaluating the
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Figure 1. Large changes analysis: Number of detected changes as a function
of K and κ (top), and change detection performance for κ = 0.2 (bottom)
(AAM results were omitted due to being similar to MESMA’s).

probability of detection (PD) against the probability of false
alarm (PFA), where PD and PFA are defined as:

PDA =

T∑
t=2

∑N
n=1 χ0(at,n − at−1,n) · ι̂s,t,n

(T − 1)
∑N
n=1 χ0(at,n − at−1,n)

PFAA =

T∑
t=2

∑N
n=1 max

{
ι̂s,t,n − χ0(at,n − at−1,n), 0

}
(T − 1)

(
N −

∑N
n=1 χ0(at,n − at−1,n)

)
where χ0(·) is the indicator function of the set 0 = {0} (i.e.,
χ0(x) = 1 if x = 0 and 0 otherwise). For both cases, we
considered an SNR of 30dB, a library variance of σ2

M = 0.12,
P = 4 EMs and Cp = 3. The results are shown in Figure 1. It
can be seen that when K was not too close to one, the number
of times a pixel had to be reprocessed depended mostly on the
actual amount of changed pixels in the scene κ. In terms of
accuracy, the change detection performance was satisfactory
for all methods, with MESMA showing the best performance
followed closely by FM-MESMA, and OU and FCLS being
slightly worse. This suggests that one can select a moderate
value of K and obtain a good change detection accuracy
without increasing the complexity unnecessarily. However,
devising a strategy to select an optimal value for K is more
complex and will be left as a subject for future work.

3) Library variance analysis: We evaluated how often
the solution of problem (7) was the same as the true EM
matrix M t,n when compared to that of MESMA, for different
library variances. This experiment also allowed us to validate
numerically one part of Theorem 1. We considered κ = 0.05,
P = 4, Cp = 3, and different values of K ∈ {1, . . . , 20}
and σ2

M = {0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 1, 1.5}. The
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Table I
EXECUTION TIMES FOR DIFFERENT VALUES OF P AND Cp (BEST RESULTS MARKED IN BOLD, BEST RESULTS BY OUR METHOD MARKED IN RED).

Method Cp 2 3 4 5 6 7 8 9 10

P = 2 MESMA 1.20 1.21 1.27 1.43 1.37 1.57 1.60 1.66 1.96
AAM 6.61 6.48 6.67 7.11 6.79 6.88 6.98 7.06 7.17

FM-MESMA 1.19 1.16 1.18 1.30 1.21 1.31 1.31 1.35 1.55
P = 3 MESMA 1.55 1.78 2.32 2.88 4.52 6.26 6.79 9.46 15.90

AAM 30.73 30.41 31.62 32.12 32.04 32.62 33.15 33.82 33.48
FM-MESMA 1.44 1.52 1.60 1.75 2.08 2.45 3.05 4.03 4.93

P = 4 MESMA 2.91 4.97 11.04 36.74 52.37 103.38 180.75 282.21 490.92
AAM 98.53 98.12 101.76 103.84 103.99 106.57 107.61 108.82 109.05

FM-MESMA 2.14 2.30 3.07 5.17 6.88 11.58 16.79 28.87 45.57
P = 5 MESMA 5.04 24.34 74.94 272.21 680.85 1482.15 2780.66 4882.36 7783.21

AAM 272.22 270.72 282.31 285.31 289.26 292.36 296.11 295.97 300.89
FM-MESMA 2.68 4.21 8.80 25.38 50.61 110.60 234.83 383.27 645.80

P = 6 MESMA 8.61 81.69 398.69 1600.86 4625.57 12153.74 24423.06 ∞ ∞
AAM 678.18 691.35 715.88 728.04 745.54 751.10 761.53 760.70 760.47

FM-MESMA 3.66 9.30 36.11 135.68 405.91 1069.17 2614.65 4707.32 8513.08
P = 7 MESMA 19.58 257.71 1933.77 8554.18 31760.77 ∞ ∞ ∞ ∞

AAM 1653.51 1671.48 1726.08 1753.13 1788.30 1808.63 1829.27 1843.13 1861.54
FM-MESMA 5.07 23.60 158.68 736.29 2660.14 7728.61 21816.81 ∞ ∞

