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ON THE AUTOMORPHISMS OF HYPERPLANE SECTIONS

OF GENERALIZED GRASSMANNIANS

VLADIMIRO BENEDETTI AND LAURENT MANIVEL

Abstract. Given a smooth hyperplane section H of a rational homogeneous

space G/P with Picard number one, we address the question whether it is
always possible to lift an automorphism of H to the Lie group G, or more

precisely to Aut(G/P ). Using linear spaces and quadrics in H, we show that

the answer is positive up to a few well understood exceptions related to Jordan
algebras. When G/P is an adjoint variety, we show how to describe Aut(H)

completely, extending results obtained by Prokhorov and Zaidenberg when G
is the exceptional group G2.

1. Introduction

In complex projective geometry, rational homogeneous spaces and their linear
sections are an important source of easily available Fano manifolds. Already in
dimension three they play a major role in the Fano-Iskovskikh classification of prime
Fano threefolds [IP99]. In genus seven to ten these are indeed linear sections of
certain specific generalized Grassmannians (rational homogeneous spaces of Picard
number one).

In the study of such families of linear sections, a natural problem is to understand
the automorphism groups. Since we start with highly symmetric varieties, these
groups will remain big in low codimension. Describing the generic automorphism
group of the family can already be challenging [DM21], but these groups can in fact
vary in quite intriguing, somewhat erratic ways. Interesting phenomena have been
observed in connection with the existence problem for Kähler-Einstein metrics, or
with rigidity questions [FH12, BFM18]. For Mukai fourfolds of genus 10, a complete
treatment was recently given in [PZ18, PZ21], where it is proved that exactly four
types of automorphism groups can occur for hyperplane sections of the adjoint
variety of type G2, a very interesting generalized Grassmannian of dimension five
and index three.

For these hyperplane sections, a nice argument due to Mukai [Mu89], and based
on the special properties of K3 surfaces, implies that any automorphism can be
lifted to G2, which essentially reduces the problem to a Lie theoretic question. In
[PZ18], the authors asked about the same question for a smooth hyperplane section
of an arbitrary generalized Grassmannian G/P : is it true that any element of the
connected component of the automorphism group can be lifted to G? Actually
one can also ask: when is it true that any element of the automorphism group can
be lifted to G? The first goal of this paper is to give a complete answer to both
questions.

Theorem 1.1. Let H be a smooth hyperplane section of a generalized Grass-
mannian X = G/P with respect to its minimal G-equivariant embedding. Any
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automorphism of H in Aut0(H) can be extended to an automorphism of X, i.e.
Aut0(H) ⊂ Aut(X). This is true for any automorphism of H as well, except pos-
sibly when X is already a hyperplane section of another generalized Grassmannian.

Apart from the trivial cases of projective spaces and quadrics, the latter situa-
tion occurs exactly when X = F4/P4, or when X = IG(2, 2n) is a Grassmannian of
isotropic planes with respect to some symplectic form. We give a complete treat-
ment of these varieties, which have interesting connections with Jordan algebras
and are also known as coadjoint (but not adjoint) varieties. To give a sample of our
results, we prove that for H a smooth hyperplane section of IG(2, 2n), the com-
ponent group of Aut(H) can be an icosahedral group when n is any even number
such that n > 10 and

n = 0, 2, 12, 20, 30, 32, 42, 50 modulo 60.

Moreover, when this happens, there exist some automorphisms of H that cannot
be lifted to the symplectic group G = Sp2n (we refer to Theorem 7.6, the remark
following it and Proposition 7.7 for more precise statements).

Our methods are heavily based on the study of linear spaces and quadrics of high
dimension contained in G/P and its hyperplane sections. Of course this natural
approach has been used before in closely related context, see for example [Mi07] and
more recently [KPS18], where lines and conics are considered systematically. In our
set-up the interest of rather considering linear spaces and quadrics of maximal or
submaximal dimension (that is, maximal minus one) stems from the useful Property
we denoted (UE). This is simply the fact, not always but very often verified in our
setting, that linear spaces and quadrics of submaximal dimension admit a unique
extension to maximal dimension. Once this property is established, the lifting
property for automorphisms of smooth hyperplane sections is in most cases easily
confirmed.

An important issue in the study of their automorphisms is that in general we
are not able to describe the open set parametrizing smooth hyperplane sections
of G/P , or equivalently the complement to this open set, which is the projective
dual to G/P (see [Te05] for an overview of what is known on this question). A
remarkable exception is when G/P is the adjoint variety of the simple Lie alge-
bra g = Lie(G), that is, the closed G-orbit inside P(g) (or the projectivization of
the minimal nontrivial nilpotent orbit). Then an equation of the projective dual
was obtained by Tevelev [Te05], which for G simply laced implies that the smooth
hyperplane sections are exactly those that are defined by regular semisimple ele-
ments; while the situation is richer, and more complicated, for G non simply laced
(typically for the aforementioned case of G2). We give a complete treatment of this
case and describe all the possible automorphism groups of the smooth hyperplane
sections. The main result is the following, where R denotes the root system of g.

Theorem 1.2. Let Hx be a smooth hyperplane section of the adjoint variety of
g, defined by the hyperplane Killing-orthogonal to x ∈ g. Let x = xs + xn be the
Jordan decomposition of x, where the semisimple part xs can be supposed to belong
to a fixed Cartan subalgebra h of g. Then there exists a subroot system R⊥ of R,
depending on x, of corank at most two, with Weyl group W⊥, such that

Aut(Hx)/N0
G([x]) = StabW⊥([xs]) oDx,
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where Dx is contained inside the outer automorphism group Out(R⊥) and is iso-
morphic either to 1,Z2 or S3.

Here N0
G([x]) denotes the connected component of the normalizer in G of the

line [x] and can easily be described; in most cases this is just a maximal torus.
With respect to R⊥, xs is always regular and the stabilizer StabW⊥([xs]) can be
deduced from classical results of Springer [Sp74]. Even if we restrict to x regular
semisimple, it turns out that the finite part of the automorphism group can vary
in a rather subtle way. For a complete description of the possible automorphism
groups of hyperplane sections of adjoint varieties, we refer to Table 6.

Finally, let us point out that the last two classes of hyperplane sections (related
to Jordan algebras or contained in adjoint varieties) constitute an interesting testing
ground for Dubrovin’s conjecture in mirror symmetry, which is now known to be
true for many rational homogeneous spaces but not much beyond that. Indeed, the
fact that these hyperplane sections have a big automorphism group (and admit in
particular an action of a big torus) allows us to use equivariant and localization
techniques in order to understand their cohomology. A recent attempt to test
Dubrovin’s conjecture, starting from the (quantum) cohomology side, can be found
in [BP21].

Acknowledgements. We would like to thank Mikhail Zaidenberg for his useful com-
ments on a preliminary version of the paper. We would also like to express our
gratitude to Alexander Kuznetsov for his careful and insightful reading, which led
to significant improvements.

We acknowledge support from the ANR project FanoHK, grant ANR-20-CE40-
0023.

2. Preliminaries

In this section we recall a few basic facts about generalized Grassmannians and
their linear spaces, mostly extracted from [LM03]. First recall that simple complex
Lie algebras are classified by (connected) Dynkin diagrams, whose nodes we number
as in [Bo68]. Simple Lie algebras can be upgraded to simple Lie groups, whose
actions on projective varieties are of interest. The following definition is classical.

Definition 2.1. A generalized Grassmannian is a rational complex projective ho-
mogeneous variety with Picard number one.

Another classical fact is that generalized Grassmannians are classified by Dynkin
diagrams with one marked node. This has to be taken with a grain of salt: a gener-
alized Grassmannian can always be described as X = G/P , where P is a maximal
parabolic subgroup of a simple Lie group G; then P can be defined (uniquely, up
to conjugation) by the choice of a node on the Dynkin diagram of Lie(G). However
it sometimes happens (in the exceptional cases, according to the slightly confusing
terminology used in [De77]) that X = G′/P ′ with Lie(G′) 6= Lie(G). In order to
avoid such inconveniences, we will always suppose that G coincides with Aut(X),
at least up to a finite group.

By the way note that Aut(X) can be described explicitly. Recall that Aut(G), say
for G adjoint, contains G as the normal subgroup of inner automorphisms, while
Out(G) = Aut(G)/G can be identified with the symmetry group of the Dynkin
diagram. The following extension is due to Demazure [De77, Proposition 1]; it
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holds for any complex projective rational homogeneous variety (the corresponding
result for the connected group of automorphisms was already contained in [On62]).

Theorem 2.2. Suppose that X = G/P is not isomorphic to any G′/P ′ with Lie(G′)
bigger than Lie(G). Then

Aut(X) = Aut(G,X) ⊂ Aut(G)

is the preimage of the subgroup of Out(G) acting on the Dynkin diagram by fixing
the nodes that define X.

As we have seen, nodes of Dynkin diagrams are (essentially) in correspondence
with generalized Grassmannians. More classically, they are also in correspondence
with simple roots, which are either all of the same length (in the ADE, or simply
laced types), or of two possible lengths (in the BCFG types). We will therefore
distinguish generalized Grassmannians of long (including all the simply laced cases)
or short type.

When one is interested in linear spaces, as we will be in the sequel, this makes an
essential difference. Indeed, recall that any generalized Grassmannian X = G/P
admits a minimal G-equivariant embedding (defined by the ample generator of its
Picard group, and generalizing the Plücker embedding of an ordinary Grassman-
nian) inside the projectivization P(V ) of a simple (even fundamental) G-module.
We can therefore consider linear subspaces with respect to this minimal embedding.
The following two statements, with more details, can be found in [LM03].

Theorem 2.3. Projective lines in a generalized Grassmannian of long type X =
G/P are parametrized by a G-homogeneous variety. When X = G/P is a general-
ized Grassmannian of short type, the variety of projective lines contained in it has
two G-orbits.

In the long case, one can push the analysis further and describe all the linear
spaces. Recall first that Pn = SLn+1 /P is defined, as a generalized Grassmannian,
by a Dynkin diagram An marked by one of its extremal nodes. Inside the marked
Dynkin diagram defining G/P , one can cut out such a diagram by erasing some
finite set S of nodes, which in turn defines a parabolic subgroup PS of G. Tits’
theory of shadows implies that G/PS parametrizes a family of Pn’s on G/P .

Let us recall the general construction of shadows in [Ti56]. Consider a set S′ of
nodes, disjoint from S, and denote by D′ the subdiagram of D from which the nodes
of S′ have been erased (as well as the edges connecting them to other nodes). The
variety G/PS∪S′ projects to both G/PS and G/PS′ . The fibers of the projection
G/PS∪S′ → G/PS are encoded in the Dynkin diagram: they are homogeneous
varieties H/QS′ , where H is a semisimple Lie group with Dynkin diagram D′, and
QS′ ⊂ H is a parabolic subgroup defined by S′ ⊂ D′. Thus, G/PS parametrizes a
family of subvarieties of G/PS′ which are isomorphic to H/QS′ .

Theorem 2.4. In the long case, the copies of Pn inside the generalized Grassman-
nian X = G/P are parametrized by a finite union, that we denote HilbPn(G/P ),
of G-homogeneous varieties G/PS, where S is such that its complement inside the
marked Dynkin diagram of X contains the marked Dynkin diagram of Pn as a
connected component.
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Throughout the paper, for an embedded projective variety T ⊂ PN , we use
the (sloppy) notation HilbPn(T ) for the closed subvariety of the Grassmannian
parametrizing copies of Pn linearly embedded in T .

