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Abstract: Quasi-periodic materials have been widely studied for their behavior regard ing atomic
dynamics, photonic, magnetic and electronic properties. They have unique properties inherited from
their  specific  material  symmetry.  The  recent  development  of  additive  manufacturing  gives  the
opportunity to produce quasi-periodic structures to benefit from their unique capability. In this paper,
quasi-periodic beam lattices are produced and failure experiments are performed. Then, a numerical
model is proposed and validated. It is obtained that quasi-periodic Penrose lattices can outperform
their periodic counterpart. These results open new ways to design architected materials with enhanced
failure energy dissipation capabilities.
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The  recent  development  of  additive  manufacturing  gives  the  opportunity  to  produce
metamaterials like closed cellular materials efficiently,i.e. with a perfect control of the cell shape and
distribution. As a particular case, lattice materials are interesting in many fields of application because
of their low density. Due to this low density, the question regarding their mechanical properties and
their integrity is important. While, their effective elastic properties and energy absorption capabilities
under compression have been widely studied [1, 2], their failure behaviour remains almost unexplored
except  a very few papers as [3] concerning crack initiation. 

The analysis of lattice materials is usually limited to periodic patterns. But, using additive
manufacturing there is no limitation and quasi-periodic arrangements can be obtained. Considering
that  quasi-periodic  structures  have  demonstrated  unique  properties  regarding  various  physical
phenomena  (e.g. to  store  energy  in  local  non-propagative  vibration  modes  or  to  resist  to  the
propagation  of  defects),  it  should  be  interesting  to  produce  using  additive  manufacturing  quasi-
periodic lattices that  inherit  outstanding properties from their specific arrangement.  Quasi-periodic
materials have been widely studied for their behavior regarding atomic dynamic, photonic, magnetic
and electronic properties [4, 5, 6]. They have unique properties inherited from their specific material
symmetry.  Indeed,  quasi-crystals  usually  have  high  order  large  scale  symmetry  from which  they
inherit macroscopic isotropy for many physical properties. But contrary to periodic materials that hold
the same order of symmetry whatever the observation scale, quasi-crystals appear almost amorphous
at smaller scales. 

In  this paper,  quasi-periodic beam lattices are produced at  the macroscopic scale (typical
beam length of 1 mm) from a photo-sensitive ABS-type polymer powder and failure experiments are
performed. Then, a numerical model using elastic Euler-Bernoulli beam elements and an energy based
fracture criterion is proposed and validated against the experiments. This allows to investigate the
failure resistance of some specific arrangements and the impact of characteristic geometrical features
on the related energy dissipation. It is obtained that Penrose-type quasi-periodic lattices outperform
their periodic counterpart. These results open new ways to design architected materials with enhanced
failure energy dissipation capabilities.

The behavior of 2D lattice materials (honeycomb) is investigated. Three types of lattice are
selected: 

1. quasi-periodic Kite & Dart Penrose tilling [7] 

2. periodic approximate of the octogonal lattice [8] 

3. periodic hexagonal lattice 
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They are considered as lattices of elastic beams of rectangular section. Once the absolute size
of a specimen is fixed, the remaining parameters to design such materials are: the  unit cell size or
beam length, the beam width and the constitutive material. If the constitutive material is linear and
brittle then its properties are supposed to affect the overall behavior ( global displacement and force)
of the lattice only to a scaling parameter. However, varying the ratio between the unit cell size and the
specimen size  would  allow to  evidence  size  effects [9].  Also,  the  beam width  e is  an  important
parameter as it  strongly affects the ratio between the flexural stiffness (varying as  e3) and tension
stiffness (varying as e) of the beams. The stiffness ratio is thus expected to scale with e2 which allows
to span large investigation domains in terms of competition between bending and tension for limited
variation of e. This is useful because the variation of e are limited in practice due to the resolution of
the manufacturing process (lower bound) and assumptions for beam kinematics (upper bound). The
relative density of a lattice scales as e and thus as 1/(l/e), l/e being the slenderness of the beams. While
the relative density is a meaningful parameter to compare different classes of materials, in the case of
beam lattices,  slenderness  is  helping  to  analyze  the  trends  as  it  is  the  parameter  governing  the
competition between flexural  modes and tension modes.  However,  the relation between these two
parameters is straightforward and the results can also be interpreted from the insight of the relative
density. Note that for a given value of beam slenderness, the relative density for the octogonal lattice
and the Kite & Dart Penrose tilling are similar while the relative density for the hexagonal lattice is 0.6
times lower. 