P = 8 MESMA 36.29 748.21 8394.23 49221.23 ∞ ∞ ∞ ∞ ∞
AAM 3876.57 3932.96 4079.04 4112.40 4192.04 4368.23 4406.82 4453.85 4506.10

FM-MESMA 6.50 68.31 656.97 3869.42 17330.46 ∞ ∞ ∞ ∞
P = 9 MESMA 75.84 3167.33 38765.51 ∞ ∞ ∞ ∞ ∞ ∞

AAM 8972.31 9126.39 9354.76 9505.15 9694.71 9861.76 9960.79 10041.00 10178.05
FM-MESMA 9.78 211.21 2913.83 19922.95 ∞ ∞ ∞ ∞ ∞

Figure 2. Library variance analysis: Correct EM recovery rate as a function of σ2
M and K, for SNRs of 25dB (left), 35dB (middle) and 45dB (right).

performance was evaluated using the endmember positive
predictive value (PPV)

PPVM =
1

T

T∑
t=1

∑N
n=1 χ0(M t,n − M̂ t,n)

N
. (26)

where M t,n ∈M and M̂ t,n ∈M are the true and estimated
EM matrices, respectively.

The results are shown in Figure 2 for SNRs of 25, 35
and 45db, where the red dashed line depicts the MESMA
results. The results show that the values of PPVM for FM-
MESMA were very similar to those obtained by MESMA
for the different values of σ2

M and K. Moreover, the PPVs
was consistently better for larger σ2

M, what agrees with the
conclusions of Theorem 1. While a smaller SNR negatively
affected the overall accuracy of both algorithms, their relative
behavior was not affected. Different values of K also did
not have a significant effect on the results obtained by FM-
MESMA for the selected proportion of large changes. This

suggests that FM-MESMA is a computationally efficient and
accurate alternative to MESMA in those circumstances.

4) Abundance variance analysis: We evaluated how often
the solution to problem (7) was the true EM matrixM t,n when
compared to that of MESMA, for different amounts of small
abundance variances, which are represented by δn in (5b). This
experiment also allowed us to validate numerically one part of
Theorem 1. We considered κ = 0, P = 4, Cp = 3, and differ-
ent values of K ∈ {1, . . . , 20}. The variable abundances were
generated by sampling each at,n from Dirichlet distributions
with mean µa

n, n = 1, . . . , N and standard deviations ranging
from 10−6 to 1. The abundance mean vectors µa

n were also
sampled from a Dirichlet distribution. The performance were
evaluated again using the endmember PPV as defined in (26).

The results are shown in Figure 3 for SNRs of 25, 35
and 45db, with the red dashed line depicting the MESMA
results. It can be seen that for smaller abundance temporal
variations (e.g., about ≤ 10−2), FM-MESMA was able to
obtain an endmember positive predictive value that was high
and very similar to that of MESMA, even for larger values
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Figure 3. Abundance variance analysis: Correct EM recovery rate as a function of abundances standard deviation and K, for SNRs of 25dB (left), 35dB
(middle) and 45dB (right).

of K. This again supports the use of FM-MESMA as an
alternative to MESMA under these circumstances. For larger
temporal variations, a decrease in performance was observed
for both MESMA and FM-MESMA. This is due to the fact
that, when the variance of at,n is large, its density tends
to concentrate at the edges of the simplex, what causes
many abundance fractions to be close to zero, making the
identification of the correct M t,n through problems (4) or (7)
more difficult. Although a smaller SNR negatively impacts the
overall accuracy of the algorithms (like in the simulations of
Section V-A3), the relative behavior between the algorithms
remains approximately the same.

Table II
AVERAGE ABUNDANCE AND EM ESTIMATION RESULTS FOR THE

SEMI-REAL SIMULATIONS (VALUES ARE ×102).

FCLS OU MESMA AAM Proposed
RMSEA 3.51 2.27 1.87 1.90 1.57
RMSEM – 45.6 37.3 38.5 36.2
SAMM – 24.3 10.7 10.7 11.2
RMSEY 1.89 0.18 0.85 0.88 0.96

Table III
QUANTITATIVE RESULTS FOR THE DATA IN FIGURE 4 (VALUES ARE ×102).

