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Vibrational properties of quasi-periodic beam structures

Arthur Glacet, Anne Tanguy, Julien Réthoré1

LaMCoS, Université de Lyon / INSA Lyon / CNRS UMR 5259
Bat. Jacquard, 27 Avenue Jean Capelle, F-69621 Villeurbanne, Cedex, France

Abstract

Quasi-periodic structures have been widely studied, notably in the atomic vibration do-
main. In this paper a beam structure based on Octagonal quasi-periodic tiling is studied.
We provide a complete description of its vibrational response, including the density of its
vibrational states, a detailed description of its vibration modes, and the computation of the
dynamical structure factor (spectral density of energy) for transverse and for longitudinal
waves. It is shown that quasi-periodic structures exhibit localized low frequency vibration
modes that are due to resonant vibrations of isolated patterns in the quasi-periodic struc-
ture, but in opposite, high-frequency modes are (non-trivially) extended. Moreover, the
paper shows the possible existence of band gaps in the vibrational response of periodic and
quasi-periodic beam lattices as a function of the ratio between the bending and the tensile
stiffness of the beams.
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1. Introduction

Quasi-periodic materials have been widely studied for their atomic dynamics, photonic,
magnetic and electronic wave propagation [1, 2, 3]. These structures exhibit complex vi-
brational behavior, including a set of frequency ranges in which no propagative wave ex-
ist [4, 5], i.e. band gaps. Band gaps can lead to interesting applications in various domains5

[6]. The recent progress in additive manufacturing open new possibilities for building large
scale quasi-periodic structures by allowing the printing of complex metamaterials, in a con-
sistent manner. Additive manufactured metamaterials can be designed to exhibit unusual
macroscopic behavior due to their internal structure as in [7, 8, 9]. Therefore the possibility
of creating metamaterials having the same properties as the quasi-periodic atomic structures10

can be highly interesting and allows to get rid of unwanted complex behaviors [5]. Such
metamaterials could create band gaps in their vibrational mechanical response while being
isotropic regarding elasticity or wave propagation for example. Moreover, the macroscopic
beam structure offers additional possibilities in terms of large scale interactions and control
parameters for tuning the vibrational properties.15

The mechanical and vibrational properties of quasi-periodic and of amorphous struc-
tures are related to complex mathematical problems due to the impossibility of periodic
simplifications. Therefore, in order to solve these problems, big size matrix problems have
to be dealt with. Moreover, usual Fourier transform-based computational tools, or Bloch
Wave expansions, that are very interesting for periodic structures [10] would be very un-20

efficient for such systems. The numerical approaches followed in this paper deal with
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completely resolved calculations on very large matrices, thus avoiding the required simpli-
fications associated to (even highly and recently elaborated) homogeneization tools as in
[11]. In the later case, the degree of spatial resolution that depends on the waves frequency
is indeed crucial for an accurate description, as well as the hypotheses concerning the order25

of expansion of the constitutive laws in the different order parameters (displacements and
rotations of beam nodes for example) [12]. In contrary, our method allows for direct in-
sights into the dynamical behaviour at any vibrational frequency of non-periodic systems,
including the description of possible localized vibrations that are difficult to identify and
to take into account in homogeneization procedures [13, 14, 15]. The Octagonal Quasi-30

periodic tiling is chosen in this paper for its ability to create a periodic approximant to the
quasi-periodic tiling thus allowing the use of periodic boundary conditions as suggested in
[16]. It has been shown in [17] that, for ferromagnetic properties, the approximant with
periodic boundary conditions closely mimics the infinite lattice properties. The numeri-
cal methods used here for the vibrational study of big systems were inspired from atomic35

vibration analyses and adapted to finite element modeling of large scale complex beam
structures. First, the vibrational eigenmodes are computed by exact diagonalization of the
dynamical matrix restricted to the beam nodes. Then, Kernel Polynomial Method (KPM)
is used to calculate the complete Vibrational Density Of States (VDOS) and the Dynamical
Structure Factor (DSF), giving rise to the complete dispersion relation without the need of40

exact diagonalization of the dynamical matrix. The KPM method is detailed by [18] and
was adapted recently to the study of the vibrational properties of large-size atomic systems
by [19]. We apply it here to large scale beam structures. This method allows accurate de-
scription of the vibrational properties of large scale systems, and thus a better understanding
of the vibrational response of quasi-periodic structures. Thanks to this work, it will now be45

easy to transfer this method to the detailed vibrational study of any beam structure.

