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ABSTRACT Sulfur metabolism in fuel-biodesulfurizing bacteria and the underlying
physiological adaptations are not understood, which has impeded the development of
a commercially viable bioprocess for fuel desulfurization. To fill these knowledge gaps,
we performed comparative proteomics and untargeted metabolomics in cultures of the
biodesulfurization reference strain Rhodococcus qingshengii IGTS8 grown on either inor-
ganic sulfate or the diesel-borne organosulfur compound dibenzothiophene as a sole
sulfur source. Dibenzothiophene significantly altered the biosynthesis of many sulfur
metabolism proteins and metabolites in a growth phase-dependent manner, which
enabled us to reconstruct the first experimental model for sulfur metabolism in a fuel-
biodesulfurizing bacterium. All key pathways related to assimilatory sulfur metabolism
were represented in the sulfur proteome, including uptake of the sulfur sources, sulfur
acquisition, and assimilatory sulfate reduction, in addition to biosynthesis of key sulfur-
containing metabolites such as S-adenosylmethionine, coenzyme A, biotin, thiamin,
molybdenum cofactor, mycothiol, and ergothioneine (low-molecular weight thiols).
Fifty-two proteins exhibited significantly different abundance during at least one
growth phase. Sixteen proteins were uniquely detected and 47 proteins were signifi-
cantly more abundant in the dibenzothiophene culture during at least one growth
phase. The sulfate-free dibenzothiophene-containing culture reacted to sulfate starva-
tion by restricting sulfur assimilation, enforcing sulfur-sparing, and maintaining redox
homeostasis. Biodesulfurization triggered alternative pathways for sulfur assimilation
different from those operating in the inorganic sulfate culture. Sulfur metabolism
reprogramming and metabolic switches in the dibenzothiophene culture were mani-
fested in limiting sulfite reduction and biosynthesis of cysteine, while boosting the pro-
duction of methionine via the cobalamin-independent pathway, as well as the biosyn-
thesis of the redox buffers mycothiol and ergothioneine. The omics data underscore
the key role of sulfur metabolism in shaping the biodesulfurization phenotype and
highlight potential targets for improving the biodesulfurization catalytic activity via
metabolic engineering.

IMPORTANCE For many decades, research on biodesulfurization of fossil fuels was
conducted amid a large gap in knowledge of sulfur metabolism and its regulation in
fuel-biodesulfurizing bacteria, which has impeded the development of a commer-
cially viable bioprocess. In addition, lack of understanding of biodesulfurization-asso-
ciated metabolic and physiological adaptations prohibited the development of
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efficient biodesulfurizers. Our integrated omics-based findings reveal the assimilatory
sulfur metabolism in the biodesulfurization reference strain Rhodococcus qingshengii
IGTS8 and show how sulfur metabolism and oxidative stress response were remod-
eled and orchestrated to shape the biodesulfurization phenotype. Our findings not
only explain the frequently encountered low catalytic activity of native fuel-biode-
sulfurizing bacteria but also uncover unprecedented potential targets in sulfur me-
tabolism that could be exploited via metabolic engineering to boost the biodesulfu-
rization catalytic activity, a prerequisite for commercial application.

KEYWORDS dibenzothiophene, sulfate starvation, cysteine biosynthesis, 4S pathway,
mycothiol, sulfate activation complex

Several decades ago, microbial biodesulfurization emerged as a green process for
removing sulfur from fossil fuels to accommodate environmental legislations, meet

the ever-growing market demand for cleaner fuels, and overcome the technical and
economic shortcomings of the conventional hydrodesulfurization process (1, 2). The
concept was coined based on the unique metabolic capabilities of some bacteria that
can utilize fuel-borne thiophenic organosulfur compounds as a sulfur source, thus
reducing the total sulfur content of the biotreated fuel (1). The so-called “4S” pathway
is the best-studied biodesulfurization mechanism (Fig. S1) (3, 4) that was originally elu-
cidated in the actinobacterium Rhodococcus qingshengii IGTS8 (formerly Rhodococcus
erythropolis IGTS8) (5–8). The 4S pathway selectively cleaves the carbon-sulfur bonds in
the model diesel-borne organosulfur compound dibenzothiophene, eventually releas-
ing the sulfur atom as sulfite (for assimilation) while preserving the carbon skeleton of
dibenzothiophene as 2-hydroxybiphenyl (the end product of the pathway) (Fig. S1).
The three key enzymes of the 4S pathway (DszC, DszA, and DszB) are encoded in the
dsz operon on a 120-kb linear plasmid in the IGTS8 strain (9, 10). DszC is a monooxy-
genase that initiates the pathway by transforming dibenzothiophene to dibenzothio-
phene sulfoxide and subsequently to dibenzothiophene sulfone. The latter is the sub-
strate of the second monooxygenase DszA, which cleaves one of the C-S bonds of the
thiophene ring to produce 2-hydroxybiphenyl-29-sulfinate. The last and sulfur-releasing
reaction is catalyzed by DszB, a desulfinase that produces sulfite and 2-hydroxybi-
phenyl. A chromosomally encoded flavin reductase supplies the two monooxygenases
with FMNH2 (1, 2). Despite intensive research on the system, a commercially viable bio-
desulfurization technology for the oil industry could not be established yet, mainly due
to the very low catalytic activity and insufficient robustness of the applied biocatalysts/
microbial hosts, among other hurdles (1, 2). Moreover, it is currently unknown how nat-
urally occurring biodesulfurizing bacteria import dibenzothiophene and excrete 2-
hydroxybiphenyl. Some studies reported dibenzothiophene uptake in recombinant
strains by an ABC-type transporter (11–13).

So far, biodesulfurization research has focused on characterizing the 4S pathway
and improving its biocatalytic efficiency, and indeed a great deal of knowledge has
accumulated (2, 3, 14). However, much less attention has been paid to the direct con-
nection of the biodesulfurization process with the assimilatory sulfur metabolism,
which is tightly interwoven with other indispensable metabolic and physiological proc-
esses (15). This has left huge gaps in our understanding of assimilatory sulfur metabo-
lism in biodesulfurizing microbes, which is, however, mandatory when aiming at the
development of a commercially viable biodesulfurization technology. When chal-
lenged with less preferred substrates, such as dibenzothiophene, as the sole sulfur
source, the biodesulfurizing bacteria will face sulfate starvation conditions (16). It is
currently unknown how biodesulfurizing bacteria respond to this stressor and how
they might remodel their assimilatory sulfur metabolism under biodesulfurization con-
ditions (1, 17–19).

Evidence is accumulating that some factors in biodesulfurizing bacteria, apart from
the 4S pathway, are key determinants of the biodesulfurization efficiency, including
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some enzymes of sulfur metabolism such as sulfite reductase and cystathionine-b-syn-
thase (1, 17, 20). Accordingly, studying the biodesulfurization phenotype beyond the 4S
pathway and thorough understanding of sulfur metabolism and its regulation in biode-
sulfurizing microbes is key to elucidate how they respond/adapt to the sulfate-limiting
conditions that prevail when diesel-borne organosulfur compounds, like dibenzothio-
phene, are provided as the sole sulfur source (17, 18). While systems biology approaches
have been applied successfully to study sulfur metabolism in Escherichia coli (21, 22),
Pseudomonas spp. (23, 24), and Bacillus subtilis (25, 26), such studies are rare for fuel-bio-
desulfurizing bacteria and provided insights only into details of dibenzothiophene and
benzothiophene desulfurization (27, 28).

To fill these knowledge gaps, we performed proteomics and metabolomics studies
with R. qingshengii IGTS8 and compared cultures grown on either dibenzothiophene or
inorganic sulfate. The data enabled us to build an experimentally supported model for
sulfur metabolism in R. qingshengii IGTS8 and unveil biodesulfurization-driven adaptive
responses. We show how the biodesulfurization-associated sulfate starvation cues pro-
voke sulfur metabolism remodeling and suggest systems for dibenzothiophene uptake
and efflux of the biodesulfurization product 2-hydroxybiphenyl. In addition, we identify
a probable global regulator of sulfur metabolism in the IGTS8 strain. Our omics data
reveal metabolic engineering hot spots in sulfur metabolism that could be manipu-
lated to design novel recombinant strains having enhanced biodesulfurization activity.