Experiments have been performed on samples obtained by additive manufacturing. They are
made from photo-sensitive ABS-type polymer powder. The bulk material obtained from this process is
isotropic. Its elastic behavior is defined by a Young’s modulus of 1.4 GPa and a Poisson’s ratio of 0.4.
The sample design is the same as in [1] with a centered pre-crack oriented at 30° with respect to the
direction  perpendicular  to  the  loading  axis  (see  Supplementary  Material).  The  lattice  structure  is
embedded by zones completely filled with the material. These zones are caught by the grips of the
loading device to apply the remote displacement. The speed of the grips is 0.1 mm/min. This design
allows  for  loading  a  central  square  part  of  90 mm  size  with  a  classical  tensile  device  under
macroscopic uniaxial tension. Due to the crack angle of 60° with respect to the loading axis, the crack
tips are submitted to a mixed mode loading. 

The samples are loaded until failure. Due to the high amount of elastic energy stored in the
specimen, failure is unstable for the tested beam width of 0.2 mm. As an illustration of the results, an
image of a Kite & Dart Penrose lattice after failure is presented in Fig. 1 (see Supplementary Material
for other configurations). One clearly observes interactions between the crack and the structure of the
material. It seems that specific features of the lattice (such as the one marked in blue in Fig. 1) induce
a  deviation  of  the  crack.  They  could  be  named  extra-tough  features  as  this  effect  is  obtained
systematically. The deviation of the crack path induced by these specific features of the lattice makes
the actual crack length longer than if the cracks were straight, resulting in a higher effective (from a
macroscopic point of view) failure energy. Conversely, periodic structures have weak planes (lines)
inducing directionality effects as illustrated in [9]. Even if zigzag patterns can be obtained in some
cases resulting in an increase of the effective failure energy as well, in the tests we performed on
periodic lattices, cracks follow straight paths meaning that no dissipation mechanisms induced by the
architecture are activated. 

For modeling these experiments on the materials described above, a simple numerical model
is developed in a in-house MATLAB code. It consists of 2D beam elements under the assumption of
Euler and Bernoulli. The constitutive material is assumed to be linear elastic and inertia effects are
ignored.  The  joints  between  the  elements  are  supposed  to  be  perfect:  infinitely  rigid  with  no
dissipation. The criterion for beam failure is based on the element-average strain energy density. It
allows for weighting the contribution of tension force and bending moment with their actual energy
contribution. The averaged strain energy density is denoted for element i as 

Φ i=
1

2mes ( Ωi )
∫ σ :ϵ d Ω (1)

in the following. In this Equation, Ωi denotes the volume of element i ( mes(Ωi ) being its size), : holds
for double contraction of second order tensors and ε, respectively σ, is the small strain symmetric
tensor, respectively Cauchy stress tensor. The maximum value that can be sustained by a beam before
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it  fails  is  a material  parameter,  namely Φc .  Quasi-static simulations are performed and failure is
accounted for using the following steps: 

1. Elastic simulation of the lattice under a unit prescribed external load (load factor λ=1) 

2. detection of the beam imax having the highest averaged strain energy density Φmax 

3.   the load factor is adjusted so that Φmax equals Φc: λ2= Φc/ Φmax 

4. the amplitudes of the displacement and external loads computed in step 1 are scaled by λ 

5. the results are saved and beam imax is removed from the lattice 

6. go to step 1 while the lattice can handle external loading (Φmax>0) 

It  is  assumed that  the behavior  of  the beams is  purely brittle  and the global response is
adjusted through the load factor in terms of applied displacement and force. In the case when the
mechanical response of the specimen is not stable under monotonic loading, snap back (decreasing
displacement  and  force)  can  be  obtained.  This  is  the  main  difference  between  the  numerical
simulations  and  the  experiments  in  which  this  instability  results  in  a  dynamical  response  of  the
specimen (because the displacement can only increases, the specimen “jumps”, with no control on the
applied  loading,  from a stable  configuration to  the one  having the closest  but   higher prescribed
displacement).  However,  as  there  is  no  initial  kinetic  energy  in  the  system,  it  is  expected  that
dynamical effects have a very limited influence on the results. The algorithm proposed above to drive
the  simulation  is  thus  a  reliable  approximation  of  the  actual  loading  conditions  applied  to  the
specimen. A Griffith like criterion was also tested but its  prediction in terms of  stability was not
correct compared to the experiments. One can argue that such a criterion is based on the existence of a
stress singularity at the crack tip. In the analysed materials herein, this is not the case as the ratio
between  the  crack  length  and  the  beam  length  is  low  (around  10).  Further,  in  [10],  we  have
demonstrated that a gradient-elasticity model must be used to capture the macroscopic deformation of
the lattice and this kind of continuum model is known to cancel out the singularity at the crack tip. 