The paper is organized as follows: first the modeling and numerical methods are ex-
plained in Section 2 and 3. These methods are firstly applied on a simple periodic beam
structure in Section 4, in order to be validated, and to show the influence of the bending50

stiffness on the vibrational response. Then in Section 5 the methods are applied to the
complete analysis of the vibrational response of an Octagonal quasi-periodic approximant,
including the detailed analysis of its eigenmodes.

2. Model

The beam structure is described by a Finite Element (FE) model based on Euler-Bernoulli55

beam theory. In this description, each of the N nodes of the model holds 3 degrees of free-
dom (DF), the two components (ui,vi) of the displacement, and θi the rotation of the beam
section at the node i (Fig. 1). The dynamical problem can be written in terms of nodal DF
with classical matrix equation:

Kd+Md̈ = F, (1)

where d is the DF vector containing all DFs of all nodes, K the stiffness matrix, M the60

mass matrix and F the external loads in all directions (Fu , Fv and Mz) for all nodes: Fu and
Fv are the components of the external load vector along and perpendicular to the beam, and
Mz is the torque perpendicular to the structure’s plane (Fig. 1).

The stiffness and mass matrix are obtained first for each element by using the weak65

formulation of the continuous beam problem written on the two extremities of the beam
[20]. For readers unused to the Euler-Bernouilli beam theory, we recall here the expression
of the corresponding elementary stiffness matrix Ke and the elementary mass matrix Me
written in the local element basis and using the elementary vector of degrees of freedom
{u1,v1,θ1,u2,v2,θ2} (u1 displacement along the direction defined by the beam at node 1,70
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v1 displacement orthogonal to the beam orientation at node 1, θ1 rotation of node 1...) [21]:

Ke =



ES
L 0 0 −ES

L 0 0

0 12 EI
L3 6 EI

L2 0 −12 EI
L3 6 EI

L2

0 6 EI
L2 4 EI

L 0 −6 EI
L2 2 EI

L

−ES
L 0 0 ES

L 0 0

0 −12 EI
L3 −6 EI

L2 0 12 EI
L3 −6 EI

L2

0 6 EI
L2 2 EI

L 0 −6 EI
L2 4 EI

L


and

Me =



1/3LρS 0 0 1/6LρS 0 0

0 13LρS
35

11L2ρS
210 0 9LρS

70 − 13L2ρS
420

0 11L2ρS
210

L3ρS
105 0 13L2ρS

420 −L3ρS
140

1/6LρS 0 0 1/3LρS 0 0

0 9LρS
70

13L2ρS
420 0 13LρS

35 − 11L2ρS
210

0 − 13L2ρS
420 −L3ρS

140 0 − 11L2ρS
210

L3ρS
105


75

where E is the Young Modulus, ρ the mass density, L the length of a beam element, S the
area of a beam section and I the quadratic moment of a beam section. Those elementary
matrices are then transfered in the global basis by a local change of coordinates (rotation)
and summed over all the elements to get the global matrix involved in 1.

80

When studying the vibrational response, the external forces on each node are zero be-
cause the system would be at equilibrium at rest, and the displacement is assumed to be a
wave solution, that is:

d̈ =−ω
2d, (2)

where ω is the angular frequency of the wave. Thus the dynamical problem can be written

Kd = ω
2Md. (3)

The periodic boundary conditions are imposed by modifying the previous equation thus85

equating the DFs of the homologous nodes. M being positive and symetric, it can be written
M = LLt. The problem thus becomes a classical eigenmodes problem

Hd′ = λd′, (4)

with
H = L−1KL−t ; λ = ω

2 ; d′ = Ltd, (5)

where H is a symmetric positive definite square matrix. This dynamical matrix depends on
three parameters:

90

Kv = 12
EI
L3 the flexural stiffness.

Ku =
ES
L

the traction/compression stiffness.

m = ρSL the mass of a beam element.

(6)

Note that the ratio
Kv
Ku

that will be discussed later, depends here only on the geometry of
the beam cross section and on its length.
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Moreover, the discretization of the system on the nodes at the extremities of the beams
does not allow getting insight on vibrations at a scale smaller than half of the smallest beam
length, thus limiting the highest frequency reached. The highest vibrational frequency ωmax95

is of the order of the highest possible frequency supported by the smallest element, that is
given by solving the equation det(Ke−ω2Me) = 0 and depends on the aspect ratio of the
beams. Due to the very large number of nodes, we will solve Eq. 3 with numerical methods
that are adapted to very large system sizes. We will compare the exact diagonalization of
the matrix H (allowing exact identification of the modes but only for N . 10000) to the100

recursive calculation of the frequency density (VDOS) and of the dispersion relation (DSF)
that will be presented later and that is not size limited.