FCLS OU MESMA AAM Proposed
RMSEA 2.32 2.16 1.11 1.27 1.11
RMSEM – 35.7 33.8 36.4 34.0
SAMM – 16.4 11.2 10.9 11.6
RMSEY 5.07 0.26 0.80 0.83 0.96

B. Abundance estimation performance in semi-real data

We evaluated FM-MESMA in terms of abundance and
endmember estimation accuracy by comparing it to the FCLS,
OU, MESMA, and AAM algorithms using a synthetic data
set designed to closely emulate a practical scenario. To this
end, first we manually extracted P = 3 sets of spectrally
distinct pure pixels from different materials (tree, road and
water) from the Jasper Ridge HI containing six signatures
with L = 198 bands each. Then, we randomly sampled
signatures from these sets in order to create one pair of disjoint
spectral libraries M1

p, M2
p, i.e., M1

p ∩ M2
p = ∅ for each

material p = 1, . . . , P , where both M1
p and M2

p have three
signatures each. Afterwards, two sets of temporal abundances
were generated. The first one was generated randomly to

Figure 4. Composite color image of abundance maps (i.e., abundances for
EMs 1, 2 and 3 correspond to red, green and blue colors) in the visual semi-
real dataset (top) and changes detected by the proposed method bottom).

allow for a statistical evaluation, in which N = 1000 pixels
in a sequence of T = 20 images were generated following
the model in (5a), where the abundances at,n were sampled
from a Dirichlet distribution and a proportion of κ = 0.05
of the pixels undergoing significant changes. The second
set of abundance maps consisted of a single sequence of
T = 6 images containing N = 2500 pixels whose spatial
compositions were adequate for a visual inspection of the
results, and large changes were added in the form of random
convex polygons. The latter sequence can be seen at the top
row of Figure 4. For both cases,M t,n was sampled uniformly
from the library M1

p and the additive noise et was selected
as white Gaussian with an SNR of 30dB.

The library-based methods, namely, MESMA, AAM and
FM-MESMA, were then used to unmix the images using the
library M2

p, with K = 10 selected for the proposed method.



PUBLISHED IN THE IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 11

Figure 5. Lake Tahoe HI sequence (heading text means day/month).

This generated a mismatch between the signatures in the
HI and those used for SU, what is commonly observed in
practice. To reliably measure the performance of the methods,
we ran this simulation over 100 Monte Carlo realizations. The
average performance of all algorithms are depicted in Table II.
It can be observed that the library-based methods provided
a considerable improvement in abundance and endmember
estimation accuracy when compared to both FCLS and OU.
The results of AAM and MESMA were also very similar,
with those of AAM being slightly worse. FM-MESMA pro-
vided an improvement of about 16% in abundance estimation
when compared to MESMA. This confirms the benefits of
exploring the temporal correlation between the abundances
at adjacent time instants. In terms of endmember estimation
accuracy, FM-MESMA performed similarly to MESMA, with
a slightly better RMSEM but slightly worse SAMM . In terms
of RMSEY , the library-based methods achieved a similar
reconstruction error (with MESMA’s being slightly smaller
as it solves the EM selection problem exactly), significantly
smaller than FCLS but still larger than OU. Since the OU
algorithm estimates the EMs from the scene, it has more
degrees of freedom and is able to achieve a smaller RMSEY .
However, it is well-known that smaller reconstruction errors do
not necessarily translate into better abundance map estimates.

For the second set of abundance maps, the quantitative and
visual results are shown in Table III and in Figure 4. Due to
space limitations 1) we do not show the AAM results since
they were very similar to those of MESMA, and 2) only a
composite image is shown, with red, green and blue corre-
sponding to the abundances of the first, second, and third EMs,
respectively. The quantitative metrics show that the algorithms
behaved very similarly to the previous case, with the minor
differences that MESMA and AAM now performed slightly
better in terms of RMSEA and RMSEM , respectively, when
compared to the remaining methods. Visually, it can be seen
that the results of MESMA and of FM-MESMA are similar
and approach the ground truth more closely when compared
to FCLS and OU, whose results appear less accurate and more
skewed towards blue for the FCLS, and towards red for OU
when compared to the ground truth. The sudden changes in
the ground truth sequence were also well captured by FM-
MESMA. However, various pixels in the lower-left segment
were also incorrectly marked as changes, indicating that the
selection of the proportion K was slightly conservative.