Example. Let us illustrate this procedure for the so called Cayley plane X = E6/P1.
Applying the previous recipe we get

HilbP1(X) = E6/P3, HilbP2(X) = E6/P4, HilbP3(X) = E6/P2,4,
HilbP4(X) = E6/P5 ∪ E6/P2,6, HilbP5(X) = E6/P2, HilbP6(X) = ∅.

This can be checked by chasing the marked subdiagrams of type (An, α1) inside
(E6, α1) (αi being the ith simple root of the corresponding Dynkin diagram in
Bourbaki’s convention), which are the following ones:

◦ ◦ ◦ ◦

◦

• ◦ ◦ ◦ ◦

◦

• ◦ ◦ ◦ ◦

◦

•• • •

•

◦ ◦ ◦ ◦

◦

• ◦ ◦ ◦ ◦

◦

• ◦ ◦ ◦ ◦

◦

•• •

• •

The nodes defining the parameter space in each case have been marked in blue.

The short case is more complicated and a uniform description is lacking. Note
that in type B there is only one short classical Grassmannian, the orthogonal
Grassmannian OG(n, 2n + 1) = SO2n+1 /Pn; in fact this is one of the exceptional
cases in the sense of Demazure, since it is isomorphic to a spinor variety, that is,
one of the two connected components of OG(n + 1, 2n + 2), which in turn is a
generalized Grassmannian of type Dn+1. In type G2 there are only two generalized
Grassmannians, both of dimension five; one of them is actually a quadric, and the
other one is of long type.

So we really remain only with the generalized Grassmannians in type C, that is
the symplectic Grassmannians IG(k, 2n), which are of short type for k < n; and
the two generalized Grassmannians of short type for F4, namely F4/P3 and F4/P4.

3. General strategy

3.1. Long roots. Consider a generalized Grassmannian G/P ⊂ P(V ) of long type
(in particular, not exceptional in the sense of Demazure). Let Hx be a smooth
hyperplane section defined by x ∈ V ∨, x 6= 0. By the Lefschetz theorem, if
dim(G/P ) > 3, we know that Hx has also Picard number one, and therefore every
automorphism is linear. We would like to be able to extend any such automorphism
to an automorphism of G/P fixing [x]. Our strategy will be the following.

Suppose first that we are in the most favourable situation, where

HilbPm(G/P ) = G/Q and HilbPm−1(G/P ) = G/R

are both G-homogeneous (in general, we only know that each connected component
is G-homogeneous). Suppose moreover that Property (UE) holds, in the sense that
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each Pm−1 contained in G/P can be extended to a unique Pm (we will soon give a
slightly more general definition). Then consider the nested variety

Zx := {(Pm−1, Pm) ∈ HilbPm−1(Hx)×HilbPm(G/P ) | Pm−1 ⊂ Pm}.
By Property (UE), the projection p of Zx to HilbPm−1(Hx) is an isomorphism.
Moreover, the projection q from Z to HilbPm(G/P ) is birational, since more pre-
cisely it is an isomorphism outside HilbPm(Hx), over which the fibers are copies of
Pm. Since being contained in a hyperplane gives m + 1 conditions on a Pm, the
expected codimension of HilbPm(Hx) is m + 1. By [ES89, Theorem 1.1], we can
deduce the following statement.

Proposition 3.1. In the previous setting, where Property (UE) does hold, suppose
that HilbPm(Hx) ⊂ HilbPm(G/P ) is smooth and irreducible, of the expected codi-
mension. Suppose also that HilbPm−1(Hx) is smooth. Then it coincides with the
blowup of HilbPm(G/P ) along HilbPm(Hx).

This is certainly the generic situation. In case this holds true, any automorphism
f of Hx extends to an automorphism of HilbPm−1(Hx), hence to a birational auto-
morphism f∗ of HilbPm(G/P ). But it also extends to a birational automorphism
of the exceptional locus HilbPm(Hx). So f∗ extends continuously to a bijection of
HilbPm(G/P ). By Zariski’s main theorem, f∗ is thus actually a regular automor-
phism of HilbPm(G/P ) = G/Q, hence an element of Aut(G/Q), which is essentially
G by Theorem 2.2. We thus get an extension of f , as desired.

There might be several unfortunate circumstances that will oblige us, in some
cases, to be more careful.

First, we do not know if HilbPm(Hx) and HilbPm−1(Hx) are necessarily smooth
when Hx is, and we prefer to avoid this rather delicate question. Note that in
the previous argument this smoothness hypothesis doesn’t play any serious role:
under the hypothesis that Property (UE) holds, an automorphism f of Hx always
induces a birational automorphism of HilbPm(G/P ), and also an automorphism of
the exceptional locus HilbPm(Hx). Be it smooth or not, Zariski’s main theorem
applies.

Another possible complication could be that HilbPm(G/P ) has several compo-
nents. Clearly we just need one with the required properties to make the previous
argument work. So we define Property (UE), in general, as follows.

Definition 3.2. We say that the generalized Grassmannian G/P has Property
(UE) if HilbPm(G/P ) has a component G/Q such that for each Pm−1 in G/P that
can be extended to some Pm from G/Q, this Pm is unique.

We wil discuss later on in which cases this property does hold.

There may also be some subtleties related to the existence of non-extendable
Pm−1’s. Suppose for simplicity that

HilbPm−1(G/P ) = G/R ∪G/S
where we distinguish the linear spaces parametrized by G/R that extend to one
dimension bigger, from those parametrized by G/S that do not extend. In this
situation, HilbPm−1(Hx) will a priori also be disconnected, being the union of Ex ⊂
G/R and Nx ⊂ G/S. An automorphism f of Hx being given, we would be unable
to induce a birational automorphism of HilbPm(G/P ) if f∗ could send Ex to Nx.
In order to exclude this, we observe that Ex always contains the set of Pm−1’s
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in Hx that can be extended to a Pm that is also contained in Hx. This set is a
Pm-bundle over HilbPm(Hx), and must be preserved by f∗. So if HilbPm(Hx) is not
empty, we are safe. More precisely, what we need to check is the non-emptyness of
the intersection of HilbPm(Hx) with the component G/Q of HilbPm(G/P ) used in
Property (UE).

Note that by semi-continuity, it is enough to establish this non emptyness when
x is generic. Being contained in Hx, for the linear spaces parametrized by G/Q,
is equivalent to the vanishing of a section of an irreducible homogeneous vector
bundle. We therefore have several classical tools in hand that will allow to treat
this question. This will be done in Section 6. Moreover we will check in Section 3.3
that the same approach works pretty well in the short root case.

Finally, we will need a different approach when Property (UE) does not hold in
G/P . In these few such cases, we will use the same circle of ideas but with quadrics
instead of linear spaces. This will be discussed in Section 4.

3.2. The Unique Extension property. Let us discuss when Property (UE) holds
in the long case.

Proposition 3.3. Let X = G/P be a Grassmannian of long type, of dimension
bigger than three. Then

(1) m > 1 if and only if X is neither a Lagrangian Grassmannian IG(n, 2n),
nor the adjoint variety G2/P1.

(2) Property (UE) holds if and only if X is neither an orthogonal Grassmannian
Bn/Pk = OG(k, 2n+ 1) with k ≤ n− k, nor F4/P1.

Proof. Both statements are simple consequences of the Dynkin diagram descriptions
of the linear spaces on generalized Grassmannians. Indeed, m = 1 would mean that
the marked Dynkin diagram defining X does not contain any marked diagram of
type A2. This is only possible if the node is extremal and bounded by a multiple
edge, hence the first claim.

For the second claim, observe that the components of HilbPm−1(G/P ) parametriz-
ing extendable linear subspaces are in correspondence with marked subdiagrams of
type Am−1 contained in marked subdiagrams of type Am. Suppose that such a di-
agram A of type Am is obtained by erasing a set S of nodes in the Dynkin diagram
D of Lie(G). Since m is maximal, the unmarked extremal node e of A must be an
extremal node of D, or be connected to another node by a multiple edge; but the
latter possibility is excluded if X is neither of type B nor F4/P1.

If we suppose that X is neither of type B nor F4/P1, we can therefore conclude
that the corresponding diagram A′ of type Am−1 is obtained by erasing S ∪ {e}.
Then the parameter spaces for the corresponding families of Pm’s and Pm−1’s are
G/PS and G/PS∪{e}, and the canonical projection morphism G/PS∪{e} −→ G/PS
defines the canonical extension map we need for Property (UE) to hold. Indeed,
the variety parametrizing pairs (Pm−1 ⊂ Pm) in G/P is a Pm-bundle over G/PS as
well as HilbPm−1(G/P ) = G/PS∪{e}, and the canonical extension map provides an
inverse to the obvious projection from the former to the latter.

Let us now deal with the case when X is of type B. Note that in an orthogonal
Grassmannian OG(k, 2n+ 1) of type B, which is long for k < n, projective spaces
are either of the form {Vl ⊂ U ⊂ Vk+1}, with Vk+1 isotropic, or of the form
{Vk−1 ⊂ U ⊂ Vl} with Vl isotropic of dimension l > k. This implies that m =
max(k, n − k). For k ≤ n − k, we get Pm−1’s in OG(k, 2n + 1) parametrized by
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the isotropic flag manifold OFl(k − 1, n− 1, 2n+ 1). Moreover, given such a Pm−1

defined by a pair Vk−1 ⊂ Vn−1, it is contained in a Pm defined by a pair Uk−1 ⊂ Un
if and only if Uk−1 = Vk−1 and Un ⊃ Vn−1. Such isotropic spaces of dimension n
are parametrized by the associated conic in P(V ⊥n−1/Vn−1), showing that Property
(UE) does not hold. For k > n − k, the extendable Pm−1’s are defined by a pair
V1 ⊂ Vk+1, and they are uniquely extendable; so Property (UE) does hold in this
range.

For F4/P1, we know that HilbP1(F4/P1) = F4/P2 and HilbP2(F4/P1) = F4/P3

both have dimension 20. The incidence variety of pairs of planes and lines in them
is thus a P2-fibration above both of them. In particular Property (UE) does not
hold. �

3.3. Short roots. For the short cases, that is in types CFG (recall that type B
reduces to type D), our strategy does apply in many cases. In fact, although the
space of lines in a generalized Grassmannian of short type is not homogeneous,
it appears that its varieties of linear spaces of maximal and almost maximal di-
mensions are homogeneous in most cases. We will leave aside the case of G2 since
G2/P2 is just a five dimensional quadric.

3.3.1. Type C. For G of type C and P a maximal parabolic subgroup corresponding
to a short simple root, G/P is an isotropic Grassmannian IG(k, 2n), with 2 ≤ k < n
(we exclude k = 1, which is exceptional in the sense of Demazure since we just get
a projective space). We discuss those explicitly.

Lemma 3.4. The maximal dimension of a linear space in G/P = IG(k, 2n), with
k < n, is m = max(k, 2n − 2k + 1). Linear spaces of maximal dimension are
parametrized by HilbPm(G/P ) which is IG(k−1, 2n) when k ≤ 2n−2k, IG(k+1, 2n)
when k > 2n− 2k + 1, and their union when k = 2n− 2k + 1.

Moreover Property (UE) does hold.