3. Numerical Methods

3.1. Exact diagonalization

The exact diagonalization of the dynamical matrix H allows getting directly d′ from
Eq. (3), and thus the DF vector d = L−td′. The diagonalization is performed using the
build in function eigsn in Matlab software. The calculation is limited by the system size.
For sufficienlty small systems (N . 10000), it allows visualizing the 3×N eigenvectors
that are the resonant modes of the system (see Section 5). It allows also for computing the
participation ratio (PR) of each mode. For a given eigenmode j, the PR gives information
on the ratio of particles participating in each vibration mode. It was used for example to
identify possible localized vibrations in disordered systems [22, 23, 24, 25]. It is defined
as:

PR(ω j) =
1
N
(∑i |ui|2(ωj))

2

∑i |ui|4(ωj)
(7)

where ui is the displacement vector ui = {uxi ,uyi} for the ith node and ω j the pulsation of105

the jth eigenmode. It means that PR = 1/N when only one isolated node over N supports
the vibration, while PR = N/N = 1 = 100% in case of uniform translation.

The determination of the eigenfrequencies and eigenmodes from the resolution of Equa-
tion 5 is highly computationaly demanding, especially for non-periodic systems. For this
reason, approximate methods that do not require exact resolution of the eigenvalue problem110

have been developed [26, 18]. The computation of several quantities like the vibrational
density of states and the dynamical structure factor (spectral densiy of states) is useful for
analyzing the vibrational properties of a material. They are obtained without solving the
eigenvalue problem as detailed below.

3.2. Vibrational Density of States115

The VDOS corresponds to the distribution of the eigenfrequencies resulting from the
spectral analysis of the model. It is defined as:

V DOS(ω) =
1

3N

3N

∑
j=1

δ(ω−ω j) (8)

where δ is the Dirac function. Using the Kernel Polynomial Method (KPM), the VDOS
can be obtained without the exact resolution of the eigenvalue problem (4). The KPM thus
allows to compute the VDOS even for very large systems [26, 18]. It is based on the ap-
proximation of the δ-function in Eq. 8 by a series of Tchebychev polynomials, yielding to
an exact expression of the distribution of the eigenvalues without calculating the eigenval-
ues itself. The method is detailed in [26, 18]. The starting point is the expansion of the
δ-function as

δ(ε− ε j) =
2
π

√
1− ε2

∞

∑
b=0

Tb(ε)Tb(ε j). (9)
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where ε j = 2ω2
j/ω2

max− 1. ωmax is the maximum frequency supported by the individual
beams: it is given by the resolution of the equation det(Ke−ω2Me)= 0, thus−1 < ε j < 1,
Tb are Tchebychev polynomials that can be obtained either by the recurrence relation

T0(ε) = 1, (10)
T1(ε) = 2ε, (11)
Tb(ε) = 2εTb−1(ε)−Tb−2(ε) (12)

or by a trigonometric definition:

Tb(ε) =
sin((b+1)arccos(ε))√

1− ε2
. (13)

The VDOS can thus be rewritten as

V DOS(ω)≈ 8ω

3Nπω2
max

3N

∑
j=1

B

∑
b=0

γbTb(ε j)Tb(ε) (14)

where γb are Jackson’s damping coefficients [27] introduced to avoid Gibbs oscillations

γb =
(B+1−b)cos πb

B+1 + sin πb
B+1 cot π

B+1

B+1
(15)

and B is a maximum number controlled by the desired accuracy of the calculations, the
approximate solution converging to the continuous solution V DOS(ω) when B goes to
infinity [18]. Here we chose B = 300. The Tchebychev momenta are defined as

µb =
1

3N

3N

∑
j=1

Tb(ε j) =
1

3N

3N

∑
j=1
〈uj|Tb(Ht)|uj〉 (16)

with Ht =
2H

ω2
max
− I. The bth momenta can be approximated as

µb ≈ 〈dr
0|dr

b〉 (17)

where |dr
0〉 is a 3N Gaussian random vector with unit norm, the upper bar is the average

over R random realizations of this random vector, and |dr
b〉 follows the recurrence relations

|dr
1〉= 2Ht|dr

0〉,
|dr

b〉= 2Ht|dr
b−1〉− |dr

b−2〉= Tb(Ht)|dr
0〉 (18)

When R is large enough, the variability due to the random generation of the {dr
0} can be

neglected [26]. We used R = 30. Using Eqs.1314, the V DOS can thus be computed as

V DOS(ω) =
4ω

3Nω2
max

B

∑
b=0

γbµb sin(2(b+1)arcsin(ω/ωmax)) (19)

that is a function of the angular frequency ω only, without the need of ω j neither of uj.