RESULTS
A global look at the sulfur proteome and metabolome. A total of 2,896 out of the

6,734 proteins encoded by the IGTS8 genome were confidently identified by proteomic
analyses. Among those, we identified several sulfur metabolism proteins (the sulfur pro-
teome) with significant changes in their abundance depending on the sulfur source and
growth phase, while the level of other sulfur metabolism proteins did not vary signifi-
cantly (Table S1). In addition, a few sulfur metabolism proteins were detected but could
not be quantified, and a smaller number could not be detected in either of the cultures.
In total, 29 metabolites related to sulfur metabolism (sulfur metabolome) were detected
(Table S3). These are mainly metabolites of dibenzothiophene desulfurization (4S path-
way) and biosynthesis of cysteine, methionine, coenzyme A (CoA), biotin, mycothiol,
ergothioneine, thiamin, and molybdenum cofactor (MoCo), in addition to S-adenosylme-
thionine metabolism and sulfur relay pathways. The highest change in abundance was
observed for metabolites of dibenzothiophene desulfurization, mycothiol biosynthesis,
and thiamin and S-adenosylmethionine metabolism. The metabolome coverage was 16
to 19% depending on the growth phase (see the supplemental material for proteins and
metabolites numbers).

Principal-component analysis (PCA) (Fig. 1) showed that the 16 samples from the
dibenzothiophene culture (representing four growth phases) are clustered distinctly
from the corresponding samples of the inorganic sulfate culture, attesting for the
uniqueness of the sulfur proteome and metabolome of both cultures. Moreover, in the
biodesulfurizing culture, there was a clear grouping of samples from each growth
phase in fairly separated clusters, an indication of temporal adaptation, which was not
the case in the inorganic sulfate culture. Based on the proteomics and metabolomics
data, we proposed a model for sulfur metabolism in the IGTS8 strain as presented in
the following parts of the results (Fig. 2). The model depicts sulfur assimilation path-
ways under both sulfate-rich and sulfate-deficient (biodesulfurization) conditions and
covers sulfur source uptake, sulfur acquisition, sulfate/sulfite reduction, biosynthesis of
cysteine, methionine, and S-adenosylmethionine, and sulfuryl group transfer for the
biosynthesis of sulfated metabolites.

Uptake of the sulfur source. The first and most probable candidate for sulfate
import is the SulT superfamily member CysPTWA/Sbp transporter (IGTS8_peg2391 to
IGTS8_peg2395) (Fig. 2 and 3, Table 1, and Table S1). Components of this transporter
were identified in both the dibenzothiophene and sulfate cultures. The ATP-binding pro-
tein (CysA) was 8.7-fold more abundant (log2 fold change=3.1) in the dibenzothiophene
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FIG 1 Principal-component analysis for (A) proteins and (B) metabolites related to sulfur metabolism using the two main dimensions. DBT
indicates the dibenzothiophene culture and IS indicates the inorganic sulfate culture. The growth phases are abbreviated as EL (early log),
ML (mid-log), LL (late log), and SP (stationary phase). The number shown after the growth phase indicates the number of the replicates.
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culture during the mid-log phase. In contrast, the level of the substrate-binding compo-
nent CysP/SbP was not significantly different between both cultures. In this transporter,
the cysT gene occurs twice (IGTS8_peg2393 and IGTS8_peg2394) (Fig. 3).

The proteome of the biodesulfurizing culture was rich in proteins involved in
uptake (ABC-type transporters) and utilization (sulfatases and oxygenases) of low-pref-
erence sulfur sources such as sulfate esters and sulfonates during all growth phases
(Table 1 and Table S1). Genes encoding the detected ABC-type transporters appear to
be coexpressed from putative operons, and the proteins were either highly enriched
(up to 257-fold, log2 fold change= 2.5 to 7) or uniquely present in the dibenzothio-
phene culture (Fig. 3). It is, therefore, likely that one or more of those transport systems
could play a role in dibenzothiophene import. Uptake of dibenzothiophene and its
alkylated derivatives by an ABC-type transporter was shown in recombinant strains
(11–13) but has not been reported to date in native biodesulfurizing bacteria.

Sulfate availability stimulates divergent routes for sulfate/sulfite reduction.
Sulfite is a metabolic branching point. In the sulfate-grown culture, sulfate was
reduced via the classical assimilatory sulfate reduction route, in line with the detection of

FIG 2 A proposed model for assimilatory sulfur metabolism in R. qingshengii IGTS8 under both sulfate starvation (biodesulfurization, highlighted in light
yellow) and sulfate-rich (highlighted in light gray) conditions. Proteins and metabolites in blue font are significantly more abundant in the
dibenzothiophene culture at least during one growth phase, while those appearing in red font are significantly more abundant in the inorganic sulfate
culture at least during one growth phase. The abundance of proteins and metabolites appearing in green font was not significantly different between the
dibenzothiophene and inorganic sulfate cultures. Proteins in black font were either not detected or detected but could not be quantified (see Table 1 and
Tables S1 and S3 for details of the abundance profiles). PAP, 39-phosphoadenosine 59-phosphate.
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FIG 3 Gene clusters and proteins of sulfur source uptake and sulfur acquisition (see Table S1 for details of the abundance profiles
and proposed functions of the proteins). Protein annotations are shown above the gene clusters, and gene names and IDs of the

(Continued on next page)
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the enzymes of assimilatory sulfate reduction in the proteome, namely, ATP sulfurylase
(sulfate adenylyltransferase, CysN1D1), adenylylsulfate (APS) reductase (CysH), and a one-
subunit cyanobacterial-type ferredoxin-sulfite reductase (CysI) (Fig. 2, Table 1, and Table
S1). Downstream of the sulfate adenylyltransferase gene and in the same operon, we
found a gene (IGTS8_peg2387) likely encoding SirB that catalyzes the ferro-chelation of
sirohydrochlorin to siroheme, the prosthetic group of sulfite reductase. The five enzymes
are encoded in an operon (Fig. 4), a gene organization that is different from that of
Escherichia coli and Bacillus subtilis where the assimilatory sulfate reduction genes are
located in several transcriptional units (29). The gene cluster is transcribed in the opposite
direction to the nearby cysPT1T2WA/sbp cluster encoding the sulfate uptake system, an or-
ganization reminiscent of that of Mycobacterium spp. (30). While SirB was not detected,
the abundance of CysD1N1 and CysI was not significantly different between the dibenzo-
thiophene and sulfate cultures. The level of only CysH appeared to increase slightly in the
dibenzothiophene culture toward the stationary phase (log2 fold change=2.1) (Table S1).
Signature sequences of APS reductases (CCALRKVAPL, SIGCAPCTS, KTECGLH) that are lack-
ing in phosphoadenosine phosphosulfate (PAPS) reductase activity are present in the
CysH protein sequence (31, 32).

In the dibenzothiophene culture, sulfur acquisition starts with the release of the sulfur
atom from dibenzothiophene as sulfite via the 4S pathway (Fig. 2). Indeed, enzymes of
the 4S pathway (DszABCD) were much more abundant (up to 380-fold) in the dibenzo-
thiophene culture during all growth phases, and the relative abundance of the four Dsz
proteins to each other remained almost constant during all growth phases (Fig. 5,
Table 1, and Table S1). We show here for the first time the temporal shift of the Dsz
enzymes’ abundance evaluated by nanoscale liquid chromatography-tandem mass spec-
trometry (nanoLC-MS/MS) analysis. Consistent with the identification of the Dsz
enzymes, the biodesulfurizing culture had up to 519-fold (log2 fold change=6.7 to 9.0)
higher content of the 4S pathway intermediates dibenzothiophene sulfoxide and diben-
zothiophene sulfone which were uniquely present in the dibenzothiophene-grown cells
during the early log, mid-log, and stationary phases (Fig. 5, Table 2, and Table S3).

Sulfite released from dibenzothiophene could be reduced to sulfide directly with ferre-
doxin-sulfite reductase (CysI) without prior activation. Alternatively, sulfite could be oxi-
dized by sulfite oxidases and oxidoreductases to sulfate, excreted, and reimported for
reduction and assimilation as assumed by Aggarwal et al. (17). In R. qingshengii IGTS8, one
candidate gene encoding sulfite oxidase/oxidoreductase was identified (IGTS8_peg2618).
It is a membrane-bound molybdoenzyme (five transmembrane helices) bearing resem-
blance to the well-characterized SoxC subunit of sulfane dehydrogenase from Paracoccus
pantotrophus (33). The most similar structurally characterized proteins are the SorA subunit
of Starkeya novella sulfite dehydrogenase (34), followed by P. pantotrophus SoxC and SorT
sulfite dehydrogenase from Sinorhizobium meliloti (35). Moreover, IGTS8_peg446 encodes
a putative membrane protein YeiH with 11 transmembrane helices that is 28% identical to
a YeiH family sulfate exporter (TDL75784) from R. qingshengii S-E5. However, these two
proteins were not detected in the IGTS8 proteome. The exclusive presence of subunit 2 of
a second ATP sulfurylase (CysD2, IGTS8_peg169) during all growth phases of the dibenzo-
thiophene culture was unexpected and suggested an additional route for sulfite lacking in
the sulfate culture (Fig. 2 and 4), highlighting sulfite as a metabolic branching point.