Proof. Recall that a linear space in an ordinary Grassmannian G(k, 2n) is necessar-
ily obtained as the set of spaces U ⊂ Cn such that Vi ⊂ U ⊂ Vj , where Vi ⊂ Vj are
fixed and either j = k+1 or i = k−1. In the former case, we get a projective space
contained in IG(k, 2n) when Vj = Vk+1 is isotropic, and its dimension is k − i ≤ k.
In the latter case, we need Vi = Vk−1 to be isotropic and Vj to be contained in V ⊥i ,
and the dimension is j − k ≤ 2n− 2k + 1. The first claim easily follows.

In order to prove that Property (UE) holds, just observe that extendable Pm−1

are either of the form V1 ⊂ U ⊂ Vk+1 or Vk−1 ⊂ U ⊂ V2n−k ⊂ V ⊥k−1, and they
clearly are uniquely extendable. �

As a consequence, in all cases 2 < k < n our general strategy will work. Beware
that for k = 2 there is a problem since IG(1, 2n) = P2n−1 has bigger automorphism
group than the symplectic group! This case will be considered in greater detail in
section 7.

3.3.2. Remaining cases. At this point we have checked that our general strategy
works fine except for the following generalized Grassmannians:

• in the long case, OG(k, 2n+ 1) for k ≤ n− k, IG(n, 2n) and F4/P1;
• in the short case, IG(2, 2n) and F4/P3, F4/P4.
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The cases of IG(n, 2n) and F4/P1 will be dealt with in the next section by replacing
linear spaces with quadrics. The cases of IG(2, 2n), F4/P3 and F4/P4 will be
discussed later and turn out to display some very special features.

4. Playing with quadrics

Let G/P be a generalized Grassmannian, and let l be the maximal dimension of
quadrics that are contained inside G/P .

Definition 4.1. We say that the generalized Grassmannian G/P has Property
(UE) for quadrics if HilbQl(G/P ) has a component G/Q such that for each Ql−1

(possibly singular) in G/P that can be extended to some Ql from G/Q, this Ql is
unique.

4.1. Type B: the orthogonal Grassmannians OG(k, 2n+1), k ≤ n−k. Recall
that quadrics in a Grassmannian are linear sections of copies of G(2, 4) (which
we will refer to as type 0) quadrics), unless their linear span is contained in the
Grassmannian. The latter kind of quadrics can be subdivided into two classes:

I) Quadrics of subspaces Vk ⊂ V2n+1 containing a fixed Vk−1 and contained in-
side a fixed Vj . For this quadric to be non-empty inside OG(k, 2n+1), Vk−1

must be isotropic and Vj ⊂ V ⊥k−1. Then the quadric Qj−k−1 ⊂ P(Vj/Vk−1)
defined by restricting the quadratic form of SO2n+1 to P(Vj/Vk−1) is con-
tained inside OG(k, 2n+ 1).

II) Quadrics of subspaces Vk ⊂ V2n+1 containing a fixed Vi and contained
inside a fixed Vk+1. These quadrics, when they exist, are thus contained
inside P(Vk+1/Vi) and their dimension is equal to k − i− 1.

The maximal dimension of quadrics of type II is k−1, while the maximal dimension
of quadrics of type I is 2n−2k+1. As a consequence, under the hypothesis k ≤ n−k,
maximal and submaximal quadrics inside OG(k, 2n + 1) are of type I (note that
linear sections of copies of G(2, 4) are never maximal or submaximal unless k = 1
or n = 4 and k = 2, in which case they are submaximal but not extendable).
Moreover, submaximal quadrics of type I (parametrized by a flag Vk−1 ⊂ V2n−k+1)
are uniquely extendable (to the maximal quadric defined by the flag Vk−1 ⊂ V ⊥k−1).
Thus Property (UE) holds for quadrics in OG(k, 2n + 1) for k ≤ n − k and the
general strategy applies for these varieties.

Remark 4.2. Note that maximal quadrics inside OG(k, 2n+1) when k ≤ n−k are
parametrized by the homogeneous variety OG(k−1, 2n+1), as expected from the the-
ory of Tits shadows. Indeed, erasing the k−1-th simple root from the marked Dynkin
diagram of OG(k, 2n + 1), one obtains the marked Dynkin diagram of Q2n−2k+1.
Thus, the projection from the incidence flag variety OFl(k−1, k, 2n+1) to OG(k−
1, 2n+ 1) has fibers isomorphic to Q2n−2k+1, showing that OG(k− 1, 2n+ 1) is the
parameter space of a family of quadrics of dimension 2n− 2k + 1 contained inside
OG(k, 2n+ 1).

4.2. Type C: the Lagrangian Grassmannian IG(n, 2n). Inside IG(n, 2n) there
are no quadrics whose linear span is contained in the Grassmannian. Therefore a
quadric in IG(n, 2n) must be a linear section of a set of n-planes U such that
Vn−2 ⊂ U ⊂ Vn+2 for some fixed Vn−2 ⊂ Vn+2. For this set to meet IG(n, 2n) non
trivially, we need Vn−2 to be isotropic. Since each U in the intersection will be
contained in V ⊥n−2, we can replace Vn+2 by Vn+2 ∩ V ⊥n−2; but if this intersection is
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a proper subspace Vn+2 our intersection is in fact linear. In other words we need
Vn+2 = V ⊥n−2 to get a quadric, and this quadric will be a linear section of a copy of
G(2, 4), i.e. IG(2, 4) ∼= Q3. This implies:

Lemma 4.3. The maximal dimension of a quadric in G/P = IG(n, 2n) is l = 3.
Moreover, HilbQ3(G/P ) = IG(n − 2, 2n), while HilbQ2(G/P ) is a P3-bundle over
IG(n− 2, 2n).

In particular Property (UE) works fine for quadrics, and our general strategy
applies verbatim when we replace linear spaces by quadrics.

4.3. Type F: the adjoint variety F4/P1. The Tits theory of shadows implies
that there exists a natural morphism

F4/P4 −→ HilbQ5(F4/P1),

as can be read on the following marked diagram:

◦ ◦ ◦• > •

We need a more precise statement.

Proposition 4.4. The maximal quadrics in F4/P1 have dimension 5, and

HilbQ5(F4/P1) ' F4/P4.

Proof. In order to prove those statements, we claim it is enough to check that a
plane in F4/P1 is contained only in a one-dimensional, irreducible family of five di-
mensional quadrics. Indeed, this will imply that the incidence variety parametrizing
pairs (P2 ⊂ Q5) in F4/P1 is irreducible of dimension 21 (recall that planes in F4/P1

are parametrized by F4/P3, whose dimension is 20). Since the projection map to
HilbQ5(F4/P1) has generic fibers isomorphic to OG(3, 7) ' Q6, we will deduce that
this space is irreducible of dimension 15. In particular it must be F4-homogeneous
and the morphism given by Tits shadows must be an isomorphism. Note that this
will also imply that there is no six-dimensional quadric Q in F4/P1, since any plane
in this quadric is contained in a family of hyperplane sections of Q of dimension
bigger than one. (Alternatively, hyperplane sections of six dimensional quadrics
could be smooth or singular, contradicting the homogeneity of the space of five
dimensional quadrics.)

In order to have a more concrete grasp on F4/P1, we shall use the classical Z2-
grading f4 = so9 ⊕ ∆. Here ∆ is the 16-dimensional spin representation, and the
closed orbit in P∆ is the orthogonal Grassmannian OG(4, 9), a spinor variety. One
way to characterize the adjoint variety in P(f4) is through its equations. Recall that
the ideal is generated by quadrics, that we are going to write down explicitly.

For this, observe that S2so9 = S2(∧2V9) maps to ∧4V9 which is an irreducible
so9-module, obtained as the Cartan square of the spin module ∆. In other words,
there exists a surjective equivariant map j : S2∆→ ∧4V9. Obviously this map must
be compatible with the two natural embeddings of the variety of maximal isotropic
spaces: for any pure spinor δ, representing an isotropic four-plane F , j(δ2) has to
represent F in the usual Plücker embedding, which means that j(δ2) must be a
generator of ∧4F .

Lemma 4.5. Consider X ∈ so9 and a nonzero δ ∈ ∆. Then X + δ belongs to the
cone over the adjoint variety F4/P1 if and only if
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• δ is a pure spinor, associated to some maximal isotropic subspace F of V9,
• X belongs to ∧2F ⊂ ∧2V9 ' so9,
• X ∧X = j(δ2) in ∧4F ⊂ ∧4V9.

For a fixed nonzero δ, the last equation defines a smooth quadric inside the pro-
jective space P(∧2F ⊕Cδ). So we get an open subset of F4/P1 (whose complement
is OG(2, 9)) as a bundle over the spinor variety OG(4, 9), with fiber Q5 minus a
smooth hyperplane section.

Proof. We denote by Vω the irreducible f4-module of highest weight ω, and by Wθ

the irreducible so9-module of highest weight θ. According to LiE,

S2f4 = V2ω1
⊕ V2ω4

⊕ C, S2Vω4
= V2ω4

⊕ Vω4
⊕ C.

From the first decomposition, we get that the quadratic equations of the adjoint
variety are given by V2ω4 ⊕ C. The second decomposition gives its restriction to
so9, starting from the restriction of Vω4 = Wω1 ⊕Wω4 ⊕C. Indeed we deduce that
V2ω4

⊕ C ' S2(Wω1
⊕Wω4

). Hence

I2(F4/P1) = (W2ω1
⊕ C)⊕ (Wω1+ω4

⊕Wω4
)⊕ (W2ω4

⊕Wω1
⊕ C).

Now we compare with the decomposition of S2f4 = S2(so9 ⊕Wω4
). We have

S2so9 = W2ω2 ⊕W2ω1 ⊕W2ω4 ⊕ C,

so9 ⊗Wω4
= Wω2+ω4 ⊕Wω1+ω4

⊕Wω4
,

S2Wω4
= W2ω4

⊕Wω1
⊕ C.

We can see that all the terms above that are not in bold do appear in the equations,
and that there is only one ambiguity for W2ω4

, which does appear twice, but only
once in the equations.

Let us analyze what these equations mean for X + δ ∈ Wω2 ⊕Wω4 . Note first
that since δ has to verify the equations coming from Wω1

⊕ C ⊂ S2Wω4
, it has to

be a pure spinor. Then the mixed equations from Wω1+ω4
,Wω4

⊂Wω2
⊗Wω4

mean
that the image of X ∧ δ ∈ ∧2V9 ⊗∆ by contraction to V9 ⊗∆ ∼= Wω1+ω4

⊕Wω4
is

zero. By homogeneity, if δ is a pure spinor we can let δ = 1 = δE , corresponding to
our preferred isotropic space E; it is then a straightforward computation that the
resulting condition is that X must belong to ∧2E. Finally, we need to take into
account the equations from W2ω4

, which appears both in S2so9 and S2Wω4
. We

can write down these equations in the form a(X ∧ X) = bj(δ2), for some scalars
(a, b) 6= (0, 0). Obviously a 6= 0, since otherwise δ would be forced to vanish. Also
b 6= 0, since otherwise X would belong to a cone over a Grassmannian and we
would get singularities. So we can normalize j (or X) so that our equations have
the required form. �

Now, let us choose a maximal isotropic space E in V9 and a line L ⊂ E. Then
Π = P(L ∧ E) is a projective plane in the adjoint variety of so9, hence also in
that of f4. Moreover there is a unique five-dimensional quadric QΠ in the adjoint
variety of so9 that contains Π, namely the variety parametrizing isotropic planes
that contain L. Let us look for the other quadrics Q containing Π. Obviously, a
three-dimensional space in the span of Q, containing Π, has to cut F4/P1 along the
union of two planes.
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Lemma 4.6. Consider a point [X + δF ] of F4/P1, where δF ∈ ∆ is a pure spinor
defining a maximal isotropic subspace F of V9, and X ∈ ∧2F with X ∧X = j(δ2).
Then 〈Π, X + δF 〉 meets F4/P1 along the union of Π and another plane if and only
if there exists a three-dimensional subspace M of V9, with L ⊂ M ⊂ E ∩ F , such
that X ∈ ∧2M + L ∧ F .