3.3. Dynamical Structure Factor
The DSF is also called Spectral Density of Energy [28]. It corresponds schematically

to the combined spatial and temporal Fourier transforms of the displacements inside the
system, thus giving the amplitude of the harmonic waves as a function of q the wave vec-
tor and ω the angular frequency. In atomistic samples, it is related to the cross-section
of photons that are scattered by atomic vibrations in non-elastic x-ray or neutron scattering
experiments [29]. For longitudinal modes for example, it is related to the spatial correlation
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function of density fluctuations. As an indicator of the connection between wave-vectors
and frequency during the dynamical response of the system, the DSF can be used to ob-
tain the dispersion law [30, 26]. The DSF is calculated separately for transverse (T) and
longitudinal (L) displacements. For longitudinal modes, it is defined by:

DSFL(ω,q) =
3N

∑
j=1

(
N

∑
i=1

qn.ui(ω j)eq.Ni)2
δ(ω−ω j) (20)

where qn is the normalized wave vector and Ni the position vector for the ith node. As
mentioned before, this expression results from the calculation of the fluctuations in the
density of nodes. Writing ρ(q, t) the spatial Fourier components of the local density ρ at120

time t, and ρq its initial value, we have

DSFL(ω,q) ∝

∫
exp(−iωt)〈(ρ(q, t)−ρq) .(ρ(−q, t)−ρ−q)〉dt

≈
∫

exp(−iωt)∑
i j
(q.ui)(q.uj)exp

(
iq.
(
Ni−Nj

))
dt

Indeed,

ρ(q, t)−ρq =
∫

ρ(r, t)exp(iq.r)dr−
∫

ρ(R,0)exp(iq.R)dR

=
N

∑
i=1

exp(iq.(Ni +ui(t)))− exp(iq.Ni)≈
N

∑
i=1

iq.ui(t)exp(iq.Ni) (21)

where ui(t) = ri(t)−Ri is the displacement supported by the node i in a random excitation,
that is next decomposed on the eigenmodes with frequencies ω j [31]. DSFL(ω,q) thus
corresponds to the Fourier transform of the longitudinal components of the waves with
frequency ω. Its transverse counterpart is

DSFT (ω,q) =
3N

∑
j=1

(
N

∑
i=1

qn∧ui(ω j)eq.Ni)2
δ(ω−ω j) (22)

The KPM is used once again to calculate the DSFs without exact diagonalization. With this
method, DSFs can directly be computed as:

DSFL(ω,q)) =
B

∑
b=0

µbυ
L
b(q)Tb(ε) (23)

DSFT (ω,q) =
B

∑
b=0

µbυ
T
b (q)Tb(ε) (24)

with µb and ε as previously defined, and:

υ
L
b(q) =

1
N
(

N

∑
i=1

qn.ui0eq.Ni)2(
N

∑
i=1

qn.uibeq.Ni)2 (25)

υ
T
b (q) =

1
N
(

N

∑
i=1

qn×u0
i eq.Ni)2.(

N

∑
i=1

qn×ub
i eq.Ni)2, (26)

3.4. Voronoi Decomposition
The decomposition of the displacement on longitudinal and transverse components

compared to the wavevector is not straightforward for non-crystalline samples such as the125

Octagonal quasi-periodic tiling [32]. The displacement decomposition used herein is based
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on the Voronoi cells volume variation and was already applied to amorphous glassy sam-
ples in [19]. The Voronoi cell built around a node is the area containing the points closer
to this node than every others. The Transverse displacements will be the displacements not
modifying the Voronoi cells’ volume and the Longitudinal are the displacements doing so.130

As in [19], we use the A matrix describing the relative volume variation of the voronoi cell
centered on node i, due to the displacement d j of node j (translation ux, uy or rotation θ):

Ai, j =
1
Vi

∂Vi

∂d j
(27)

This matrix can be easily obtained from the mesh of beam elements, the detailed
method being described in [19]. With this definition of A, we obtain the longitudinal and
transverse components by:135

dη = Pηd ; η = L,T
PL = At(AAt)−1A

PT = I−At(AAt)−1A
(28)

This new decomposition is then injected in the VDOS and the DSF calculation. The con-
tribution to the VDOS of the Tchebychev moment (Eq. 17) for example, becomes:

µη

b = 〈dr
0|Pη|dr

b〉 (29)

with η = L or η = T for its respective longitudinal and transverse contributions to the
VDOS.