C. Real Data

For the simulations with real data, we considered the Lake
Tahoe data set, which was originally presented in [60]. This

Figure 6. Multitemporal abundances of the Lake Tahoe HI for the water EM.

Figure 7. Multitemporal abundances of the Lake Tahoe HI for the soil EM.

Figure 8. Multitemporal abundances of the Lake Tahoe HI for the vegetation
EM.
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Figure 9. Detected changes for the Lake Tahoe HIs.

data set consists of T = 6 images acquired by the AVIRIS
instrument, each with 224 bands and N = 16500 pixels. Water
absorption and low SNR bands were removed, resulting in
L = 173 bands. A false color representation is shown in 5,
where three predominant materials (soil, water and vegetation)
can be identified. The images were ordered according to the
day/month in which they were acquired in order to make the
seasonal changes more clear. The EM libraries for MESMA
and for FM-MESMA were constructed as follows. First,
reference EMs for each material were extracted by applying
the VCA to the concatenation of the pixels of all six images.
Then, a preliminary library was constructed by extracting
pixels from each image that had small spectral angle to the
reference endmembers. Finally, the libraries were obtained by
removing/pruning the most redundant signatures (as measured
according to their mutual Euclidean distance) so that the final
libraries contained Cp = 6 signatures for each EM. We set
K = 10 for FM-MESMA, and the parameters for the OU
algorithm were the same as those used in [60].

The abundance maps estimated by the algorithms are shown
in Figures 6, 7 and 8. Due to lack of space, we do not show the
AAM results since they were very similar to those of MESMA.
It can be seen that the FCLS performed poorly for some of the
frames (e.g., the second and the fourth ones), with significant
confusion between different materials. Although OU showed
more consistent results, they were not as good as those by
MESMA or FM-MESMA. Specifically, the OU abundances
did not show a separation between vegetation and soil as
clear as observed in Figure 5. Moreover, significant water
abundances were predicted outside of the lake. The results
of MESMA and FM-MESMA were very similar, and closely
agreed with the distribution of the endmembers observed in
Figure 5. However, some slight differences between the meth-
ods can be noticed, notably the abundances by the proposed
algorithm being smoother in time as in the case of the water
endmember. The changes detected by FM-MESMA, shown
in Figure 9, clearly distinguish the seasonal variations at the
borders of the lake and in the crop circles due to different
water levels and in the growth states, respectively.

The reconstruction errors RMSEY and execution times of
the algorithms are provided in Table IV. The RMSEY results
behaved very similarly to the semi-real case discussed in
Section V-B, with OU achieving the smallest and FCLS the
largest reconstruction errors, and the library-based methods
performing similarly to each other. The execution time of
FM-MESMA was about half that of MESMA even though

Table IV
EXECUTION TIMES AND RMSEY FOR THE LAKE TAHOE HI.

FCLS OU MESMA AAM Proposed
Time [s] 12.3 85.5 112.0 228.8 62.8
RMSEY 0.412 0.013 0.064 0.068 0.072

there were significant changes between some pairs of frames,
what agrees with the results in Table I. Moreover, this scene
contains a small number of materials and is thus not a
good representative of the relative performance between the
algorithms in other scenarios. For image sequences with larger
values of P , the computational complexity gains will be much
more significant.

VI. CONCLUSIONS

In this paper, we presented a new computationally efficient
multitemporal unmixing algorithm (FM-MESMA) based on
multiple endmembers spectral mixture analysis. The pro-
posed strategy exploits the high temporal correlation of the
abundance maps in order to improve both the accuracy and
the computational complexity of the algorithm. Specifically,
it approximates the solution to the multitemporal unmixing
problem by separating it into two sub-problems, namely,
endmember selection and abundance estimation, which are
much easier to solve individually. A strategy was also proposed
to detect abrupt abundance changes by analysing residuals of
the endmember selection problem. Theoretical results demon-
strated how FM-MESMA compares to MESMA in terms
of quality and effectiveness in detecting abrupt abundance
changes. Besides, these results also provide valuable insight
into the conditions under which the approximate algorithm
succeeds. Simulation results showed that the proposed method
gives results with quality similar to, or better than, both
MESMA and parametric models at a reduced computational
complexity.
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