The  model  involves  two  material  parameters:  the  Young’s  modulus  E and  the  critical
averaged strain energy density Φc. The global response of the specimen scales as E and thus, the only
meaningful parameter is the ratio Φc/ E. However, due to linear nature of the considered model, the
crack  path  is  supposed  not  to  depend  on  this  parameter.  To  simulate  the  experiments,  the  two
components of the displacement are fixed for all the nodes within a narrow band ( its width being the
average beam length) along the bottom edge. For the nodes within a narrow band along the top edge,
the horizontal displacement is fixed while the vertical displacement is assigned a unit value that is
adjusted in step 4. The rotation degrees of freedom are left free.  For validation purposes, the crack
path obtained for a Kite & Dart Penrose lattice is compared to the experimental result in Fig. 1 for
e=0.2 mm. The corresponding average l/e ratio is 6.7. The agreement between the simulation and the
experiment is excellent, validating the failure criterion.

From the simulations, not only the crack path is obtained but also the macroscopic response
(force (F)  v.s displacement (U) ) that gives an insight in the effective behavior of the lattice. Using
numerical simulations, it is also easy to perform a sensitivity analysis to the lattice parameters. The
analysis is restricted herein to the beam width e. The influence of e is analyzed in terms of crack path
but also in terms of dissipated energy using the macroscopic force v.s. displacement response. The
macroscopic response of specimens are normalized by the force and displacement at  the onset  of
failure (Fo and U(Fo)). The results for the Kite & Dart Penrose lattice are illustrated in Fig. 2. The
response of the lattices is also compared to that obtained for a continuum material in the configuration
tested above (a finite element crack propagation simulation is run in a linear isotropic elastic behavior
assuming that  the crack propagates at  a  constant  mixed-mode stress intensity factor).  It  is  clearly
obtained that the response of the lattice deviates from that of a continuum showing the intrinsic ability
of the quasi-periodic Penrose tilling to resist to defects. Further, it seems that decreasing e the lattice
has the ability to dissipate more and more energy. For a quantitative analysis, twice the area of the
surface  defined  by  the  normalized  force  v.s. displacement  curves  is  computed.  Thanks  to  the
considered normalization by Fo and U(Fo),  that  corresponds to the ratio  R between the dissipated
energy and the stored energy before failure occurs. If the macroscopic response is purely brittle then
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R=1. If R<1 then the initial energy in the system is higher than what the material is able to dissipate,
the macroscopic response is unstable and the remaining energy returns to the loading device. If  R>1
then  the  failure  process  needs  more  energy  than  what  was  initially  available  in  the  system.  The
macroscopic response is thus stable and more energy is required to achieved complete failure. Thanks
to the normalization defined above,  R is an indicator of the ability of the lattice to dissipate energy
during failure. The analysis is repeated for different (realistic) values of e and for the three different
lattices mentioned previously.

The results are summarized in Fig. 3. It is confirmed that decreasing e increases the ability of the
lattice to dissipate energy. Concerning the Kite & Dart Penrose tilling, for  e=0.2 mm (l/e≈6.7),  R is
lower  than  1  what  confirms  that  the  macroscopic  response  is  unstable  as  in  the  corresponding
experiment (shown in Fig. 1). For this lattice, a comparison of the crack path for two values of e is
given in Fig. 4. When  e is smaller the flexural stiffness of the beam is much lower than the tensile
stiffness, thus allowing the beams to curve. This higher activation of the flexural deformation modes
induces a rougher crack path, the crack being modified by locally tough patterns (highlighted in blue
in Fig. 4): instead of following the orientation prescribed by the macroscopic loading (as it is the case
for e=0.5 mm, the crack follows the orientation having the lower failure energy in the vicinity of the
crack tip. Due to these deviations of the crack, the effective crack length is higher and the energy
intrinsically dissipated by the lattice is higher. For a comprehensive analysis, small insets are included
in Fig. 3 to show the repartition of the element average of the strain energy density for different
lattices  and  slenderness.  These  results  are  obtained  by  loading  the  lattice  under  uniaxial  tension
without initial crack. For the hexagonal lattice, it is clear how increasing the slenderness leads to a
transition between a tension dominated deformation mode to a bending dominated mode. For low
slenderness, promoting tension modes, the beams aligned with the loading hold most of the strain
energy  density.  Conversely,  for  higher  slenderness,  promoting  flexural  modes,  most  of  the  strain
energy density is hold by beams not aligned with the loading. This transition is also evidenced for the
octogonal lattice with well organized deforming structures whereas the Kite & Dart Penrose lattice
produces disordered arrangements of the strain energy density.