Subunit 1 (CysN2) of this ATP sulfurylase (IGTS8_peg168) is fused to adenylylsulfate
kinase (CysC), encoded upstream of cysD2, and was also detected but could not be
properly quantified. Together, CysN2CD2 proteins likely constitute a bifunctional sul-

FIG 3 Legend (Continued)
first and last genes are shown below the gene clusters. The growth phases are abbreviated as EL (early log), ML (mid-log), LL (late
log), and SP (stationary phase). Bar charts represent the label-free quantification (LFQ) values showing the abundance profile of
proteins encoded by a putative taurine transport operon in both the DBT (dibenzothiophene) and IS (inorganic sulfate) cultures.
Significance of the data is attested by a Welsch moderated t test as follows: NS for P. 0.05, * for P# 0.05, ** for P# 0.01, *** for
P# 0.001, **** for P# 0.0001, DS for a protein which was uniquely identified in the dibenzothiophene cultures but not detected in
the sulfate cultures, D for a protein which was identified but not confidently quantified.
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fate adenylyltransferase/APS kinase sulfate activation complex that may catalyze the
activation of sulfate to APS and then to PAPS (Fig. 2). A sulfotransferase (Stf0,
IGTS8_peg170) that utilizes PAPS as the sulfuryl group donor for the biosynthesis of
sulfated metabolites is encoded downstream of cysD2. Notably, this enzyme was found
exclusively in the early log and stationary phase cultures of dibenzothiophene (Fig. 2
and 4, Table 1, and Table S1).

Biodesulfurization restricted cysteine production and boosted methionine
biosynthesis. The R. qingshengii IGTS8 genome encodes various pathways and enzyme
paralogs for cysteine, homocysteine, and methionine biosynthesis (29, 36, 37). Cysteine
biosynthesis enzymes of the direct sulfhydrylation and reverse transsulfuration

FIG 4 Gene clusters and proteins of sulfate/sulfite activation and reduction (see Table S1 for details of the abundance profiles and proposed functions of
the proteins). Protein annotations are shown above the gene clusters, and gene names and IDs of the first and last genes are shown below the gene
clusters. The growth phases are abbreviated as EL (early log), ML (mid-log), LL (late log), and SP (stationary phase). Bar charts represent the label-free
quantification (LFQ) values showing the abundance profile of the proteins in both the DBT (dibenzothiophene) and IS (inorganic sulfate) cultures.
Significance of the data is attested by a Welch moderated t test as follows: NS for P. 0.05, * for P# 0.05, ** for P# 0.01, *** for P# 0.001, **** for
P# 0.0001, DS for a protein which was uniquely identified in the dibenzothiophene cultures but not detected in the sulfate cultures, D for a protein which
was identified but not confidently quantified.
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pathways (29) were identified in the proteome but were not among the highly abun-
dant or de novo induced proteins in the dibenzothiophene culture (Table S1). Still, the
relative abundance of the proteins together with the metabolomics data underscore
the possibility that cysteine biosynthesis in the dibenzothiophene and sulfate cultures
might proceed via distinct (more preferred) pathways (Fig. 2, Tables 1 and 2, and Table
S1). The level of the cysteine synthase CysK (IGTS8_peg6007) was slightly higher (log2

fold change = 1.0) in the dibenzothiophene culture and was significantly more abun-
dant during the stationary phase (log2 fold change= 2.1), suggesting that direct sulfhy-
drylation might be the preferred route of cysteine biosynthesis under biodesulfuriza-
tion conditions. The detection of a higher content of O-acetyl-L-serine (log2 fold
change= 0.27 to 1.35), the substrate of CysK, in the dibenzothiophene culture substan-
tiates this assumption (Fig. 6 and Table S3). A serine acetyltransferase-encoding gene
(CysE, IGTS8_peg5353) was identified in the IGTS8 genome downstream of the gene
for a second cysteine synthase CysK1 (IGTS8_peg5354). The gene product was
detected in the proteome (Table S1) but could not be quantified.

In the sulfate culture, the reverse transsulfuration pathway was probably the pri-
mary route for cysteine biosynthesis (Fig. 2), which is indicated by slightly higher,
though not significantly different, levels of the pyridoxal phosphate-dependent
enzymes cystathionine-b-synthase (CBS, IGTS8_peg3012) and cystathionine-g-lyase

FIG 5 Proteins and metabolites of dibenzothiophene biodesulfurization via the 4S pathway (see Table S1 for details of the abundance profiles and
proposed functions of the proteins). The growth phases are abbreviated as EL (early log), ML (mid-log), LL (late log), and SP (stationary phase). Bar charts
represent the label-free quantification (LFQ) values showing the abundance profile of the proteins in both the DBT (dibenzothiophene) and IS (inorganic
sulfate) cultures. Significance of the data is attested by a Welch moderated t test as follows: NS for P. 0.05, * for P# 0.05, ** for P# 0.01, *** for P# 0.001,
**** for P# 0.0001, DS for a protein which was uniquely identified in the dibenzothiophene cultures but not detected in the sulfate cultures, D for a
protein which was identified but not confidently quantified. Metabolomics data are shown as boxplots displaying the distribution for each growth phase
with the minimum, maximum, and median values for the dibenzothiophene (DBT) and inorganic sulfate (IS) cultures. Significance of the data (P value
[rank], Wilcoxon test) is indicated by asterisks: * for P, 0.01, ** for P, 0.05, *** for P, 0.1, no asterisk for P. 0.1.
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(MetB, IGTS8_peg3011) in the sulfate culture (Table S1). In addition, the sulfate culture
had a significantly higher content of the homocysteine precursors O-acetyl-L-homoserine
(log2 fold change = 21.16 to 21.96) and O-succinyl-L-homoserine (log2 fold change =
21.82 to22.61) (Fig. 6 and Table S3), pointing to a potentially higher homocysteine bio-
synthetic activity to feed into the reverse transsulfuration pathway. Other possibilities for
cysteine biosynthesis in R. qingshengii IGTS8 using phosphoserine or phosphohomoser-
ine may be envisaged (see supplemental material for details).

Unlike cysteine, biodesulfurization probably triggered more methionine biosynthe-
sis as indicated by the increased production of MetE in the dibenzothiophene culture
(Fig. 2, Tables 1 and 2, and Tables S1 and S3). Moreover, homocysteine (methionine
precursor) was apparently produced in both the dibenzothiophene and sulfate cultures
via divergent routes (Fig. 2). A homoserine acyltransferase (MetXA) was detected in the
proteome of both cultures, and therefore it could similarly catalyze acylation of homo-
serine. Although the products of the MetXA-catalyzed reactions, O-acetyl-L-homoserine
and O-succinyl-L-homoserine, were both more abundant in the sulfate culture, the
dibenzothiophene culture appeared to preferentially utilize O-acetyl-L-homoserine,
which is consistent with the significantly higher abundance of O-acetylhomoserine
sulfhydrylase (MetY, IGTS8_peg3888) under biodesulfurization conditions (log2 fold
change= 2.9 to 3.1). In the sulfate culture, a MetY isoenzyme (MetZ), whose abundance
did not vary significantly, potentially transformed O-succinyl-L-homoserine to homo-
cysteine (Fig. 2 and 6, Tables 1 and 2, and Tables S1 and S3).