Proof. Consider e0 ∧ e + X + δF for e0 a generator of L and e a vector in E. By
Lemma 4.5 it belongs to the adjoint variety if and only if e0 ∧ e+X ∈ ∧2F , which
is equivalent to e0 ∧ e ∈ ∧2F , and X ∧ e0 ∧ e = 0. We want this condition to be
verified on a hyperplane in Π, and any such hyperplane is of the form P(L∧M) for
L ⊂M ⊂ E ∩ F . The claim follows. �

So let us consider a deformation Λ of the linear span of QΠ, namely L∧L⊥, made
of vectors verifying the previous property. Choose a complement N = 〈e2, e3, e4〉
to L = 〈e1〉 in E, and observe that Λ must be contained in ∧2N ⊕ L ∧ L⊥ ⊕ ∆.
Suppose that the projection of Λ to L∧L⊥ is an isomorphism, meaning that every
vector in Λ can uniquely be written as ω(v) + e1 ∧ v + δ(v) for some v ∈ L⊥/L.
When δ(v) 6= 0, it has to be a pure spinor defined by the four space F = 〈p, q, e1, v〉
with ω(v) = p∧q. Recall that a pure spinor δF associated to F is characterized (up
to scalar) by the property that f.δF = 0 for any f ∈ F . Using this, we compute
that if v = ae2 + be3 + ce4 + ze1 + a′f2 + b′f3 + c′f4, then

δ(v) = ∆(a′e134 + b′e142 + c′e123 + ze1234), ω(v) = Ω(a′e34 + b′e42 + c′e23)

for some constants ∆ and Ω. Finally, P(Λ) intersects F4/P1 along a quadric exactly
when j(δ(v)2) can equal e1∧ v∧ω(v) up to some prescribed constant, with yields a
condition Ω = t∆2 for some constant t 6= 0. We thus get a one-dimensional family
of quadrics, parametrized by ∆ ∈ C.

What are the missing quadrics? Their linear span must fail the transversality
property we started from, that is, they must meet ∧2N⊕∆ non trivially. Since this
must be true for any N ⊂ E, we conclude that in fact Λ must meet ∆ itself non
trivially, and then that the only possibility is that Λ = 〈∧2E, δE〉. This concludes
the proof. �

Note that as a consequence, the incidence variety parametrizing pairs (P2 ⊂ Q5)
in F4/P1 is actually F4/P3,4.

Proposition 4.7. Property (UE) holds for four dimensional quadrics in F4/P1.

Proof. It is enough to check that two distinct five dimensional quadrics Q and Q′

in F4/P1 meet in codimension bigger that one. But the maximal dimension for this
intersection must be obtained, by semi-continuity, when Q and Q′ are as ”close” as
possible one from the other (in the sense that the line that joins them belongs to
the minimal orbit in the space of lines), which means that the two corresponding
points q and q′ in F4/P4 are joined by a line, and even a special line. Since the
space of special lines in F4/P4 is in fact parametrized by F4/P3 = HilbP2(F4/P1),
this means that Q and Q′ are two of the quadrics we described in the proof of
the previous Lemma. We may for example suppose that their linear spans are
L∧L⊥ and 〈∧2E, δE〉, and we conclude that in fact Q∩Q′ = Π is just a projective
plane. �

We can therefore conclude that our general strategy also applies to F4/P1 when
we replace linear spaces by quadrics.
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Remark 4.8. Recall that F4 can be constructed by folding E6. From this perspec-
tive, Proposition 4.4 is a folded version of the similar statement for the adjoint
variety E6/P2 of e6, which should be

HilbQ6(E6/P2) ' E6/P1,6.

A map from the right hand side to the left hand side is provided by Tits shadows,
as can be read on the following marked diagram:

◦ ◦ ◦ ◦

•

• •

5. More on type F

In this section we discuss in more details the two most challenging generalized
Grassmannians, which from our perspective are F4/P4 and F4/P3.

5.1. F4/P4, the hyperplane section of the Cayley plane. Recall that F4/P4 is
a general hyperplane section of E6/P1, also known as the Cayley plane. Considering
Tits shadows, we see that there exists a family of (special) planes inside F4/P4

parametrized by F4/P2, but there are more.

Proposition 5.1. The space of maximal linear spaces inside F4/P4 is

HilbP5(F4/P4) = F4/P1.

Note that this statement is definitely not a consequence of the theory of Tits
shadows. But this is another instance of a phenomenon that we already observed in
generalized Grassmannians of short types: although the lines they contain are not
parametrized by homogeneous spaces, it happens to be the case for their maximal
linear spaces.

Proof. Recall that maximal linear spaces in E6/P1 are P5’s, parametrized by the
adjoint variety E6/P2. Those that are contained in F4/P4 are parametrized by a
codimension six subvariety of E6/P2. Since the latter has dimension 21, we must
get a F4-variety of dimension 15, hence one of the two generalized Grassmannians
of this dimension, because this is the minimal possible dimension for a projective
variety with a non trivial F4-action. Among those two, namely F4/P1 and F4/P4,
only the first one is embedded in E6/P2. Indeed, e6 decomposes as f4 ⊕ Vω4

as a
f4-module, where Vω4

is the 26-dimensional representation. So there is only one
way to embed F4/P4 inside P(e6), as the closed orbit inside P(Vω4

).
Let us check that E6/P2 does not contain this closed orbit by looking at the

quadratic equations of the adjoint variety. The discussion will be strikingly similar
to that of the proof of Lemma 4.5. According to LiE [LiE], we have

S2e6 = U2ω2
⊕ Uω1+ω6

⊕ C, Uω1
⊗ Uω6

= Uω1+ω6
⊕ e6 ⊕ C,

if we denote by Uω the irreducible e6-module of highest weight ω. The first decom-
position shows that the equations of the adjoint variety are given by Uω1+ω6

⊕ C,
while the second decomposition allows to compute as a f4-module, since Uω1

and
Uω6 have the same restrictions Vω4 ⊕ C. We get

I2(E6/P2) = V2ω4
⊕ Vω3

⊕ 2Vω4
⊕ 2C.
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Now we compare with the decomposition of S2e6 = S2(f4 ⊕ Vω4
). We have

S2f4 = V2ω1 ⊕ V2ω4
⊕ C,

f4 ⊗ Vω4
= Vω1+ω4 ⊕ Vω3

⊕ Vω4
,

S2Vω4 = V2ω4 ⊕ Vω2 ⊕ C.
We can see that all the terms above that are not in bold do appear in the equations,
and that there is only one ambiguity for V2ω4

, which does appear twice, but only
once in the equations.

So we discuss what it means for X+v ∈ f4⊕Vω4
to verify these equations. First

observe that v has to obey the equations from Vω2 ⊕ C, which forces it to belong
to the cone over F4/P4. Moreover the mixed equations defined by V2ω4 are of the
form aq(X) = bv2, where (a, b) 6= 0 and q : S2f4 → V2ω4

is a projection map. Here
again b 6= 0, since otherwise for v fixed the equations in X would be homogeneous,
and we would get singularities. But then, if X = 0, necessarily v = 0. This proves
that E6/P2 ∩ P(Vω4

) = ∅, which is what we wanted to prove. �

Note that we get a similar conclusion to what we obtained for the adjoint variety
of f4, namely: an open subset of the adjoint variety of e6 (whose complement is
precisely the adjoint variety of f4) can be described as a bundle over F4/P4, with
fiber Q6 minus a smooth hyperplane section.

Now consider the extendable P4’s in E6/P1, which are parametrized by E6/P2,6.
In particular Property (UE) does hold, which means they are all extendable in a
unique way. Those of F4/P4 are parametrized by a subvariety of codimension 5
(the zero locus of a general section of a rank 5 bundle), hence of dimension 21.
By dimension count, those that are extendable inside F4/P4 form an irreducible
subvariety of dimension 20.

When we consider a hyperplane section Hx, the natural map

HilbP5(F4/P4) = F4/P1 99K HilbP4(Hx)

is therefore not dominant, but only birational to a hypersurface.

So let us consider quadrics. Looking at Tits shadows, we can see that there is a
family of maximal quadrics on the Cayley plane E6/P1, parametrized by the dual
Cayley plane E6/P6, as can be read on the following marked diagram:

◦ ◦ ◦

◦

• •

In fact these quadrics are exactly the O-lines in the octonionic geometry of the
Cayley plane, considered as the projective plane OP2 over the octonions. Let us
prove that they are the maximal quadrics.

Proposition 5.2. HilbQ8(E6/P1) = E6/P6.

Any Q8 contains a P4, and we know that E6 acts almost transitively on the
space of P4’s in the Cayley plane. More precisely, there are two families of such
P4’s: the extendable ones are parametrized by E6/P2,6, of dimension 26, while the
non extendable ones are parametrized by E6/P5, of dimension 25. Looking at the
incidence variety parametrizing pairs (P4 ⊂ Q8) in E6/P1, we see that it is enough
to prove the following result:
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Proposition 5.3. An extendable P4 in E6/P1 is contained in a unique quadric
Q8, while a non extendable P4 is contained in a one-dimensional family of such
quadrics.

Before starting the proof we need a few reminders.
Classically, the Cayley plane can be described as the closure in P(J3(OC)) of the

space of Hermitian matrices of the form

Mx,y =

1 x y
x̄ x̄x x̄y
ȳ ȳx ȳy

 , x, y ∈ O.

Letting y = 0 we get one of the maximal quadrics in the Cayley plane, that we
denote by Q0. Being of even dimension, this quadric contains two distinct families
of maximal linear spaces, representatives of which can be chosen as follows.

Recall first that the octonions allow to give a concrete geometric interpretation
of triality for Spin8, that we see as an identification between the three homogeneous
spaces associated to the three extreme nodes of the Dynkin diagram of type D4:
classically, these homogeneous spaces are the quadric Q6, and the two spinor vari-
eties OG(4, 8)+ and OG(4, 8)−. The point is that, for any non zero z ∈ O such that
|z|2 = zz̄ = 0, the vector subspaces Lz := zO and Rz = Oz are isotropic (since the
octonionic norm is multiplicative) of maximal dimension, yielding explicit isomor-
phisms between Q6 and the two spinor varieties OG(4, 8)±. Note moreover that Lz
(resp. Rz) can also be defined as the kernel of the left (resp. right) multiplication
by z̄. Moreover, one can check that

dim(Lz ∩Ry) = 3 ⇐⇒ y ∈ Rz̄ ⇐⇒ z ∈ Lȳ ⇐⇒ yz = 0.