4. Role of bending in periodic beam lattice140

As a first example, the vibration of a periodic beam lattice analyzed. The effect of the
bending stiffness that is the only design parameter to be adjusted once the geometry of
the lattice is fixed, is investigated. The ratio between the tensile stiffness and the bending
stiffness is varied in order to observe the influence of the latter on the vibrational response.
The idea behind such a study is that increasing local bending stiffness should enhance145

the energy separation between local rotational and compressional modes, and thus enlarges
possible hybridization gaps (see e.g. [33]) meaning they result from the interaction between
modes of different nature.

4.1. Analytical solution for a periodic lattice
A infinite periodic lattice with a simple squared elementary pattern is considered (see

Figure 3). As for wave propagation [34], the periodic structure of this lattice allows the use
of periodic boundary conditions to reduce the analysis to one elementary cell. Using those
conditions and choosing the solutions of Equation (3) as:

d = adexp(i(ωt +q.r)), (30)

equation 3 is solved analytically. This calculation is detailled in Appendix A. The values150

[ω,q] that verify det(([K]−ω2 [M])) = 0 are calculated using the MAPLE software.
Figures 4-a-b-c show the resulting analytical solution of the dispersion law (DSF) for

three ratios Kv
Ku

, namely 0.01, 0.5 and 2. For graphical representation, the dimensionless

frequency ωadim defined as ωadim = ω

√
m
Ku

, is used.

For the three cases analyzed herein, three surfaces (ωadim as a function of qx,qy) are
plotted: two acoustic solutions (in phase vibrations of the nodes: blue and red) and one
optical (out of phase vibrations of the nodes: green). For Kv

Ku
= 0.01 and Kv

Ku
= 0.5, the green

and blue surfaces merge at ( π

L ,
π

L ) whereas for Kv
Ku

= 2 the two surfaces are disconnected.
Note that for ( π

L ,
π

L ), the vibration modes correspond to uncoupled vibrations of the three
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nodal degrees of freedom. This creates a frequency range in which no mode exists. This is
called a band gap. It can be shown that the analytical solution used above degenerates for
(qx,qy) reaching ( π

L ,
π

L ) giving a double solution and a single one:{√
210(Kv +Ku)

43m
,

√
10Kv

m

}
(31)

Using the expression of those solutions, the size of the band gap depending on Kv
Ku

is :

∆ωadim =

√
m
Ku

(√
10Kv

m
−
√

210(Kv +Ku)

43m

)+

(32)

where the + superscript indicates the positive part of a real number. It is obtained that155

below a given ratio Kv
Ku

, no band gap is obtained whereas above a critical value of 0.9545,

the size of the band gap increases as
√

Kv
Ku

as illustrated in Figure 5.
As shown in Figures 4-b and 4-c, the high-frequency modes in the periodic beam lattice

are mainly transverse. Increasing Kv independently of Ku thus raises mainly the frequency
of optical transverse modes (upper band in the dispersion relation), creating a band gap.160

Note that
Kv
Ku

ratio higher than 0.05 (slenderness approximately lower than 5) can’t be geo-
metrically obtained for square section beams while respecting the slenderness requirements
for the Euler-Bernoulli beam model, thus making impossible to obtain band gaps for these
specific stiffness values. It may however be possible to create a band gap by adjusting
the mass distribution of the beams or just with a different periodic structure. The goal of165

this article is indeed to show evidence of tendencies that could be even amplified with a
more accurate description of the interactions beyond the Euler-Bernouilli approximation,
and to adapt new tools to the study of the vibrations in non-periodic beam structures. The
three typical ratios of Kv/Ku = 0.01,0.5 and 2 will thus be kept all-along the article for
comparison purposes.170

4.2. Numerical calculations
To further analyze the vibrational behaviour of the square lattice, the PR and VDOS

have been computed from a numerical solution obtained for a 5×5 to 50×50 cells lattice
as presented in Figure 3. For the 50×50 lattice, the system has N = 2601 nodes for 3N(=
7803) DFs, including the boundary. Periodic boundary conditions are applied along the175

boundary of the analyzed domain. For these simulations, the parameters used were L =
0.01 m, Ku = 3.5×105 kg.s−2 , ρ = 1000 kg.m−3, E = 1.4×109 Pa, Kv = 2Ku, Kv = 0.5Ku
and Kv = 0.01Ku.