Under biodesulfurization conditions, methionine was most probably produced from
homocysteine via MetE, the cobalamin-independent 5-methyltetrahydropteroyltri-L-gluta-
mate-homocysteine methyltransferase. This protein is one of the top-10 most abundant
proteins in the sulfur proteome of the biodesulfurizing culture, and its level was maxi-
mum during the early log phase (Fig. 6, Table 1, and Table S1). Compared to that in the
inorganic sulfate culture, the level of this protein was 190- to 273-fold higher in the biode-
sulfurizing culture depending on the growth phase. Consistent with this finding, the
methyl group donor for MetE (5-methyltetrahydropteroyltri-L-glutamate) was more abun-
dant in the dibenzothiophene culture during the early log phase (log2 fold change=1.9),
and its level steadily decreased afterwards to become more abundant in the sulfate cul-
ture during the late log and stationary phases (log2 fold change = 22.66 and 24.07,
respectively) (Fig. 6 and Table S3). To the contrary, in the presence of the preferred sulfur

TABLE 2Metabolitesa of sulfur metabolism showing significantly different abundance between the dibenzothiophene and sulfate cultures

Metabolite name Proposed function/pathway
Metabolites that were more abundant in the dibenzothiophene culture
Dibenzothiophene sulfoxide Dibenzothiophene desulfurization, 4S pathway
Dibenzothiophene sulfone Dibenzothiophene desulfurization, 4S pathway
O-Phosphohomoserine Cysteine and methionine biosynthesis
O-Acetyl-L-serine Cysteine biosynthesis
L-Histidinol Ergothioneine biosynthesis
1-O-(2-Amino-1-deoxy-a-D-glucopyranosyl)-D-myo-inositol Mycothiol biosynthesis
2-Iminoacetate Thiamin/thiazole metabolism
1-Aminocyclopropane-1-carboxylic acid S-Adenosylmethionine metabolism
59-Deoxyadenosine Cleavage product of S-adenosylmethionine
Coenzyme A CoA and pantothenate biosynthesis

Metabolites that were more abundant in the inorganic sulfate culture
O-Succinyl-L-homoserine Cysteine and methionine biosynthesis
O-Acetyl-L-homoserine Cysteine biosynthesis
Biotin Biotin biosynthesis
Mycothiol Mycothiol biosynthesis
Dephospho-CoA CoA and pantothenate biosynthesis
Cyclic pyranopterin monophosphate Folate/molybdenum cofactor biosynthesis/sulfur relay pathways,

known as precursor Z
aMetabolites having log2 fold change greater than 1.0 or less than21.0. See Table S3 for more information on the metabolite abundance profile.
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FIG 6 (A) Gene clusters of amino acid transport. (B) Proteins and metabolites of methionine and cysteine biosynthesis (see Table S1 for details of the
abundance profiles and proposed functions of the proteins). Protein annotations are shown above the gene clusters, and gene names and IDs of the first
and last genes are shown below the gene clusters. The growth phases are abbreviated as EL (early log), ML (mid-log), LL (late log), and SP (stationary
phase). Bar charts represent the label-free quantification (LFQ) values showing the abundance profile of MetE in both the DBT (dibenzothiophene) and IS

(Continued on next page)
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source, inorganic sulfate, R. qingshengii IGTS8 appears to produce methionine using the
cobalamin-dependent 5-methyltetrahydrofolate-homocysteine methyltransferase (MetH,
IGTS8_peg1786). This enzyme was detected during all growth phases but could not be
quantified (Fig. 2 and Table S1). The last step in methionine biosynthesis thus reflects the
most conspicuous impact of sulfate availability on sulfur assimilation pathways. In addi-
tion to the cysteine and methionine biosynthesis proteins, the proteome revealed several
proteins probably involved in cystine and methionine transport which were highly
enriched in the dibenzothiophene culture (Fig. 6 and Table S1).

Biosynthesis of the low-molecular weight thiols increased in the biodesulfurizing
culture. Enzymes catalyzing the biosynthesis of the actinobacterial low-molecular
weight thiol, mycothiol, were slightly more abundant in the dibenzothiophene culture
(log2 fold change= 0.5 to 1.4), and their abundance increased toward the stationary
phase (Fig. 7, Fig. S3A, and Table S1). Among these enzymes, MshA (IGTS8_peg5948), a
glycosyltransferase which catalyzes the initial reaction in mycothiol biosynthesis, was
uniquely present in the biodesulfurizing culture during the stationary phase. The
mycothiol biosynthetic intermediate 1-O-(2-acetaamido-2-deoxy-a-D-glucopyranosyl)-
D-myo-inositol was uniquely present in the sulfate culture during the late log phase,
and its level decreased with time where it became more abundant in the dibenzothio-
phene culture during the stationary phase (log2 fold change = 2.09). To the contrary,
the level of the subsequent intermediate, 1-O-(2-amino-2-deoxy-a-D-glucopyranosyl)-
D-myo-inositol, was significantly higher in the dibenzothiophene culture during the
early log (log2 fold change = 2.14) and mid-log (log2 fold change= 1.78) phases, while it
declined afterwards. The final product, mycothiol, was significantly more abundant
(log2 fold change = 21.37 to 21.97) in the sulfate culture throughout the life span
(Fig. 7, Fig. S3A, and Table S3). The relative abundance of mycothione, the oxidation
product of mycothiol, was not significantly different between the dibenzothiophene
and inorganic sulfate cultures. In addition to mycothiol biosynthetic enzymes, the
IGTS8 proteome revealed enzymes that catalyze mycothiol-dependent reactions of
detoxification (Table S1 and see supplemental material for details). The dibenzothio-
phene culture also produced a level of enzymes involved in the biosynthesis of ergo-
thioneine, another low-molecular weight thiol, higher than that of the sulfate culture.
Four of the ergothioneine biosynthetic enzymes, EgtABCD, are encoded in an operon
(Fig. 8), and their abundance consistently increased with the incubation time (log2 fold
change= 1.2 to 2.3) in the biodesulfurizing culture (Fig. 8, Fig. S3B, and Table S1).
However, we could not identify in the IGTS8 genome a homolog of egtE, a pyridoxal
phosphate-dependent b-lyase, which encodes the last enzyme of ergothioneine
biosynthesis.

Although ergothioneine was not detected in the metabolome, we found a metabo-
lite annotated asg-glutamylcysteine, the first intermediate in the ergothioneine biosyn-
thetic pathway (Fig. S3B and Table S3). Another interesting finding concerning ergo-
thioneine biosynthesis is the presence in the dibenzothiophene culture of a
significantly higher content of histidinol (log2 fold change= 2.43) during the stationary
phase (Fig. 8 and Table S3). Histidinol is a metabolite of biosynthesis of histidine, which
is a precursor of ergothioneine.

Metabolism of S-adenosylmethionine changed with the type of the sulfur
source. The dibenzothiophene culture had a statistically significantly higher level of
S-adenosylmethionine synthetase (MetK, IGTS8_peg1600), though the log2 fold change
was less than 2.0 (Fig. 2 and Table S1). Under biodesulfurization conditions, 59-deoxya-
denosine, a metabolite of S-adenosylmethionine, was up to 4.3-fold more abundant
compared to that in the inorganic sulfate culture. However, the abundance pattern

FIG 6 Legend (Continued)
(inorganic sulfate) cultures. Significance of the data is attested by a Welch moderated t test as follows: NS for P. 0.05, * for P# 0.05, ** for P# 0.01, *** for
P# 0.001, **** for P# 0.0001, DS for a protein which was uniquely identified in the dibenzothiophene cultures but not detected in the sulfate cultures, D
for a protein which was identified but not confidently quantified. Metabolomics data are shown as boxplots displaying the distribution for each growth
phase with the minimum, maximum, and median values for the dibenzothiophene (DBT) and inorganic sulfate (IS) cultures. Significance of the data (P
value [rank], Wilcoxon test) is indicated by asterisks: * for P, 0.01, ** for P, 0.05, *** for P, 0.1, no asterisk for P. 0.1.
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FIG 7 Proteins of mycothiol biosynthesis (see Table S1 for details of the abundance profiles and proposed functions of the
proteins). The growth phases are abbreviated as EL (early log), ML (mid-log), LL (late log), and SP (stationary phase). Bar charts

(Continued on next page)
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was reversed as the cultures entered the stationary phase where the inorganic sulfate
culture had a 2.6-fold higher content. We also detected S-adenosylhomocysteine in
both the biodesulfurizing and sulfate cultures (Table S3). An intriguing finding is the
presence of a metabolite annotated as 1-aminocyclopropane-1-carboxylic acid, a
metabolite of ethylene biosynthesis from S-adenosylmethionine in plants, that was
uniquely present in the dibenzothiophene culture throughout and was about 1,500-
fold more abundant during the stationary phase (Fig. S4 and Table S3). The IGTS8 ge-
nome, however, does not encode homologs of the enzymes that produce (1-aminocy-
clopropane-1-carboxylic acid synthase, EC: 4.4.1.14), oxidize (1-aminocyclopropane-1-
carboxylic acid oxidase, EC: 1.14.17.4), or catabolize (1-aminocyclopropane-1-carboxylic
acid deaminase, EC: 3.5.99.7) this metabolite.