A remarkable dependence of  R with respect to the average slenderness  l/e of the lattice is
obtained in Fig. 3. A linear trend is easily fitted on the curves plotted in Fig. 3 for the three materials.
One should mention that  l/e being proportional to the inverse of the relative density of the lattice.
Gibson-Ashby like trends are obtained for  R, scaling with the inverse of the relative density  (see
Supplementary Material). It is obtained that the slope is higher for the Kite & Dart lattice than for the
two others: 1.5 times higher than for the octogonal lattice and 3 times higher than for the hexagonal
lattice.  One  could  argue  that  the  structured  deformation  patterns  (see  Fig.  3)  obtained  for  the
hexagonal  and  octogonal  lattices  are  one  reason  for  the  lower  increase  of  the  energy  dissipation
capability of these lattices. Conversely, deformation patterns for the Kite & Dart Penrose lattice are
disordered which is less favorable for the propagation of defects. Indeed, these structured strain energy
density patterns obtained for a periodic lattice give rise to the existence of weak orientations [9] (crack
propagation is promoted along some specific orientations defined by the unit cell geometry), or so
called directionality effects that intrinsically weaken this kind of architecture. Not only the periodicity
but also the order of local material symmetry, which is shown in [11] to be in close relation with
dissipation mechanisms in disordered materials, might be at the origin of this difference between the
Kite & Dart Penrose that has a 5-fold symmetry and the hexagonal and octogonal lattices that have a
6-fold respectively 8-fold symmetry. As the octogonal lattice used herein is a periodic approximate of
the quasi-periodic lattice,a it may also be affected by the existence of weak orientations locally. It is
thus concluded that periodicity and high order symmetry affects the ability of a lattice to dissipate
energy during the propagation of a crack. The higher performances of the Kite & Dart lattice, are a
consequence of disordered deformation patterns and of the activation of bending deformation modes
when e is decreasing that make some specific features of the lattice extra-tough.

The main result arising from this analysis is the evolution of ability of a given lattice to
dissipate energy during failure varying beams’ slenderness. A linear trend is obtained for the three
lattices analyzed herein. While for a periodic lattice or a periodic approximate of quasi-periodic lattice,
the slope of the linear trend is similar, it is 4 times higher for a quasi-periodic lattice based on the Kite
& Dart Penrose tilling. Analyzing the crack paths, it is observed that increasing the beam’s slenderness
allows bending deformation to develop. This results in deformation modes that prevent cracks from
propagating through some specific patterns (such as the one marked in blue in Figs. 1,3) of the K& D
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lattice making them extra-tough. This results in rougher crack paths and thus higher energy dissipation
capabilities. 

The supports of CNRS through METAMORPH PEPS project and ANR through grant ANR-16-
CE30-0007-01 are gratefully acknowledged. 

5



References
[1] W. Warren, A. Kraynik, Mechanics of Materials 6 (1) (1987) 27–37.
[2] L. J. Gibson, M. F. Ashby, Cambridge university press, 1999.
[3] I. Christodoulou, P.J. Tan, Engineering Fracture Mechanics 104 (2013) 140-
161
[4] J. Ashraff, R. Stinchcombe, Physical Review B 39 (4) (1989) 2670.
[5] Y. K. Vekilov, I. Gordeev, E. Isaev, Journal of Experimental and Theoretical
Physics 89 (5) (1999) 995–999.
[6] A. Szallas, A. Jagannathan, Physical Review B 77 (10) (2008) 104427.
[7] R. Penrose, The Mathematical Intelligencer 2 (1) (1979) 32–37.
[8] M. Duneau, Journal of Physics A: Mathematical and General 22 (21) (1989)
4549.
[9] J. Réthoré, T. Dang, C. Kaltenbrunner, Journal of the Mechanics and Physics
of Solids 99 (2017) 35–49.
[10] J. Réthoré,  C. Kaltenbrunner,  T. Dang,  P. Chaudet,  M. Kuhn,  International
Journal of Solids and Structures 72 (2015) 108–117.
[11] T. Damart, A. Tanguy, D. Rodney,  Physical Review B 95, 054203 (2017).

6



Figures:

7



Figure 1:  Comparison of  the failure path  between experiments  and numerical  simulations for  the
Penrose tilling for  e=0.2 mm (l/e≈6.7). The loading direction is vertical and the crack orientation is
30° with respect to the direction perpendicular to the load. The predicted failure path has been overlaid
in red onto the experimental picture. The blue circle outlines one of the patterns in the lattice that were
to induce a deviation of cracks. 

8



Figure 2: Scaled load (F/Fo) v.s. displacement (U/U(Fo)) response of the Penrose tilling for different
beam slenderness l/e.
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Figure  3:  Evolution  of  the  dissipated  energy  normalized  with  the  elastic  energy  stored  at  failure
initiation for different lattices with varying beam slenderness l/e. The insets show the repartition of the
element average of the strain energy density for a uniaxial tensile test along the horizontal axis for
different lattices and slenderness. Green beams hold high energy density whereas purple beams have
low energy density.
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Figure  4:  Comparison  of  the  failure  path  for  the  Penrose  tilling  with  different  beam  width:  top
e=0.2 mm (l/e≈6.7),  bottom  e=0.5 mm (l/e≈2.7).  The patterns highlighted in blue are identified as
those producing a deviation of the crack for higher slenderness.  
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