For the three values of Kv
Ku

, the VDOS and PR are computed following the methodology
detailed above. The results are plotted in Figure 6 to check the influence of finite size180

effects, and in Figures 7, 8 and 9 for different values of Kv/Ku. In the latter, i.e. for Kv
Ku

= 2,
the creation of the band gap is clearly observed in the VDOS and in the PR. Indeed, for
around ωadim ≈ 4 that corresponds to our analytical value of ωadim in the band gap, the
VDOS vanishes and there is no defined value for the PR as no vibration mode exists for
ωadim within the band gap. Conversely, for Kv

Ku
= 0.5 and Kv

Ku
= 0.01 , the VDOS does not185

vanish and there is no zone with undefined PR. However, for all three cases, the fluctuations
of the VDOS are in close relation with the analytically obtained shape of the surfaces giving
the three different roots ωadim as plotted in Figures 4-a-b-c. Concerning the PR, most of
the modes have a PR around 0.6 due to the fact that it is the PR of a spatial cosine to which
all the nodes participate. This example shows how the VDOS and the PR can be used to190

interpret the vibrational behavior of the material and to detect band gaps. As expected, it
shows as well, that the additional flexural stiffness in the beam lattice model induces a new
kind of high frequency optical modes, with mainly transverse character and with the related
aperture of a band gap increasing with Kv in the vibrational response.
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5. Quasi-periodic beam lattice195

The methodology is now applied to analyze the behaviour of a quasi-periodic beam
lattice. The complexity of quasi-periodic structures does not allow the calculation of ana-
lytical solutions as was done previously. Only numerical results are obtained. All the cal-
culations are run on the 4th order periodic approximant of a Octogonal quasi-periodic tiling
shown on Figure 2. The details for the generation of this quasi-periodic approximant are200

given in [35]. The corresponding quasi-periodic tiling is the octogonal Amman-Beenker’s
tiling initially proposed in [36]. The system has N = 8257 nodes and 3N(= 24771) DFs.
As previously, periodic boundary conditions are prescribed. The parameters of the model
are the same as previously: L = 0.01 m, Ku = 3.5× 105 kg.s−2 , ρ = 1000 kg.m−3,
E = 1.4× 109 Pa. To understand the influence of the flexural component of the beam205

stiffness, the same three values of Kv
Ku

are still considered: 0.01, 0.5 and 2.
For the three values of Kv

Ku
, the VDOS and PR are shown in Figures 10, 11 and 12. The

VDOS of the quasi-periodic tiling considered in this section, share some similarities with
the ones computed for the periodic square lattice: for the three values of Kv

Ku
, there is first

a bump in the low frequency range related to the accoustic branches. After a decrease,210

the VDOS increases again which gives an indication concerning the existence of optical
branches (high frequency out-of-phase vibrations of the nodes with low group velocity).
Concerning the PR, whereas for the square lattice there is no clear trend in the evolution of
the PR, the quasi-periodic tiling analyzed herein behaves differently. It is observed that the
PR follows fluctuations that seem (quite surprisingly) opposite to those of the VDOS for215

Kv
Ku

= 0.5 and Kv
Ku

= 2, but similar for Kv
Ku

= 0.01 except around ωadim = 0.6. In these cases,
a drop of the PR relates to a peak in the VDOS. Consequently, in the frequency ranges
with a high density of modes, the latters have the tendency to show localized patterns.
Conversely, in the frequency ranges with a low density of modes, the latters show diffuse
patterns: especially in the high frequency regime, quasi-crystalline structures do not give220

rise to localized modes, but more surprisingly to a PR ≈ 0.6 close to that of extended
plane waves. It can finally be noticed a higher concentration of modes around certain
frequencies, notably in the high frequency range, which results in waviness of the VDOS.
In order to apprehend how the quasi-periodic tiling vibrates, it can be interesting to look
at several modes on specific domain of the frequency range. Several modes are plotted for225