Biodesulfurization is associated with sulfur-sparing response. To test whether
the IGTS8 strain implemented sulfur sparing as a response to the sulfate starvation chal-
lenge in the dibenzothiophene culture, we counted the number of cysteine and methio-
nine residues in the sequences of selected differentially synthesized proteins (supplemen-
tal material). Furthermore, we calculated the total content (as percentage) of cysteine and
methionine in those proteins (Table S4). The first indicator for sulfur sparing in the biode-
sulfurizing culture was obvious from the protein sequence of the methionine biosynthesis
enzymes. The cobalamin-independent MetE, which was much more abundant under bio-
desulfurization conditions, has only 2 cysteines and 7 methionine residues, whereas the
cobalamin-dependent MetH isoenzyme has 11 cysteine and 27 methionine residues.
Moreover, the highly abundant (SfnG) and uniquely present sulfur acquisition enzymes in
the dibenzothiophene culture (TauD, AtsA, and subunit 2 of the sulfate activation com-
plex) either have no cysteine and methionine or have only one cysteine residue and a
maximum of seven methionine residues. In the sulfate-starved biodesulfurizing culture,
the significantly upregulated MetY (IGTS8_peg3888) has no cysteine and only one methi-
onine residue. It was also interesting to see that the 4S pathway enzymes have no cyste-
ine and five methionine residues (DszA), one cysteine and no methionine residues (DszB),
or one cysteine and three methionine residues (DszC). To the contrary, proteins that were
not significantly, or were only slightly, upregulated in the dibenzothiophene culture, such
as CysK (4 cysteines and 5 methionines) sulfite reductase (7 cysteines and 5 methionines),
APS reductase (5 cysteines and 2 methionines), cystathionine-gamma-lyase (3 cysteines
and 5 methionines), and cystathionine-b-synthase (4 cysteines and 8 methionines), have
a higher number of cysteine and/or methionine residues. Accordingly, it can be inferred
that under sulfate starvation (biodesulfurization) conditions, the IGTS8 strain avoids or
limits the synthesis of cysteine- and methionine-rich proteins and depends instead on iso-
enzymes or paralogs having no or reduced cysteine and methionine content.

Transcriptional regulators of sulfur metabolism in the IGTS8 strain. The genome
of the IGTS8 strain does not encode homologs of the known global regulators of sulfur
metabolism such as the LysR-type CysB and Cbl of Gram-negative bacteria or the LysR-
type CmbR and the TetR-type McbR of some Gram-positive bacteria (29, 36). However,
the proteome revealed many transcriptional regulators, some of which are related to sul-
fur metabolism and are divergently encoded in operons for transport and utilization of
organosulfur compounds (Fig. 3). One potential candidate as a global regulator of sulfur
metabolism in the IGTS8 strain is the product of IGTS8_peg394, annotated as predicted
transcriptional regulator of sulfate adenylyltransferase Rrf2 family that was uniquely
detected in the dibenzothiophene culture throughout its life span. This annotation sug-
gests a regulatory role for this protein in sulfur metabolism that was backed by BLAST

FIG 7 Legend (Continued)
represent the label-free quantification (LFQ) values showing the abundance profile of the proteins in both the DBT
(dibenzothiophene) and IS (inorganic sulfate) cultures. Significance of the data is attested by a Welch moderated t test as
follows: NS for P. 0.05, * for P# 0.05, ** for P# 0.01, *** for P# 0.001, **** for P# 0.0001, DS for a protein which was uniquely
identified in the dibenzothiophene cultures but not detected in the sulfate cultures, D for a protein which was identified but not
confidently quantified. Metabolomics data are shown as boxplots displaying the distribution for each growth phase with the
minimum, maximum, and median values for the dibenzothiophene (DBT) and inorganic sulfate (IS) cultures. Significance of the
data (P value [rank], Wilcoxon test) is indicated by asterisks: * for P, 0.01, ** for P, 0.05, *** for P, 0.1, no asterisk for P. 0.1.
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search analysis showing 84% identity (E value: 2.2e286) with a cysteine metabolism
repressor CymR from Rhodococcus sp. strain AD45 (Table 1). Furthermore, the protein
sequence alignment of IGTS8_peg394 with close homologues showed a high degree of
conservation of amino acid residues, including the wHTH motif and dimerization

FIG 8 Gene cluster, proteins, and a metabolite of ergothioneine biosynthesis (see Table S1 for details of the abundance profiles and proposed functions of
the proteins). Protein annotations are shown above the gene clusters, and gene names and IDs of the first and last genes are shown below the gene
clusters. The growth phases are abbreviated as EL (early log), ML (mid-log), LL (late log), and SP (stationary phase). Bar charts represent the label-free
quantification (LFQ) values showing the abundance profile of the proteins in both the DBT (dibenzothiophene) and IS (inorganic sulfate) cultures.
Significance of the data is attested by a Welch moderated t test as follows: NS for P. 0.05, * for P# 0.05, ** for P# 0.01, *** for P# 0.001, **** for
P# 0.0001, DS for a protein which was uniquely identified in the dibenzothiophene cultures but not detected in the sulfate cultures, D for a protein which
was identified but not confidently quantified. Metabolomics data are shown as boxplots displaying the distribution for each growth phase with the
minimum, maximum, and median values for the dibenzothiophene (DBT) and inorganic sulfate (IS) cultures. Significance of the data (P value [rank],
Wilcoxon test) is indicated by asterisks: * for P, 0.01, ** for P, 0.05, *** for P, 0.1, no asterisk for P. 0.1.
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domain. The structural similarities were also confirmed by the three-dimensional (3D)
model of CymR from B. subtilis strain 108 and R. qingshengii IGTS8 (Fig. S8). CymR is the
master transcriptional regulator of cysteine metabolism in Bacillus subtilis (29, 38). The
immediate genomic neighborhood, however, of IGTS8_peg394 does not encode any sul-
fur metabolism proteins. The dibenzothiophene culture also had 18- to 33-fold higher
abundance of an ROK family transcriptional regulator (IGTS8_peg5940) that was even
uniquely present in the dibenzothiophene culture during the stationary phase. This pro-
tein is divergently encoded downstream of an operon encoding a choline sulfatase
(IGTS8_peg5938, AtsA1) and a putative a-ketoglutarate-dependent dioxygenase
(IGTS8_peg5939, TauD/TfdA family) that were likewise uniquely present in the dibenzo-
thiophene culture proteome (Fig. 3 and Table S1). Among the interesting findings in the
proteome of the biodesulfurizing culture is the upregulation (log2 fold change=2.0 to
2.5) of a putative extracytoplasmic function (ECF) sigma factor s J (IGTS8_peg3414). ECF
sigma factors constitute a large group of alternative sigma factors that play a role in the
adaptive response of bacteria to environmental stimuli provoking cell envelope stress,
oxidative stress, and virulence (39–41). Moreover, ECF sigma factors were implicated in
the expression of sulfite-oxidizing enzymes for sulfite detoxification. The genomic loca-
tion of s J downstream of the tau gene cluster (presumably encoding a putative dibenzo-
thiophene transporter) suggests a role in organosulfur transport and utilization under
biodesulfurization (sulfate starvation) conditions.

DISCUSSION

Providing dibenzothiophene instead of inorganic sulfate as the sole sulfur source to
R. qingshengii IGTS8 was perceived as a sulfate starvation signal that elicited adaptive
measures to overcome the hazardous consequences of the sulfate starvation stressor
as also observed in E. coli and Pseudomonas putida (22, 42). R. qingshengii IGTS8
responded to the dibenzothiophene-imposed sulfate deficiency by reprograming sul-
fur metabolism via four main mechanisms, namely, (i) restricting sulfur assimilation, (ii)
activating alternative sulfur assimilation pathways/enzymes, (iii) triggering sulfur-spar-
ing response, and (iv) eliciting an oxidative stress protective machinery.

In some bacteria, including E. coli, Bacillus subtilis, Mycobacterium tuberculosis,
Pseudomonas aeruginosa, and Geobacillus thermoglucosidasius, sulfate starvation leads
to upregulation of the enzymes involved in sulfate activation/reduction (CysDN, CysH,
CysI) and cysteine biosynthesis (CysK) (23, 26, 28, 36, 43–45). In contrast, our proteo-
mics data did not reveal a significant change in the levels of these proteins and those
of the reverse transsulfuration when R. qingshengii IGTS8 was forced to use dibenzo-
thiophene as a sulfur source in the absence of sulfate. Therefore, it can be inferred that
under biodesulfurization conditions R. qingshengii IGTS8 keeps sulfur assimilation and
cysteine biosynthesis at minimum levels. This is in line with the observed sulfur-sparing
response in the dibenzothiophene culture, where the most highly abundant proteins
have contents of cysteine and methionine much lower than those of the low-abun-
dance proteins (23, 42, 46).