Consider the corresponding P4’s in Q0, namely

Az := 〈Mx,0, x ∈ Lz〉 and Bz := 〈Mx,0, x ∈ Rz〉.
Although these two linear spaces could look completely indistinguishable, we claim
they are not: indeed, Az is extendable, while Bz is not. More precisely, Az can be
extended to a unique P5 by taking its linear span with M0,z, since x̄z = 0 for any
x ∈ Lz. The fact that Bz cannot be extended is a straightforward computation, or
also follows from the considerations below, showing that Az and Bz have distinct
properties with respect to quadrics, and must therefore belong to different families.

We are now ready to attack the proof of the Proposition.

Proof. We shall prove that Az and Bz have the announced properties.

Extendable case. Let us prove that Az is contained in no other quadric than Q0.
In order to check this, consider a P5 containing Az and suppose that its intersection
with OP2 is a quadric. If we can prove that this quadric is necessarily contained in
Q0, our claim will follow.

So suppose that our P5 is generated by Az and a Hermitian matrix of the form

N =

0 a b
ā v c
b̄ c̄ w

 .

Then Mu,0 + sN has rank one if and only if s = 0 or

v = 〈a, u〉+ saā, w = sbb̄, c = (ū+ sā)b,

and we want these conditions to define a unique hyperplane.
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If b = 0, we immediately get the conditions c = w = 0, and our linear space
must be contained in Q0. If c = 0 then v = 0 and one of the minors implies that
w(sa+ u) = 0, thus w = 0 and we come back again to Q0. So suppose that b 6= 0
and c 6= 0.

Note that the last equation is octonionic. Since c 6= 0, there should therefore
exist a scalar γ such that āb = γc, and a linear form φ on Lz such that ūb = φ(u)c
for all u ∈ Lz, so that we are reduced to the scalar equation 1 = φ(u) + sγ. Note
that on the kernel of φ we get the identity ūb = 0, which requires that b is isotropic
and u belongs to Lb. But if b 6= 0, Lb being in the same family of isotropic spaces as
Lz needs to meet it in even dimensions, so certainly not along a hyperplane. This
means that in fact φ = 0 and b is proportional to z.

If w 6= 0, we are left with the hyperplane at infinity, namely the space of matrices
of the form  0 a sb

ā sv sc
sb̄ sc̄ sw

 , a ∈ Lz, s ∈ C.

For such a matrix to have rank one, all the two by two minors must vanish, and we
deduce that c = w = 0, and then bv = 0. So v = 0, which means we are inside the
unique P5 that extends Az.

If the condition w = 0 is trivial, we remain with two linear conditions that must
be proportional, which yields the identities aā = vγ and 〈a, u〉 = 0 for all u ∈ Lz.
In particular a belongs to L⊥z = Lz, so it must be isotropic, āb = 0 and we are back
to the hyperplane at infinity.

In any case, we conclude that the P5 we started with has to be the unique
extension of Az, which contradicts the hypothesis that it can be a general linear
subspace of a quadric containing Az and different from Q0. So there is no such
quadric, and we are done.

Nonextendable case. Now we proceed with a similar analysis for Bz instead of
Az. So consider a P5 generated by Bz and the matrix N as above, and suppose
that it meets the Cayley plane along the union of Bz with another hyperplane.
Again we may suppose that b 6= 0, and again there should exist a scalar γ such that
āb = γc, and a linear form φ on Rz such that ūb = φ(u)c for all u ∈ Rz, so that
we are reduced to the scalar equation 1 = φ(u) + sγ. Again, on the kernel of φ we
get the identity ūb = 0, which requires that b is isotropic and u belongs to Lb. But
now it is not impossible that Lb meet Rz along a hyperplane: as we recalled just
before starting this proof, this happens exactly when b ∈ Rz̄.

First case. Suppose a is always isotropic. Since a is defined only modulo Rz, this
means the subspace generated by a and Rz is isotropic, so a belongs to Rz since
the latter is maximal, and then we may suppose that a = 0. Then also v = w = 0
and our equations reduce to ūb = φ(u)c for all u ∈ Rz. But observe that if u = sz
and b = tz̄, then ūb = (z̄s̄)(tz̄) = z̄(s̄t)z̄ by the Moufang identity, where the
latter product makes sense without further bracketing since O is alternative (any
subalgebra generated by two elements is associative). And since z is isotropic,

z̄(s̄t)z̄ = (2〈z, s̄t〉 − (t̄s)z)z̄ = 2〈z, s̄t〉z̄
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is always a scalar multiple of z̄. This means that our quadric must be contained in
the linear space of matrices of the formu a b

ā 0 c
b̄ c̄ 0

 , a ∈ Rz, b ∈ Rz̄, c ∈ 〈z̄〉.

This gives a P9, which cuts the Cayley plane along the quadric of equation āb = uc.

Second case. Now suppose that a can be chosen to be non isotropic, so that the
equation āb = γc implies that |a|2b = γac, from which we get that x̄(ac) = 2〈x, a〉c
for all x ∈ Rz. But since a is only defined modulo Rz, this requires that for all
y ∈ Rz, x̄(yc) = 2〈x, y〉c = 0, implying that in fact yc = 0 for any y ∈ Rz,
hence that c is a multiple of z̄. We finally deduce that the maximal linear spaces
compatible with our conditions consists in matrices of the form u a θaz̄

ā v θvz̄
θzā θvz 0

 , a ∈ O,

where θ is a fixed scalar. The intersection of this linear space with the Cayley plane
is the quadric Qθ of equation uv = |a|2, and we get a one parameter family of such
quadrics, proving our claim. �

Note the unexpected consequence that for any eight-dimensional quadric in the
Cayley plane, its two families of maximal linear spaces can be distinguished con-
cretely: one is made of extendable P4’s, the other of non extendable ones!

Proposition 5.4. Property (UE) holds for maximal quadrics in the Cayley plane.

Proof. It suffices to prove that two distinct quadrics Q and Q′ always meet in
codimension bigger that one. Here again we can argue that the dimension of Q∩Q′
is maximal when the corresponding points q and q′ in E6/P6 are as ”close” as
possible, meaning that they are joined by a line in E6/P6. Up to conjugation, we
may suppose that q and q′ correspond in P(Vω6

) to the weight spaces of weights ω6

and sα6
(ω6) = ω5 − ω6. The linear spans in P(Vω1

) of the corresponding quadrics
can be obtained by taking the orthogonal to the tangent spaces of E6/P6 at these
points. We readily compute that, with some abuse of notations,

〈Q〉 = 〈ω1, ω3 − ω1, ω4 − ω3, ω2 + ω5 − ω3, ω5 − ω2, ω2 − ω5 + ω6,
ω4 − ω2 − ω5 + ω6, ω3 − ω4 + ω6, ω1 − ω3 + ω6,−ω1 + ω6〉,

〈Q′〉 = 〈ω1, ω3 − ω1, ω4 − ω3, ω2 + ω5 − ω3, ω5 − ω2, ω2 − ω6, ω4 − ω2 − ω6,
ω3 − ω4 + ω5 − ω6, ω1 − ω3 + ω5 − ω6,−ω1 + ω5 − ω6〉.

Here we just indicated the weights of the weight vectors (recall the multiplicities
are all one), and we deduced the weights in 〈Q′〉 by applying sα6 to those in 〈Q〉.
Finally, we conclude that

Q ∩Q′ = P〈ω1, ω3 − ω1, ω4 − ω3, ω2 + ω5 − ω3, ω5 − ω2〉
is a P4 in the Cayley plane, which in particular confirms our claim. �

Remark 5.5. Kuznetsov suggested a shorter proof of Proposition 5.2, based on
the following observations. The Cayley plane E6/P1 ⊂ P(Vω1) is a Severi variety
whose secant variety is the hypersurface C defined by the invariant Cartan cubic.
The derivatives of this cubic define a birational map ϕ : P(Vω1

) 99K P(Vω6
) de-

scribed in detail in [ES89], which is the composition of the blowup of E6/P1 with
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the contraction of the strict transform of C to the dual Cayley plane E6/P6. Now,
if Q ⊂ E6/P1 is a quadric of dimension m ≥ 5, its linear span 〈Q〉 cannot be con-
tained in E6/P1, and since the linear system that defines ϕ is trivial on 〈Q〉, this
linear space must be contracted to a single point. This implies that 〈Q〉 ⊂ P(Ny) is
contained in the projectivized normal space to E6/P6 at some point y. In particular
m ≤ 8, and if m = 8 there must be equality, proving that eight-dimensional quadrics
are parametrized by E6/P6.

Passing to a general hyperplane section, a naive dimension count would indicate
that F4/P4 should contain a six-dimensional family of copies of Q8. But since this
is family must be F4-invariant, this is impossible and it must actually be empty.
We conclude:

Proposition 5.6. There is an isomorphism

HilbQ7(F4/P4) ' HilbQ8(E6/P1) = E6/P6.

Moreover, maximal quadrics in F4/P4 have Property (UE).

Using our general strategy, we will thus deduce that automorphisms of Hx can
be lifted to E6.

5.2. F4/P3, the space of special lines in F4/P4. It is shown in [LM03, Proposi-
tion 6.7] that F4/P3 parametrizes special lines in F4/P4. Special means the follow-
ing: given a point p in F4/P4, its stabilizer is a parabolic group isomorphic to P4,
whose Levi part has type B3. As a Spin7-module, the isotropy representation at p
(which is nothing else than f4/p4, where p4 is the Lie algebra of P4) is isomorphic
to ∆8 ⊕ V7, the sum of the spin and the natural representation; but only ∆8 is
invariant under the whole parabolic. Special lines then correspond to points inside
the closed orbit in P∆8, that is the spinor variety OG(3, 7) ' Q6.

Since F4/P3 parametrizes projective lines in F4/P4, it is a subvariety of the
Grassmannian G(2, Vω4). Thus its linear spaces must be linear spaces in the Grass-
mannian, hence of two possible types: either spaces of lines contained in a given
plane; or spaces of lines passing through some fixed point, say p. The former ones
are not extendable. The latter ones are in correspondence with linear subspaces
of OG(3, 7) ' Q6. In particular, their dimension is at most three, and the three-
dimensional ones are parametrized by the union of two six-dimensional quadrics.
We shall deduce:

Proposition 5.7. HilbP3(F4/P3) has two connected components, both of dimension
21 and fibered in quadrics over F4/P4. One is homogeneous and isomorphic with
F4/P3,4. The other one is not homogeneous.

Proof. The homogeneity is equivalent to the transitivity of the isotropy action on
the sets of projective spaces made of lines passing through a fixed point p. As we
have seen, this action factorizes through the action of Spin7 on OG(3, 7) ' Q6, and
we have to consider the maximal linear spaces on that quadric. Of course we recover
two copies of the same spinor variety, but we have to be careful about the induced
action of Spin7. If we first think about the same situation for Spin8 acting on
Q6, the maximal linear spaces are parametrized by OG(4, 8)+ and OG(4, 8)−. By
triality, we can permute these three spaces and we deduce that the maximal linear
spaces in OG(4, 8)+ are parametrized by Q6 and OG(4, 8)−, with their standard
actions of Spin8. Restricting this statement to Spin7, we deduce that the maximal
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linear spaces in OG(3, 7) are parametrized by Q6 and OG(3, 7), with their standard
actions of Spin7. And now, although these are two quadrics of the same dimension,
there is a huge difference between the two actions of Spin7: the second one is
transitive, but the first one is not!