Kv
Ku

= 0.01 (see Supplementary Material for all the modes). Figures 13 and 14 show highly
structured modes where the vibration is localized on a star shaped structure as in Figure 17.
These modes, localized on stars, are involved repeatedly in the two regions where the PR
decreases. These modes are localized on specific patterns of the lattice. Figure 16 shows
that, in the second decaying region of the PR, another kind of localized modes appears as230

well: they involve a thin but extended crowned of vibrations. This kind of localization is
very surprising and specific of quasi-crystals: it shows large scale vibrations in the high
frequency regime. Finally, a complete set of structures with various sizes is excited along
the modes and disordered patterns can also be found as in Figure 15 in a frenquency range
where the PR is higher.235

In order to test the hypothesis of isolated vibrations of specific patterns in the low fre-
quency regime, that would be decorrelated from the overall environment, the star structure
has been isolated and its own vibrational modes have been studied with fixed boundary con-
ditions. In Figure 18 and 19 the VDOS of the star is compared to the frequency dependence
of the PR of the 4th approximant for two ratios Kv

Ku
. In both cases, the frequency for which240

this structure plays a predominant role in the vibrations of the whole structure - as charac-
terized by the marked local minimum in the PR - corresponds to the frequency range of a
peak of the VDOS - especially of volume preserving modes VDOST - for the isolated star.
This might be the cause of the waviness of the VDOS: the vibrational modes concentrate
around the frequencies that excite particular sub-structures. This response again is specific245

of quasi-crystals, since it shows evidences of the resonant vibrations of isolated structures,
even in the low-frequency regime (isolated soft resonators). In this low-frequency range,
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extended vibrations are expected in crystals. These specific resonant vibrations however do
not correlate with a band gap.

For Kv
Ku

= 2, an additional gap is observed in the VDOS Figure 12 meaning that increas-250

ing the bending stiffness strongly impacts the vibrational behavior of the quasi-periodic
lattice, namely by creating additional band gaps. The evolution of those gaps is also ob-
served thanks to the DSF shown in Figures 20 and 21. The maxima of DSF intensity allow
a quick visualization of the dispersion law, but in the case of a quasi-crystal, a given fre-
quency ω does not correspond to a single wave-vector q. Those figures exhibit classical255

dispersion relations for quasi-periodic structure as it can be found in [37, 1, 5] for 1D or
2D quasi-periodic lattices. We can observe for example pseudo Bernoulli zones overlap-
ping and repeating at quasi-periodic periods. But an additional gap is visible in Fig. 21 for
Kv/Ku = 2, as can be seen from the extinction of the DSF close to ω≈ 4. This large gap is
visible in the dispersion law shown in Figure 21 especially for longitudinal modes.260

6. Conclusion

The vibrational properties of periodic and quasi-periodic beam lattices were studied in
this paper, as a function of the ratio between bending and tensile stiffness of the beams.
The Vibrational Density of States, Participation Ratio and Dynamical Structure Factors for
longitudinal as well as for transverse waves have been investigated for different ratios of265

bending over tensile stiffness. This ratio appears to be a driving parameter for large band
gaps to occur and is related to an enhanced separation between in-phase tensile modes
and out-of-phase bending vibrations. It is interesting to note that, contrary to the periodic
lattice which has anisotropic effective behavior for elasticity and for wave propagation, the
Quasi-periodic beam structure, that has a higher level of material symmetry, is an apparent270

isotropic metamaterial. This was already discussed in [38, 39]. The creation of band gaps
in the numerical simulations of the Quasi-periodi structure is thus the manifestation of
a structural intrinsic property scaling with Kv/Ku. Then even if the band gaps are only
reached here with unrealistic geometries in terms of beam slenderness assuming square
cross section, it might be possible to obtain band gaps by adjusting other parameters of275

the structure (mass distribution, viscosity, etc ) chosen with the same goal of frequency
separation between in-phase tensile and out-of-phase bending modes. Finally, the position
of the gap scales with

√
Ku/m =

√
E/ρL2 that depends on the size as well as on the

material properties of the elementary beams.
Some low-frequency modes of the quasi-periodic lattice seems to be controlled by sub-280

structures of the lattice: indeed, the frequencies of these modes in the quasi-crystal corre-
spond exactly to the frequency of the isolated local structure that appears repeatedly in the
vibration modes. Conversely, high-frequency localized modes in the quasi-crystal involve
large scale linear structures, suggesting the possibility to isolate large-scale and highly
symmetric connected paths in the quasy-cristal. These resonant isolated structures are not285

sufficient to induce additional band gaps. A way to select the vibration modes by the type
of structure they excite, eventually by reinfocing locally specific structures with additional
masses, could allow revealing new patterns in PR, VDOS or DSF. For instance, it could be
interesting to study more accurately and systematically the non-trivial hierarchy of sizes
of the excited structures depending on the frequency of the modes they appear in, since290

it could have additional consequences as well on the transportation of wave packets with
different wavelengths, and thus on acoustic signal processing.
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Figures