It appears that cysteine biosynthesis in the dibenzothiophene culture increased
slightly during the stationary phase. This might be necessary to make more cysteine
available for the production of the redox buffers and detoxifying agents, mycothiol
and ergothioneine, which is mandated by the stationary phase-associated nutritional
and oxidative stress (47–50). The overproduction of enzymes of mycothiol and ergo-
thioneine biosynthesis in the dibenzothiophene culture supports this conclusion.
Mycothiol was probably much more involved in detoxification and redox-buffering
reactions in the biodesulfurizing culture and, consequently, was detected in smaller
amounts compared to that in the inorganic sulfate culture. This assumption is in line
with the increased abundance of mycothiol-dependent detoxification enzymes in the
dibenzothiophene culture toward the stationary phase. Alternatively, the stressed bio-
desulfurizing culture could utilize mycothiol as a source of biosynthetic precursors and
energy (51), which might reduce its content compared to that of the sulfate culture.
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The relatively higher abundance of O-acetyl-L-serine and cysteine synthases in the
sulfate-starved dibenzothiophene culture suggests direct sulfhydrylation as the pre-
ferred route for cysteine biosynthesis (29, 36, 44), fully in line with an earlier in silico
reconstructed model of sulfur metabolism in Rhodococcus erythropolis (52). A slightly
higher abundance of cystathionine-b-synthase and cystathionine-g-lyase in the sulfate
culture points at a higher relevance of the reverse transsulfuration pathway for cyste-
ine biosynthesis (32, 53). Our interpretations do not fully exclude the functionality of
direct sulfhydrylation in the inorganic sulfate culture. We assume that it could be of
higher relevance in the biodesulfurizing culture since using sulfide as the thiol group
donor is metabolically more economic for the bacterial cell (37). The presence of more
O-acetyl-L-homoserine sulfhydrylase (MetY) explains the low levels of O-acetyl-L-homo-
serine in the dibenzothiophene culture. MetY itself does not contain any cysteine resi-
dues, thus aligning with the sulfur-sparing response and providing further explanation
for the preferential use of MetY and O-acetyl-L-homoserine for homocysteine biosyn-
thesis under biodesulfurization conditions. To the contrary, the cysteine- and methio-
nine-rich isoenzyme MetZ could be used preferentially for homocysteine production
with O-succinyl-L-homoserine as the sulfide acceptor when R. qingshengii IGTS8 does
not suffer from sulfur bioavailability problems in the presence of sulfate.

Reprogramming of methionine biosynthesis is one of the major findings of this study
and represents a key switch in assimilatory sulfur metabolism in the IGTS8 strain.
Although we cannot unambiguously explain why the methionine biosynthesis enzymes
MetY and MetE were, in contrast to cysteine biosynthesis, boosted in the biodesulfurizing
culture, we envisage that it reflects the much higher number of methionine than cysteine
residues in the analyzed sulfur metabolism proteins. Furthermore, it pinpoints the
energy-conscious smart adaptation of the IGTS8 strain manifested in the utilization of
the cobalamin-independent methionine synthase (MetE), which spares at least part of the
energy needed for cobalamin biosynthesis (44, 54) in the energy-stressed dibenzothio-
phene-grown cells due to the extra energy needed for dibenzothiophene utilization (4
mol of NADH per 1 mol of dibenzothiophene) (15, 52). With a similar rationale, following
direct sulfhydrylation for methionine biosynthesis, with sulfide as the thiol source, would
be less metabolically costly than going through transsulfuration using the metabolically
more expensive cysteine as the thiol group donor (37). The increased dependence of the
biodesulfurizing culture on MetE rather than MetH could be also an inherent component
of the sulfur-sparing response of the IGTS8 strain (23, 42, 46). We base this conjecture on
the fact that the turnover number of MetE is lower (;50-fold) than that of the cobala-
min-dependent MetH (37, 55). Moreover, we showed in our sulfur-sparing analysis that
MetE has a cysteine and methionine content much lower than that of its cobalamin-de-
pendent counterpart MetH. The temporal decline of 5-methyltetrahydropteroyl-L-trigluta-
mate, the methyl group donor for MetE, reflects higher consumption under the sulfate-
limiting (biodesulfurization) conditions. In this context, our results are contradictory to an
in silico model depicting sulfur metabolism in the biodesulfurizing R. erythropolis (52),
which predicted methionine biosynthesis only by the cobalamin-dependent MetH.

In accordance with Aggarwal et al. (17), we propose direct CysI-catalyzed reduction of
dibenzothiophene-derived sulfite to sulfide in R. qingshengii IGTS8, which is indispensa-
ble for assimilation and more energetically efficient than other indirect routes. The sul-
fate activation complex and CysH (APS reductase) probably work together to oxidize sul-
fite via an indirect sulfite oxidation pathway (56, 57). However, we propose that the
primary task of the indirect sulfite oxidation route is to produce PAPS, not sulfate.

Oxidative formation of APS from sulfite and AMP with thioredoxin as an electron
acceptor would be catalyzed by the cysH-encoded APS reductase. Once formed, APS
could be phosphorylated to PAPS via the APS kinase domain fused to the sulfate acti-
vation complex, which may ensure direct substrate channeling for more effective catal-
ysis as proposed for M. tuberculosis (31, 44). The affinity of the APS kinase for APS is sev-
eral hundredfold greater than that of the ATP sulfurylase domain, and PAPS is formed
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6-fold faster than ATP in the case of the M. tuberculosis enzyme (58). Thus, APS will
kinetically partition almost exclusively toward PAPS synthesis.

The ATP-dependent phosphorylation of APS may facilitate sulfite oxidation by the
thioredoxin-dependent APS reductase and overcome the very low reduction potential
of thioredoxin (2270mV) compared to that of the APS/sulfite plus AMP couple
(260mV). The resulting PAPS is the universal sulfuryl group donor in reactions cata-
lyzed by the sulfotransferase Stf0 (32, 59), which was also detected exclusively in the
dibenzothiophene culture and encoded in a gene cluster downstream of the sulfate
activation complex. The sulfotransferase may further drive the reaction in the direction
of APS/PAPS formation. Going this way, the biodesulfurizing culture would benefit
from the following: detoxification of sulfite (17, 56, 57), generation of ATP via partial
oxidation of sulfite to sulfate (56), and satisfaction of the cells need for sulfated biomo-
lecules (32, 59). This scenario explains why the biodesulfurizing culture overproduced
the sulfate activation complex CysN2CD2 with the APS kinase fusion that is lacking in
the CysN1D1 ATP sulfurylase (IGTS8_peg2385, 2386).

Although stimulation of the oxidative stress response in the dibenzothiophene culture,
evident from the upregulation of alkylhydroperoxide reductase, agrees with previous stud-
ies (22, 60), the upshift in biosynthesis of the low-molecular weight thiols mycothiol and
ergothioneine under biodesulfurization conditions has not been reported to date.
Accordingly, we propose to extend the list of the sulfur starvation-induced proteins to
include enzymes of low-molecular weight thiols biosynthesis. Mycothiol and ergothioneine
are the actinobacterial analogs of the well-known redox buffer glutathione, and they play
a crucial protective role under oxidative stress in addition to their detoxification capabil-
ities (47, 49, 50, 61).

Manipulation of sulfur metabolism enzymes, other than those of the 4S pathway,
for improving the biodesulfurization activity has been reported very rarely. Tanaka
et al. (20) showed that disruption of the cystathionine-b-synthase gene by transposon
mutagenesis in the biodesulfurizing Rhodococcus erythropolis KA2-5-1 led to a biode-
sulfurization activity in the presence of sulfate higher than that in the wild type and
suggested that this phenotype is due to reduced cysteine biosynthesis in the mutant.
Since the cystathionine-b-synthase mutant was grown on a mixture of 0.2mM diben-
zothiophene and 5mM sodium sulfate, the culture would start using sulfate first as the
sulfur source because it is the most preferred and also available in a sufficiently higher
concentration than dibenzothiophene (52). In accordance with our proposed sulfur
assimilation model, the reverse transsulfuration pathway should be activated to syn-
thesize cysteine, but this will not work due to the disruption of a key enzyme, cysta-
thionine-b-synthase. This condition might reduce the free cysteine pool, thus creating
a sulfur starvation signal that could lead to a higher biodesulfurization activity.

Together with the naturally low sulfur requirements in bacteria, the sulfur-sparing
response, elicited under biodesulfurization conditions, further restricts sulfur assimila-
tion and, thus, represents a major barrier limiting the biodesulfurization activity (1, 18).
To overcome this obstacle, Pan et al. (62) and Wang et al. (19) cloned a DNA fragment
encoding a small peptide rich with methionine and cysteine in R. qingshengii and
Rhodococcus opacus with the rationale to increase the cell’s sulfur requirements and
consequently enhance the biodesulfurization activity. Nonetheless, the sulfur-rich pep-
tide failed to bring about remarkable increase in the biodesulfurization activity.
Although the concept of increasing the cell’s sulfur requirements per se is interesting,
the approach should ensure that the “sulfur sink” is pivotal for the wellbeing of the bio-
desulfurizing cells. Presumably, the biodesulfurizing cultures did not need the sulfur-
rich peptide designed by Pan et al. (62) and Wang et al. (19) and, therefore, did not
express it to avoid waste of resources.