This implies that HilbP3(F4/P3) really has two connected components, among
which one and only one is homogeneous; more precisely, we have seen that the
homogeneous component is isomorphic to the variety of pairs of points and special
lines in F4/P4, that is F4/P3,4. Note that the other component contains F4/P1,4

as a divisor. �

This phenomenon has strong similarity with what we observed in Proposition
5.3, in the sense that two families of maximal isotropic spaces in quadrics, that
should in principle be indistinguishable, can in fact be distinguished from their
embedding in the ambient homogeneous space.

Finally, we have enough information to check that our general strategy works
fine for smooth hyperplane sections Hx of F4/P3. We just need to check that:

Proposition 5.8. Property (UE) does hold for linear spaces in F4/P3, in the sense
that every extendable projective plane has a unique extension in the homogeneous
component F4/P3,4 of HilbP3(F4/P3).

Proof. We have seen in describing these extendable planes that they correspond to
planes in six-dimensional quadrics. Such a plane has a unique extension to either
of the two families of three-planes in the quadric, in particular there is a unique
extension to a three-plane from the homogeneous component F4/P3,4. �

6. Proof of Theorem 1.1

We have now almost all the ingredients to prove Theorem 1.1, up to a few
technical lemmas whose proofs are postponed to the end of the section.

First we discard the G2-Grassmannians, since for G2/P1 Theorem 1.1 is already
known from [PZ21], and G2/P2 is just a quadric. For the sake of clarity, we will
then distinguish two sets of generalized Grassmannians. The first set Ω1 will con-
sist in those for which Property (UE) holds for linear subspaces. By Proposition
3.3, Lemma 3.4 and Proposition 5.8, this means that X = G/P is different from
OG(k, 2n+ 1) for k ≤ n− k, from IG(n, 2n), F4/P1 and F4/P4. The second set Ω2

is just the complement of Ω1 in the set of generalized Grassmannians (which are
not G2-Grassmannians). So Ω2 contains exactly the Grassmannians OG(k, 2n+ 1)
for k ≤ n−k, IG(n, 2n), F4/P1 and F4/P4. In the previous sections we have shown
that for these varieties, Property (UE) holds for quadrics.

Recall that by m (respectively l) we denote the maximal dimension of linear
subspaces (resp. quadrics) in X. If a generalized Grassmannian X belongs to Ω1,
let NP(X) denote the set of Pm−1 inside X that cannot be extended to a Pm inside
X. If X belongs to Ω2, let NQ(X) denote the set of Ql−1 (possibly singular) inside
X that cannot be extended to a Ql inside X.

Conclusion of the proof of Theorem 1.1. We follow the general strategy of Section
3.1. Suppose that the generalized Grassmannian X = G/P belongs to Ω1, so that
Property (UE) holds for linear subspaces. In particular, for any hyperplane section
Hx we get an extension map

ex : HilbPm−1(Hx)ext −→ HilbPm(X),
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where HilbPm−1(Hx)ext ⊂ HilbPm−1(Hx) denotes the set of (m − 1)-dimensional
linear spaces in Hx that can be extended inside X (but not necessarily inside
Hx). Note that this map ex is an isomorphism outside HilbPm(Hx). If f is an
automorphism of Hx, it induces automorphisms of HilbPm(Hx) and HilbPm−1(Hx),
that we will both denote by f∗ for simplicity. We want to ensure that the second
one restricts to an isomorphism of HilbPm−1(Hx)ext.

Otherwise said, we want to exclude the possibility that extendable subspaces
are sent by f to unextendable subspaces. If there are no unextendable spaces of
dimension m − 1, we are certainly fine. Otherwise NP(X) 6= ∅, and by Lemma
6.1, X appears in Table 1. But then by Lemma 6.4 HilbPm(X) 6= ∅, and since f∗
must preserve its pre-image by ex, it has to preserve the connected components
containing this pre-image, that is precisely HilbPm−1(Hx)ext. Then f∗ descends
through ex to a birational automorphism of HilbPm(X), extending continuously to
the exceptional locus HilbPm(Hx); so in fact f∗ descends to an automorphism of
HilbPm(X).

Beware that the latter may have several components. If there is a unique one
of a given dimension, say G/Q, it must also be preserved by f∗ and we can then
extend f to an element of Aut(G/Q) = Aut(X). If there are several components in
each dimension, that would be exchanged by f∗, then we can use Lemma 6.3 and
compose with an outer automorphism of X to arrive to the same conclusion.

For the remaining cases where X belongs to Ω2, Property (UE) holds for quadrics
and the same arguments apply, with the help of Lemmas 6.2 and 6.6. The only
point is that when X is F4/P4 or IG(2, 2n), hence a hyperplane section respectively
of E6/P1 and G(2, 2n), we can only conclude that Aut(Hx) is contained respectively
in E6 and PGL2n. For these special cases the claims of the Theorem follow from
the more precise Theorem 7.6 proved in the next section. �

Now we turn to the proofs of the technical lemmas used in the previous proof.

Lemma 6.1. The set of generalized Grassmannians X from Ω1 for which NP(X)
is non-empty is given by Table 1.

Proof. This is the result of a case by case analysis. If X is of type An, that is
X = G(k, n+ 1), we can suppose that 2k ≤ n+ 1. Non-extendable linear subspaces
are parametrized by G(k − 1, n+ 1) ∪G(k + 1, n+ 1), their respective dimensions
being n + 1 − k and k. Therefore m = n + 1 − k and NP(X) is non-empty if and
only if k = n− k.

If X = OG(k, 2n + 1) with k > n − k, by the proof of Proposition 3.3, m = k
and NP(X) 6= ∅ if and only if k − 1 = n− k.

If X = IG(k, n) for 2 ≤ k ≤ n − 1, by Lemma 3.4, there are two families of
non-extendable linear subspaces, of dimensions k and 2n−2k+1. Thus NP(X) 6= ∅
if and only if either k = 2n− 2k or k − 1 = 2n− 2k + 1. Notice that in both cases
k needs to be even.

If X = OG(k, 2n) with k ≤ n − 1, by Theorem 2.4 there are three families of
non-extendable linear subspaces in X, of dimensions k and twice n− k. Therefore
NP(X) 6= ∅ if and only if either k = n− k − 1 or k − 1 = n− k. If X = OG(n, 2n)
with n ≥ 4, there are two families of non-extendable linear subspaces in X, of
dimensions n− 1 and 3. Therefore NP(X) 6= ∅ if and only if n = 5.

In the exceptional cases one can use a case by case argument based on Theorem
2.4. The only exception is F4/P3, for which we use Proposition 5.8 instead. �
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Table 1. Varieties in Ω1 for which NP is non-empty

Type X HilbPm(X)
An G(k, 2k + 1) G(k − 1, 2k + 1)
Bn OG(k, 4k − 1) OG(k + 1, 4k − 1)
Cn IG(k, 3k) IG(k − 1, 3k)
Cn IG(k, 3k − 2) IG(k + 1, 3k − 2)
Dn OG(5, 10)+ OG(5, 10)−
Dn OG(k, 4k − 2) OG(k + 1, 4k − 2)
Dn OG(k, 4k + 2) OFl(k − 1, 2k + 1, 4k + 2)±
E6 E6/P1 E6/P2

E6 E6/P3 E6/P1,2

E6 E6/P4 E6/P2,3 ∪ E6/P2,5

E7 E7/P2 E7/P3

E7 E7/P4 E7/P2,3

E7 E7/P5 E7/P2,6

E7 E7/P6 E7/P2,7

E7 E7/P7 E7/P2

E8 E8/P5 E8/P4 ∪ E8/P2,6

E8 E8/P6 E8/P2,7

E8 E8/P7 E8/P2,8

E8 E8/P8 E8/P2

Lemma 6.2. The set of generalized Grassmannians X from Ω2 for which NQ(X)
is non-empty is contained in Table 2.

Proof. If X = OG(k, 2n + 1) with k ≤ n − k, by the content of Section 4.1, there
are three types of quadrics of dimensions 4, 2n − 2k + 1 and k − 1. Therefore if
NQ(X) 6= ∅ then 4 = 2n − 2k, hence k = n = 4. If X = IG(n, 2n), by Lemma 4.3
NQ(X) = ∅. it is not clear whether NQ(X) is empty or not. �

Lemma 6.3. Let X = G/P be a generalized Grassmannian from Ω1 (resp. Ω2).
If G/Q1, G/Q2 are two connected components of HilbPm(X) (resp. HilbQl(X)) of
the same dimension, there exists an automorphism of X that exchanges them.

Notice that an automorphism that exchanges two connected components of
HilbPm(X) or HilbQl(X) must be induced by an outer automorphism of G. And
recall that such outer automorphisms are detected by the symmetries of the Dynkin
diagram.

Proof. We proceed by a case by case analysis, starting with varieties X from Ω1. If
X = G(k, n+1), with 2k ≤ n+1, non-extendable linear subspaces have dimensions
n + 1 − k and k. When k = n + 1 − k, the two components of HilbPm(X) are
exchanged by an outer automorphism. If X = OG(k, 2n + 1) with k > n − k,
by the proof of Proposition 3.3, HilbPm(X) is connected. If X = IG(k, 2n) with
2 ≤ k ≤ n− 1, then by Lemma 3.4 there are two families of non-extendable linear
subspaces, of dimensions k and 2n−2k+ 1. So let us suppose that k = 2n−2k+ 1.
The two components of HilbPm(X) are then IG(k+ 1, 3k−1) and IG(k−1, 3k−1),
and their dimensions are different.
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If X = OG(k, 2n) with k ≤ n−1, then by Theorem 2.4 there are three families of
non-extendable linear subspaces in X, of dimensions k and twice n− k. Moreover
the second and third families are exchanged by an outer automorphism. If k =
n − k, the components of HilbPm(X) are OG(k + 1, 4k) and OFl(k − 1, 2k, 4k)±,
and the dimensions coincide only for k = 1, 2. However k = 1 is excluded since
D2 = A1×A1, and for k = 2 we get three isomorphic components exchanged by the
outer automorphisms of D4. If X = OG(n, 2n) with n ≥ 4, there are two families
of non-extendable linear subspaces, of dimensions n − 1 and 3; these dimensions
coincide only for n = 4, in which case X = OG(4, 8) is just a quadric.

In the exceptional cases one can use a case by case argument and Theorem 2.4 to
understand when HilbPm(X) is not connected. This happens exactly for E6/P2 and
E6/P4 (which are preserved by an outer automorphism), and E8/P5. If X = E8/P5,
HilbPm(X) has two connected components E8/P4 and E8/P2,6, whose dimensions
are respectively 106 and 107.

Finally, for the varieties from Ω2, one checks in a similar way that HilbQl(X) is
always connected. �

Lemma 6.4. Let X be a generalized Grassmannian from Ω1 appearing in Table 1.
Then HilbPm(Hx) is non-empty for any hyperplane section Hx ⊂ X.

Remark 6.5. Notice that this statement cannot be extended to all the generalized
Grassmannians. For instance HilbPm(Hx) = ∅ when Hx is a general hyperplane
section of G(2, 2n).