Figure 1: Representation of an isolated beam, and of its degrees of freedom.
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Figure 2: 4th approximant of Octagonal quasi-periodic tiling beam structure.
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Figure 3: 50×50 square beam structure.
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(a)

(b)

(c)

Figure 4: Analytical dispersion relation ωadim(qx,qy) for an infinite Square lattice with (a) Kv
Ku

= 0.01 (b) Kv
Ku

= 0.5

(c) Kv
Ku

= 2.
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Figure 5: Analytical band gap for an infinite square lattice in function of Kv
Ku

.

Figure 6: VDOS for the 5×5, 10×10 and 20×20 square lattice with Kv
Ku

= 0.5. VDOSL in the longitudinal VDOS
and VDOST is the transverse VDOS, as discussed in the text.
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(a)

(b)

Figure 7: (a) Complete, longitudinal and transverse VDOS and (b) PR for the 50×50 square lattice with Kv
Ku

= 0.01.
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(a)

(b)

Figure 8: (a) Complete, longitudinal and transverse VDOS and (b) PR for the 50×50 square lattice with Kv
Ku

= 0.5.
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(a)

(b)

Figure 9: (a) Complete, longitudinal and transverse VDOS and (b) PR for the 50×50 square lattice with Kv
Ku

= 2.
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(a)

(b)

Figure 10: (a) Complete, longitudinal and transverse VDOS and (b) PR for the 4th approximant of the Octagonal
Quasi-periodic tiling beam structure with Kv

Ku
= 0.01.
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(a)

(b)

Figure 11: (a) Complete, lngitudinal and transverse VDOS and (b) PR for the 4th approximant of the Octagonal
Quasi-periodic tiling beam structure with Kv

Ku
= 0.5.
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(a)

(b)

Figure 12: (a) Complete, longitudinal and transverse VDOS and (b) PR for the 4th approximant of the Octagonal
Quasi-periodic tiling beam structure lattice with Kv

Ku
= 2.
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(a)

(b)

Figure 13: (a) Deformed lattice and (b) PR for the 4th approximant of the Octagonal Quasi-periodic tiling beam
structure with Kv

Ku
= 0.01. The full PR is in blue, and the red circle indicates the PR and the frequency of the

1387th mode shown above.
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(a)

(b)

Figure 14: (a) Deformed lattice and (b) PR for the 4th approximant of the Octagonal Quasi-periodic tiling beam
structure with Kv

Ku
= 0.01. The full PR is in blue, and the red circle indicates the PR and the frequency of the

3836th mode shown above.
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(a)

(b)

Figure 15: (a) Deformed lattice and (b) PR for the 4th approximant of the Octagonal Quasi-periodic tiling beam
structure with Kv

Ku
= 0.01. The full PR is in blue, and the red circle indicates the PR and the frequency of the 693rd

mode shown above.
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(a)

(b)

Figure 16: (a) Deformed lattice and (b) PR for the 4th approximant of the Octagonal Quasi-periodic tiling beam
structure with Kv

Ku
= 0.01. The full PR is in blue, and the red circle indicates the PR and the frequency of the

3801rst mode shown above.
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Figure 17: Star structure.

(a)

(b)

Figure 18: (a) PR and (b) complete, longitudinal and transverse VDOS of the isolated star, for the 4th approximant
of the Octagonal Quasi-periodic tiling beam structure with Kv

Ku
= 0.01.
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(a)

(b)

Figure 19: (a) PR and (b) complete, longitudinal and transverse VDOS of the isolated star, for the 4th approximant
of the Octagonal Quasi-periodic tiling beam structure with Kv

Ku
= 2.
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(a) (b)

Figure 20: (a) Log of longitudinal DSF and (b) Log of transverse DSF for the 4th approximant of the Octagonal
Quasi-periodic tiling beam structure with Kv

Ku
= 0.5.
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(a) (b)

Figure 21: (a) Log of longitudinal DSF and (b) Log of transverse DSF for the 4th approximant of the Octagonal
Quasi-periodic tiling beam structure with Kv

Ku
= 2.
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