Considering those earlier studies and based on our proposed model for sulfur me-
tabolism, we can now propose a hypothetical metabolic engineering scheme for future
studies to improve the biodesulfurization activity. The rationale of our proposal is to
force the biodesulfurizing cells to consume sulfur beyond their native limits (63) while
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ensuring redox homeostasis. To be effective, a sulfur sink can be created by increasing
the biosynthesis of sulfur-containing key metabolites that the cells might need under
biodesulfurization conditions, such as the redox buffers mycothiol and ergothioneine.
Another intervention would be to bypass the sulfur-sparing response of the sulfate-
starved cells. One possible way is to knock out MetE, the low-turnover, sulfur-poor, and
cobalamin-independent methionine synthase, to oblige the cells to induce, and rely
on, the sulfur-rich and high-turnover paralog MetH. In parallel, we have to keep known
signals of sulfate sufficiency/excess, such as sulfate, APS, sulfite, sulfide, and cysteine,
at low levels (23, 36, 64). Maintaining reduced levels of sulfite, sulfide, and cysteine is
also important to protect the biodesulfurizing cells from their toxicity at high concen-
trations (56, 65–67). In addition, at low intracellular concentrations, sulfide may stimu-
late respiration and ATP production (68).

Conclusions. Biodesulfurization is perceived as a sulfate limitation cue, which elicits a
multifaceted adaptive response in the biodesulfurizing culture. The biodesulfurization
phenotype is thus a reflection of the underlying alterations of not only the initial sulfur
acquisition pathway but also assimilatory sulfur metabolism as a whole, in addition to the
underlying oxidative stress. Together with the known low sulfur requirements, it appears
that the biodesulfurization-induced sulfur sparing and overall constrained sulfur assimila-
tion contribute to the prohibitively low biodesulfurization catalytic activity, which has
been reported for decades. Accordingly, future endeavors in biodesulfurization research
should dedicate efforts to metabolic engineering of sulfur metabolism to enable unprece-
dented improvements in the biodesulfurization efficiency, a prerequisite for the develop-
ment of a commercially viable biodesulfurization technology. Genes encoding enzymes
of the sulfate activation complex, potential uptake and efflux systems, and biosynthesis
of methionine, cysteine, and low-molecular weight thiols are of particular interest.

MATERIALS ANDMETHODS
Composition of the chemically defined medium. Sulfur-free chemically defined medium was pre-

pared in deionized water with the following composition per liter: KH2PO4, 1.08 g; K2HPO4, 5.6 g; NH4Cl, 0.54
g; CaCl2.2H2O, 0.044 g; FeCl2.4H2O, 1.5mg; vitamins (cyanocobalamin 0.2mg, pyridoxine-HCl 0.6mg, thiamin-
HCl 0.4mg, nicotinic acid 0.4mg, p-aminobenzoate 0.32mg, biotin 0.04mg, Ca-pantothenate 0.4mg); trace
elements (ZnCl2.7H2O 70mg, MnCl2.4H2O 100mg, CuCl2 20mg, CoCl2.6H2O 200mg, Na2MoO4.2H2O 40mg,
NiCl2.6H2O 20mg, H3BO3 20mg). In the inorganic sulfate cultures, MgSO4.7H2O (0.5mM) was added as the
sole sulfur source. In the dibenzothiophene cultures, dibenzothiophene (0.5mM) was added (from a 100mM
stock in ethanol) as the sole sulfur source. In addition, MgCl2.6H2O (0.5mM) was added to the dibenzothio-
phene cultures to compensate for Mg concentration. No MgCl2 was added to the inorganic sulfate cultures.

Culturing conditions for proteomics andmetabolomics studies. To gain insights into the time-de-
pendent biodesulfurization-driven physiological and metabolic adaptations, we conducted comparative
and temporal systems biology studies (proteomics and metabolomics) on R. qingshengii IGTS8 (ATCC
53968) (8, 69). We chose the IGTS8 strain because it is the first and most extensively studied fuel-biode-
sulfurizing bacterium and it is frequently used as a model in biodesulfurization studies. We grew the
IGTS8 strain in sulfur-free chemically defined medium under identical conditions in two cultures with
the type of the sulfur source as the sole variable, and we compared the proteomes and metabolomes of
both cultures during different growth phases. The cultures contained 20mM glucose as the carbon
source and a 0.5 mM concentration of either MgSO4 (sulfur-sufficient condition) or dibenzothiophene
(sulfur starvation condition) as the sole sulfur source. We selected dibenzothiophene because it is one of
the most common organosulfur compounds in diesel and the model sulfur source for biodesulfurization
studies. Four biological replicates were prepared and there was a separate set of cultures for each bio-
mass harvesting time point, i.e., there was a total number of 16 cultures for each sulfur source (4 time
points times 4 replicates). The cultures were inoculated from the respective starter cultures with 1%
(vol/vol) resulting in a biomass load of 0.02 g/liter (wet weight). All cultures were incubated at 30°C in an
orbital shaker (180 rpm). Growth was monitored by measuring the culture optical density at 600 nm
(OD600) at various time points, and cells were harvested at different growth phases. For the dibenzothio-
phene cultures, cells were harvested after 32 h (early log phase), 45.5 h (mid-log phase), 54.5 h (late log
phase), and 67.5 h (stationary phase). For the sulfate-containing cultures, cells were harvested after 29 h
(early log phase), 36 h (mid-log phase), 41 h (late log phase), and 45.5 h (stationary phase). The cells
were harvested by centrifugation at 22.500� g for 15min (4°C) in a Sorval Lynx 6000 centrifuge (Thermo
Scientific, USA), and cell pellets were washed once in 50ml of ice-cold K-phosphate buffer (0.1 M, pH 7)
and collected by centrifugation at 30,000� g for 15min. All harvesting steps were performed on ice in
autoclaved centrifuge tubes, and washed cell pellets were stored at 280°C. All culture samples were
subjected to the proteomics and metabolomics analyses.

Quantitative proteomics. Sample preparation. About 100mg of the cell pellets were resuspended
in Laemmli type buffer (10mM Tris [pH 6.8], 1mM EDTA, 5% b-mercaptoethanol, 5% SDS, 10% glycerol,
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1/100 protease inhibitor cocktail [Merck P8340, Darmstadt, Germany]) at 10% wt/vol. The samples were
vortexed and centrifuged at 1,000 � g for 10min. Protein concentration of all supernatants was deter-
mined using the RC DC protein assay (reducing agent and detergent compatible assay, Bio-Rad) accord-
ing to the manufacturer’s instructions in triplicate, and a standard curve was established using bovine
serum albumin (BSA). For each sample, 20mg of protein lysate was heated at 95°C for 5min and stacked
in an in-house prepared 5% acrylamide SDS-PAGE stacking gel at 50 V. Proteins in the gel were fixed
with 50% ethanol/3% phosphoric acid, washed, and colored with Silver Blue. Gel bands were cut,
washed with ammonium hydrogen carbonate and acetonitrile, reduced with 10mM dithiothreitol, and
alkylated using 55mM iodoacetamide prior to overnight digestion at 37°C using modified porcine tryp-
sin (Promega, Madison, USA) with a final trypsin/protein ratio of 1/50. The generated peptides were
extracted with 60% acetonitrile in 0.1% formic acid followed by a second extraction with 100% acetoni-
trile. Acetonitrile was evaporated under vacuum and the peptides were resuspended in 40 ml of H2O
and 0.1% formic acid before nanoLC-MS/MS analysis.