Proof. We first start with a few general remarks. Let us begin with one of the long
root spaces in Table 1, say X = G/P ⊂ P(V ), where V = Vωk

is some fundamental
representation of the simply connected group G. Recall that diagrammatically,
X corresponds to a marked Dynkin diagram (∆, αk). Then HilbPm(X) can be
described by looking for the subdiagrams of type (Am, α1) in this marked diagram.
As recalled in Theorem 2.4, the boundary vertices of such a subdiagram define a
component G/Q of HilbPm(X). On such a G/Q, the category of G-equivariant
vector bundles is equivalent to the category of Q-modules [OR06]. In particular,
the minimal Q-submodule of the G-module V defines a vector bundle E on G/Q,
and the element x of V ∨ that defines Hx ⊂ P(V ) also defines a global section
of E∨, whose zero locus is precisely HilbPm(Hx). How can we deduce from this
description that HilbPm(Hx) is non empty? First note that by semi-continuity, we
just need to prove it when x is generic, in which case, since by construction E∨ is
globally generated, HilbPm(Hx) is smooth (and of the expected codimension m+ 1
at each of its points, if any). Then we could use the Thom-Porteous formula for its
fundamental class and check it is non zero in the Chow ring. Or, and that is the
approach we will choose, we can use the Koszul complex

0→ ∧m+1E → ∧mE → · · · → E → OG/Q → OHilbPm (Hx) → 0,

to check that H0(OHilbPm (Hx)) 6= 0. Indeed, by a standard diagram chasing it
suffices to check that Hq(G/Q,∧qE) = 0 for any q > 0. This can readily be deduced
from the Bott-Borel-Weil theorem (see e.g. [OR06]) since ∧qE is an irreducible
equivariant vector bundle for any q. Indeed, this follows from the fact that E , by
construction is defined from a representation of Q which is essentially the natural
representation of SLm+1; since all the wedge powers of this representation remain
irreducible, our claim follows.
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We will give more details for the classical case X = G(k, 2k + 1), and for the
exceptional case X = E7/P3. The remaining cases can be treated in a completely
similar way and will be left to the reader.

If X = G/P = G(k, 2k + 1), then m = k + 1 and HilbPm(X) = G/Q = G(k −
1, 2k + 1). Moreover E = Q(−1) if Q denotes the rank k + 2 tautological quotient
bundle. This simply yields ∧qE = ∧qQ(−q). In more Lie theoretic terms we can
observe that the highest weight of the Q-module defining E∨ is ωk, from which
we get the other weights from the action of the Weyl group of Q, which yields
successively ωk−1−ωk +ωk+1, . . . ωk−1−ω2k−1 +ω2k, ωk−1−ω2k. Then we get the
weights of E by taking their opposites, and we deduce the highest weight of ∧qE by
summing the first q, starting from the highest one: this yields ω2k+1−q− qωk−1, for
0 < q ≤ k + 2. But then the Bott-Borel-Weil theorem implies that ∧qE is acyclic,
since for ρ the sum of the fundamental weights, ω2k+1−q − qωk−1 + ρ is orthogonal
to any root αi + · · ·+ αj for i ≤ k − 1 ≤ j ≤ 2k − q and j − i+ 1 = q. Such a root
always exists if q ≤ k, while for q = k + 1 (resp. q = k + 2) we can choose the root
α1 + · · ·+ αk (resp. α1 + · · ·+ αk+1).

If X = G/P = E7/P3, then m = 5 and HilbPm(X) = G/Q = E7/P1,2. The
highest weight of E∨ is ω3, and as before we get the other weights from the action
of the Weyl group of Q, which yields successively ω1 − ω3 + ω4, ω1 + ω2 − ω4 +
ω5, ω1 + ω2 − ω5 + ω6, ω1 + ω2 − ω6 + ω7, ω1 + ω2 − ω7. Then we get the weights of
E by taking their opposites, and we deduce the highest weight of ∧qE by summing
the first q, starting from the highest one: this yields successively ω7−ω1−ω2, ω6−
2ω1−2ω2, ω5−3ω1−3ω2, ω4−4ω1−4ω2, ω3−5ω1−4ω2,−5ω1−4ω2. As before, we
conclude by the Bott-Borel-Weil that ∧qE is acyclic for any q > 0, since adding ρ we
get a weight which is orthogonal respectively to the root α1, α1 +α3, α1 +α3 +α4,
α1 +α3 +α4, α1 +α3 +α4 +α5, α1 +α3 +α4 +α5 +α6. (For another proof, more
conceptual but that cannot be transposed to all the other cases, one can observe
that the projection E7/P1,2 → E7/P2 is a projective bundle, and that E restricts
on the fibers of this bundle to Q∨(1), the twisted dual of the quotient bundle on
projective space. And since Q∨(1) and its positive wedge powers are acyclic on
projective space, E and its positive wedge powers must be acyclic as well on G/Q.)

Let us now turn to the short root cases. We will discuss in some details the
case where X = Sp3k /Pk = IG(k, 3k), with k = 2h even, the other one being
similar. We will suppose that h ≥ 2, leaving the case of X = IG(2, 6) to the
reader. Then m = k + 1 and HilbPm(X) = Sp3k /Pk−1 = IG(k − 1, 3k). Moreover,
for any hyperplane section Hx of X, HilbPm(Hx) ⊂ HilbPm(X) is the zero locus
of a section of the rank k + 2 vector bundle E∨ = (U⊥/U)(1), where U denotes
the rank k − 1 tautological bundle on IG(k − 1, 3k) and ⊥ is taken with respect
to the skew-symmetric form fixed by Sp3k. Here the main difference with the
long root cases is that the representation that defines the homogeneous bundle
U⊥/U is essentially the natural representation M of Spk+2, whose wedge powers
are not irreducible. Indeed, recall that if ωM is the invariant symplectic form on
M , and ΩM ∈ ∧2M the dual bivector, then for any q > 1 the q-th wedge power
∧qM contains ∧q−2M ∧ ΩM , of which the q-th fundamental representation is a
supplement, sometimes denoted ∧〈q〉M . One deduces inductively the decomposition
∧qM = ∧k+2−qM = ⊕p≥0 ∧〈q−2p〉 M for 1 ≤ q ≤ h + 1. In terms of our vector
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Table 2. Varieties in Ω2 for which NQ is possibly non-empty

Type X HilbQl(X)
B4 OG(2, 9) Q7

F4 F4/P1 F4/P4

F4 F4/P4 E6/P6

bundles, we get

∧qE =
⊕
p≥0

∧〈q−2p〉(U⊥/U)(−q) for q ≤ h+ 1,

∧qE =
⊕
p≥0

∧〈k+2−q−2p〉(U⊥/U)(−q) for q > h+ 1.

In order to apply the Bott-Borel-Weil theorem, we need to identify the highest
weight of each irreducible bundle in these decompositions. For this we observe that
the weights of U⊥/U are, in decreasing order, ωk−ωk−1, . . . , ω3h−ω3h−1 and their
opposites. We deduce that for q ≤ h + 1, the highest weight of ∧〈q〉(U⊥/U), or
∧q(U⊥/U), is the sum of the first q of those weights, that is ωk+q−1−ωk−1. So the

highest weight of ∧〈q−2p〉(U⊥/U)(−q) is θ = ωk+q−2p−1 − (q + 1)ωk−1, and then
θ+ρ is orthogonal to the roots αi+ · · ·+αj when i ≤ k−1 ≤ j < k+q−2p−1 and
j− i = q, or i ≤ k−1 ≤ k+ q−2p−1 ≤ j and j− i = q−1. Similarly, for q > h+1
the highest weight of ∧〈k+2−q−2p〉(U⊥/U)(−q) is θ = ω2k+1−q−2p − (q + 1)ωk−1,
and θ + ρ is orthogonal to the root α3h−q+1 + · · · + α3h. This implies that ∧qE is
acyclic for any q > 0, and we are done. �

Lemma 6.6. Let X be a generalized Grassmannian from Ω2 appearing in Table 2.
Then HilbQl(Hx) is non-empty for any hyperplane section Hx ⊂ X.

Proof. The proof is similar to that of the previous Lemma, except for X = F4/P4.
Indeed this is the only case for which HilbQl(Hx) is not the zero locus of a section of
a vector bundle inside HilbQl(X). Instead, recall that seven dimensional quadrics
inside F4/P4 are obtained from eight dimensional quadrics Qp inside E6/P1 by
intersecting with the hyperplane H0 such that F4/P4 = E6/P1 ∩ H0. Moreover
Qp = P(Sp)∩(E6/P1), where S is the vector bundle of rank ten on HilbQ8(E6/P1) =
E6/P6 defined by the weight ω1.

So let us consider another general hyperplane section H1 ⊂ E6/P1, and Hx :=
H0 ∩H1 ⊂ F4/P4. The double hyperplane section Hx contains Qp ∩H0 if and only
if the equations of H0 and H1 are proportional when restricted to P(Sp). If H0 and

H1 are defined by sections x0 and x1 in H0(E6/P6,S), this means that HilbQ7(Hx)
is the degeneracy locus defined by these two sections. These sections being general,
its structure sheaf is resolved by the Eagon-Northcott complex

0→ (∧10S∨)⊕9 → · · · → (∧iS∨)⊕i−1 → · · · → ∧2S∨ → OE6/P6
→ OHilbQ7 (Hx) → 0.

Each bundle ∧iS is irreducible, and using the Bott-Borel-Weil theorem as before
we deduce that H0(OHilbQ7 (Hx)) = C. As a consequence, HilbQ7(Hx) 6= ∅. �
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7. Jordan algebras and automorphisms

In this section we focus our attention on some special generalized Grassmannians,
for which our general strategy is not conclusive, and we will explain why. These are
the symplectic Grassmannians IG(2, 2n) and the exceptional variety F4/P4. How-
ever we will also include in our analysis v2(Qn−2) (the second quadratic Veronese
embedding of a smooth quadric) and the adjoint variety Xad(sln) = Fl(1, n− 1, n),
which is not strictly speaking a generalized Grassmannian: all of them can be de-
scribed in a uniform way. Indeed, the common property of all these varieties is that
they can be seen as hyperplane sections of some bigger homogeneous varieties, that
turn out to appear naturally in the context of Jordan algebras.

Notice moreover that these varieties are the coadjoint varieties of the correspond-
ing groups (in type A, coadjoint and adjoint coincide). We recall that coadjoint
varieties are obtained in the following way: take the marked Dynkin diagram of
an adjoint variety and reverse the double (or triple) arrows; the marked Dynkin
diagram thus obtained is the coadjoint variety of the reversed Dynkin diagram.
Thus, adjoint and coadjoint varieties coincide in the simply laced case, while in the
non-simply laced case we obtain the above mentioned varieties (plus the coadjoint
of G2, which is just Q5).

7.1. Hermitian Jordan algebras. Let us start by recalling a few classical facts
about Jordan algebras, and in particular simple complex Jordan algebras coming
from Hermitian matrices; we refer to [Sp98] for details.

Let A be a real finite dimensional normed algebra, so that A is either R,C,H
or O and admits a natural conjugation. We will denote by A := A ⊗R C the
complexification of A. Then we will consider the space of Hermitian n×n-matrices

Jn(A) := {M ∈Mn(A) |M∗ = M},
which we will denote simply by Jn if no confusion can arise. Here M∗ denotes the
transpose conjugate of M . We will always assume that n ≥ 3, and when A = O
we will further restrict to the case n = 3. These spaces of matrices get a Jordan
algebra structure by considering the symmetrized product of matrices.