NanoLC-MS/MS analysis. Nano LC-MS/MS analyses were performed on a nanoACQUITY Ultra-
Performance LC system (Waters, Milford, MA) coupled to a Q-Exactive Plus Orbitrap mass spectrometer
(ThermoFisher Scientific) equipped with a nanoelectrospray ion source. The solvent system consisted of 0.1%
formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). Samples were loaded into a
Symmetry C18 precolumn (0.18by20mm, 5mm particle size; Waters) over 2min in 1% solvent B at a flow
rate of 5ml/min followed by reverse-phase separation (ACQUITY UPLC BEH130 C18, 200mm by 75mm i.d.,
1.7mm particle size; Waters) using a linear gradient ranging from 1% to 35% of solvent B for 79min at a flow
rate of 450 nl/min. The mass spectrometer was operated in data-dependent acquisition mode by automati-
cally switching between full MS and consecutive MS/MS acquisitions. Survey full scan MS spectra (mass
range 300 to 1,800) were acquired in the Orbitrap at a resolution of 70,000 at 200 m/z with an automatic
gain control (AGC) fixed at 3.106 and a maximal injection time set to 50ms. The 10 most intense peptide
ions in each survey scan with a charge state of $2 were selected for fragmentation. MS/MS spectra were
acquired at a resolution of 17,500 at 200 m/z, with a fixed first mass at 100 m/z, AGC was set to 1.105, and
the maximal injection time was set to 100ms. Peptides were fragmented by higher-energy collisional dissoci-
ation with a normalized collision energy set to 27. Peaks selected for fragmentation were automatically
included in a dynamic exclusion list for 60 s. All samples were injected using a randomized injection
sequence. A sample pool comprising equal amounts of all protein extracts was constituted and regularly
injected during the course of the experiment, as an additional quality control (QC). To minimize carryover, a
solvent blank injection was performed after each sample. Monitoring protein identification rates and coeffi-
cients of variation (CV) of this QC sample revealed very good stability of the system: 2,105 of the 2,228 identi-
fied proteins, namely, 94%, showed a CV value lower than 20% considering all 4 injections.

Data interpretation and statistical analyses. Raw MS data processing was performed using
MaxQuant software v1.6.0.16 (70). Peak lists were searched against an in-house generated database
from the sequencing of the IGTS8 genome (6,734 sequences) using the RAST pipeline (71). The anno-
tated genome is accessible via FigShare (https://dx.doi.org/10.6084/m9.figshare.14547426). MaxQuant
parameters were set as follows: MS tolerance set to 20 ppm for the first search and 5 ppm for the main
search, MS/MS tolerance set to 40 ppm, maximum number of missed cleavages set to 2, carbamido-
methyl (C) set as fixed modification, oxidation (M) and acetylation (protein N-term) set as variable modi-
fications. False-discovery rates (FDR) were estimated based on the number of hits after searching a
reverse database and were set to 1% at both peptide spectrum match and protein levels. Data normal-
ization and protein quantification were performed using the LFQ (label-free quantification) option
implemented in MaxQuant using a “minimal ratio count” of one. The “match between runs” option was
enabled using a 2-min time window after retention time alignment. All other MaxQuant parameters
were set as default. To be considered for differential analysis, proteins must be identified in at least three
out of the four replicates in both dibenzothiophene and inorganic sulfate cultures. The imputation of
missing values and differential data analysis were performed using the open-source ProStaR software
(72). A Welch moderated t test was applied on the data set to perform differential analysis. Proteins
were considered differential with a P value lower than 0.05 and a log2 fold change higher than 2 or lower
than 22 with a minimum of 5 unique peptides. Proteins uniquely identified in one culture condition
with a minimum of five unique peptides were also kept in a separate excel file. A complete data set has
been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (73) with the
data set identifier PXD021362. Data were analyzed with principal-component analysis (PCA) on R (ver-
sion 3.6.3) using the MetaboAnalyst package. The PCA was built considering the different proteins as
individuals and the growth phases as variables. The PCA results indicate that the first two axes represent
94.6% of the data set inertia (variability of the data cloud).

Metabolomics analyses. Sample preparation. Cell pellets (30mg) were dried under vacuum
(Speed-Vac, ThermoScientific), and cell disruption was performed by grinding using a mortal with liquid
nitrogen. A modified Bligh and Dyer protocol (74) was followed for metabolite extraction where 200 ml
of hexane were added to the water/methanol/chloroform mixture followed by vortexing for 10 s, after
which phase separation occurred as described by Bligh and Dyer. Internal standards d6 cholesterol
(CDM Isotopes ref D-3373) and D-ABA (Olchemim ref 034 2721) as described in reference 75 were added.
Nonpolar metabolome was collected from the methanol/hexane/chloroform solution, and the polar
metabolome was collected from the water/methanol liquid phase. Both extracts were dried under vac-
uum (Speed-Vac, ThermoScientific) and stored at 280°C. For LC-MS/MS analysis, nonpolar metabolome
samples were diluted 10 times with methanol before injection. The polar metabolome samples were
resuspended in 500ml of methanol for LC-MS/MS analysis.
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Untargeted LC-MS/MS analysis. An Ultimate 3000 UHPLC (Thermo) coupled to an Impact II (Bruker)
high-resolution quadrupole-time of flight (QTOF) was used to investigate the metabolome of the differ-
ent samples. The metabolites were separated at 35°C on an Acquity UPLC BEH C18 column (2.1 by 100
mm, 1.7mm, Waters) coupled to an Acquity UPLC BEH C18 precolumn (2.1 by 5 mm, 1.7mm, Waters)
using a gradient of solvent A (0.1% formic acid in water, Sigma-Aldrich) and solvent B (methanol-0.1%
formic acid). The flow was set at 0.3ml/min, starting with 5% of solvent B for 2 min and reaching 100%
of solvent B from 10 to 13min, and came back to 5% of B in 2 min for a total runtime of 15min. The
spectrometer was calibrated before the injections from 50 to 1,000 daltons (Da) using a mixture of 50ml
of isopropanol (Fisher Chemicals)/water (50/50, vol/vol), 500 ml of 1 M NaOH (Agilent Technologies), 75
ml of acetic acid, and 25 ml of formic acid (Sigma-Aldrich). The calibration mixture was injected at the be-
ginning of each run for recalibration at the processing step. The data sets obtained were processed in
Metaboscape 3.0 to investigate the nontargeted metabolome and perform the statistical analysis.
Metabolite identification was made using analyte lists that were created from open access databases as
described by Villette et al. (76). The following databases were interrogated: E. coli metabolome database
(ECMDB, https://ecmdb.ca/), FooDB (https://foodb.ca/), Lipid Maps (https://www.lipidmaps.org/), Plant
Cyc (https://plantcyc.org/), KNaspSAcK (http://www.knapsackfamily.com/KNApSAcK/), and Swiss Lipids
(https://www.swisslipids.org/#/). Annotations were performed as described in reference 77, and metabo-
lites were annotated to the level 3 of this classification. The metabolome coverage was estimated by
dividing the number of putatively identified metabolites by the total number of m/z obtained.

Statistical analyses. Statistical analysis of the metabolomics data set was performed in
Metaboscape 3.0 using the area of the peaks as the unit of reference. To comply with the small number
of samples, a Wilcoxon rank sum test was performed for comparison of the samples by pairs (e.g., early
log dibenzothiophene versus early log MgSO4). A log2 fold change threshold of 1 and 21 was used to
determine the differential metabolites, with a P value of ,0.05. The annotated metabolites were also an-
alyzed using PCA on R (4.0). The PCA was built considering the different metabolites as individuals and
the growth phases as variables. The PCA results indicate that the first two axes represent 97.3% of the
data set inertia (variability of the data cloud). Therefore, the main metabolites identified were placed in
this PCA plot according to the two axes defined. Finally, the metabolites intensities were also graphically
presented for each growth phase using boxplots drawn in the software R (4.0).

Functional analyses of the detected proteins and metabolites. Sulfur metabolism genes were
identified in the genome of the IGTS8 strain using the Seed Viewer (78). Similarity search was performed
using the BLAST program at the NCBI and UniProt databases with default settings. Mapping of the pro-
teins and metabolites to metabolic pathways was performed with the KEGG mapper-annotate sequence
by BlastKOALA (https://www.kegg.jp/kegg/tool/annotate_sequence.html) using the genus Rhodococcus
as a data set and the MetaCyc databases (https://metacyc.org). The sequences of well-characterized
CymR proteins from Bacillus subtilis strain 108 (UniProt accession number: O34527) and Rhodococcus sp.
strain AD45 (UniProt accession number: A0A0D8I4J9) were obtained from the UniProt database (https://
www.uniprot.org/) and aligned to IGTS8_peg394 using Clustal omega (79), followed by manual curation.
The active domains including a-helices and b-sheets were mapped from Shepard et al. (80). The folding
and 3D structure of the proteins were analyzed using Phyre 2 (81).

Sulfur-sparing analysis. We checked the protein sequences of some of the most highly abundant
and depleted proteins in the dibenzothiophene culture to look for indicators of sulfur-sparing response.
This was done by counting the number of cysteine and methionine residues in the protein sequence
(shown in the supplemental material). Moreover, we calculated the content of cysteine and methionine
in each of those proteins as percentage of the total number of amino acids.

Data availability. A complete proteomics data set is available at the ProteomeXchange Consortium
via the PRIDE partner repository with the data set identifier PXD021362.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.5 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.01 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.02 MB.
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