On Jordan algebras there exists a rational function j : Jn 99K Jn which allows
to define the structure group

G := {g ∈ GL(Jn) | ∃h ∈ GL(Jn), g ◦ j = j ◦ h}.
Actually, a Jordan structure on a vector space is defined starting from such a
rational function, which is required to satisfy some additional properties. The
group G fixes a well-defined degree-n norm on Jn, which we denote by det. Every
element e ∈ Jn such that det(e) 6= 0 belongs to the G-orbit of the identity matrix
1. We will denote by G the connected component of StabG(e) (one should think of
e as the identity inside Jn; when e = 1, G is essentially the automorphism group
of the Jordan algebra). Both G and G are reductive Lie groups.

Remark 7.1. Each x ∈ Jn satisfies an equation xn− t(x)xn−1 + · · ·±det(x)1 = 0.
So when det(x) 6= 0 one defines the Jordan structure j by the formula j(x) = x−1 =
(xn−1−t(x)xn−1+· · · )/det(x). When A is associative this coincides with the usual
matrix inverse.

The minimal G-orbit inside P(Jn) is a homogeneous projective variety X , some-
times called a Scorza variety [Za93, Ch03]. Moreover one can view e as a general
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Table 3. Hermitian Jordan algebras and their geometry

A Jn(A) G/Z(G) X G X
R Sn PGLn v2(Pn−1) SOn v2(Qn−2)
C Mn PGLn×PGLn Pn−1 × Pn−1 PGLn Fl(1, n− 1, n)
H A2n PGL2n G(2, 2n) Sp2n IG(2, 2n)
O J3(O) E6 E6/P1 F4 F4/P4

section of OX (1) since H0(X ,OX (1)) ∼= J ∨n ∼= Jn (a natural duality is obtained by
polarizing the determinant at the identity, which yields the non degenerate qua-
dratic form det(e, . . . , e,−,−)). The zero locusX ⊂ X of e is then aG-homogeneous
variety, more precisely it is one of the varieties mentioned in the introduction to
this section; it is embedded inside the projectivization of J 0

n = e⊥ ∼= Jn/Ce. Ta-
ble 3 contains explicit information about Jn, G, X , G, X. We denoted by Sn
(respectively A2n) the space of symmetric (resp. skew-symmetric) matrices.

An important consequence of this construction is that a hyperplane section Hx ⊂
X can be seen as the double hyperplane section inside X defined by the pencil
Lx := P(〈e, x〉) ∼= P1 ⊂ P(Jn). We will start by giving a simple criterion for the
smoothness of Hx, but before doing so, let us briefly describe more concretely the
geometry behind Table 3 when A = R,C or H:

A = R The Jordan algebra Jn(R) is the space of symmetric matrices Sn. The
group G/Z(G) is PGLn, acting by congruence on Sn. As a generic ele-
ment e ∈ Sn one can take the identity matrix; then Stab0

G(e) is SOn. The
minimal G-orbit inside P(Sn) is the space of rank-one symmetric matrices,
i.e. the second Veronese embedding v2(Pn−1), and its hyperplane section
is v2(Qn−2); Hx is thus the intersection of two quadrics. The function det
is just the determinant;

A = C The Jordan algebra Jn(C) is the space of matricesMn. The group G/Z(G)
is PGLn×PGLn with its natural action on Mn (the first PGLn acts on
the left on Mn and the second PGLn on the right). If e ∈ Mn is the
identity matrix then Stab0

G(e) is PGLn, embedded in PGLn×PGLn by
M 7→ (M,M−1). The minimal G-orbit inside P(Mn) is the space of rank-
one matrices, i.e. Pn−1×Pn−1, and its hyperplane section is Fl(1, n−1, n);
Hx is thus the intersection of two (1, 1)-divisors in Pn−1 × Pn−1. The
function det is just the determinant;

A = H The Jordan algebra Jn(H) is the space of skew-symmetric matrices A2n.
The group G/Z(G) is PGL2n, acting by congruence on A2n. If e ∈ A2n is
non-degenerate, then Stab0

G(e) is isomorphic to Sp2n. The minimal G-orbit
inside P(A2n) is the space of rank-two skew-symmetric matrices, i.e. the
Grassmannian G(2, 2n), and its hyperplane section is the isotropic Grass-
mannian IG(2, 2n); Hx is thus a bisymplectic Grassmannian of planes (as
it was defined in [Ben21]). The function det is just the pfaffian.

7.2. Smoothness of (double) hyperplane sections. We have recalled that as
soon as det(e) 6= 0, the zero locus X of e is a G-homogeneous projective variety,
in particular smooth. As a matter of fact this is also a necessary condition for
smoothness. Indeed, let us denote

i(e) := det(e, . . . , e,−) ∈ J ∨n ∼= Jn.
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Let us suppose that det(e) = 0 and e is generic with this property; then i(e) ∈ e⊥,
and i(e) belongs to X (this is a generalization of the comatrix, see [Za93]). Moreover
one can check that i(e) is actually a singular point (in fact the only singular point)
of the zero locus X of e. Thus the hypersurface {det = 0} is the dual variety of X
(a classical fact for determinantal varieties). The natural generalization to double
hyperplane sections is the following result, where we suppose that det(e) 6= 0.

Proposition 7.2. The double hyperplane section Hx associated to the pencil Lx is
smooth if and only if the intersection of Lx and X∨ = {det = 0} is transverse, i.e.
if and only if Lx ∩ X∨ consists of exactly n distinct points.

Proof. The pencil Lx is non transverse to X at [y] = [ae+ bx], b 6= 0 if and only if
det(y) = det(y, . . . , y, e) = 0. This happens if and only if [i(y)] is a singular point
of the zero locus of y inside X (corresponding to the condition det(y) = 0, as we
have seen before) and [i(y)] ∈ X (corresponding to det(y, . . . , y, e) = 0). In order
to conclude, observe that a point of Hx is singular if and only if it is singular as a
point of the zero locus inside X of a certain hyperplane section of the pencil Lx. �

Note that in the case of the intersection of two quadrics, there is a natural double
cover of Lx branched over Lx ∩X∨, giving a hyperelliptic curve C whose Jacobian
is the intermediate Jacobian of Hx [Re72].

Let us finally state a useful consequence of the previous statement.

Lemma 7.3. If Hx is smooth, there exist scalars x1, . . . , xn, with xi 6= xj for i 6= j,
such that the pencil Lx belongs to the G-orbit of P(〈1,diag(x1, . . . , xn)〉).

Proof. If Hx is smooth then the characteristic polynomial of x has n distinct roots.
The statement is then classical when A = R or A = C, and it is a direct consequence
of [Ku15, Theorem 3.1] when A = H and [NY10, Theorem 0.2] when A = O. �

Automorphisms. Let us now consider the automorphism group of a smooth (dou-
ble) hyperplane section Hx. The first observation is that we can characterize
Aut(Hx) as follows:

Proposition 7.4. Aut(Hx) = StabAut(X )(Lx) ⊂ Aut(X ).

Proof. The equality is a consequence of the inclusion Aut(Hx) ⊂ Aut(X ). The
inclusion is a classical result when Hx ⊂ Fl(1, n, n + 1) ⊂ Pn−1 × Pn−1 and Hx ⊂
v2(Qn−2) ⊂ v2(Pn−1). Finally, in Section 3.3.1 we showed that Aut(Hx) ⊂ PGL2n

when Hx ⊂ IG(2, 2n) ⊂ G(2, 2n), while in Section 5 we showed that Aut(Hx) ⊂ E6

when Hx ⊂ F4/P4 ⊂ E6/P1. �

We deduce the short exact sequence of groups

1→ K → Aut(Hx)→ I → 1,

where the second map is the natural restriction from Aut(Hx) to Aut(Lx) = PGL2,
with image I ⊂ PGL2. Since id ∈ Aut(Lx) fixes Ce, the group K is contained inside
Aut(X). Moreover since G stabilizes det, the group I permutes the n distinct points
given by Lx∩X∨ (see Proposition 7.2). Since we assumed that n ≥ 3, I is a subgroup
of the permutation group Sn and thus a finite subgroup of PGL2.

Lemma 7.5. I = {g ∈ PGL(Lx) | g(Lx ∩ X∨) = Lx ∩ X∨}.
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Proof. By Lemma 7.3, if Hx is smooth we can assume that e = diag(1, . . . , 1) and
x = diag(x1, . . . , xn). Let e1, . . . , en be the standard basis on AnC and fix σ ∈ Sn.
Let λ = (λ1, . . . , λn) ∈ Cn and denote by gσ(λ) ∈Mn(AC) the linear map sending
ei to λieσ(i). The endomorphism ĝσ(λ) of Mn(AC) sending M to gσ(λ)Mgσ(λ)∗,
belongs to G, and it stabilizes Lx if and only if there exist scalars α, β, γ, δ such
that for all i,

λ2
i = α+ βxσ(i) and xiλ

2
i = γ + δxσ(i).

Indeed, ĝσ(λ)(e) is the diagonal matrix whose σ(i)-th entry is λ2
i , and ĝσ(λ)(x) is

the diagonal matrix whose σ(i)-th entry is xiλ
2
i , and we are requiring that both

belong to Lx. Moreover, if this happens, then the restriction of ĝσ(λ) to PGL(Lx)
acts on Lx ∩ X∨ as the permutation σ. Vice versa, if α, β, γ, δ are the coefficients
of an element in PGL(Lx) acting as σ on Lx ∩ X∨, define λ by the property that
for any i, λ2

i = α+ βxσ(i); then ĝσ(λ)|Lx
belongs to I. �

The finite subgroups of PGL2 are well-known: recall they are the cyclic groups
Zd, the dihedral groups D2m, the tetrahedral group A4, the octahedral group
S4, and the icosahedral group A5. Therefore I is one of these groups. Note
moreover that among those, only the cyclic groups admit a fixed point inside
P1. On the one hand, if I fixes Ce, then I is cyclic and in such a situation
Aut(Hx) = StabAut(X)(Cx) is contained in Aut(X). On the other hand, if I is
not cyclic, then Aut(Hx) is not contained inside any copy of Aut(X). We summa-
rize our discussion as follows:

Theorem 7.6. Let us suppose that Hx is smooth, or equivalently that Lx ∩ X∨
consists of n distinct points. Then there is an exact sequence

1→ StabAut(X)(x)→ Aut(Hx)→ I → 1,

where I = {g ∈ PGL(Lx) | g(Lx ∩ X∨) = Lx ∩ X∨} ⊂ Sn is isomorphic to one of
the groups Zd,D2m, A4,S4, A5.

Note that I is one of these groups if and only if Lx∩X∨ is a union of orbits of I,
and of no bigger group in the list. For example, the icosahedral group A5 acting on
P1 has generic orbits of size 60, plus three special orbits of size 12, 20, 30. Taking
a union of some of the special orbits, plus any number of generic orbits, we can
deduce for each value of n whether there exists a smooth hyperplane section with
icosahedral symmetry: the result is stated in the Introduction.

Finally, we can conclude that in some cases, some unnatural automorphisms can
exist, unnatural in the sense that do not lift to Aut(X).

Proposition 7.7. For any choice of n distinct points p1, . . . , pn inside P1, there
exists x such that Hx is smooth and Lx ∩ X∨ = {p1, . . . , pn} ⊂ P1.

If the associated subgroup I of PGL(Lx) has no fixed point, then the automor-
phisms of Hx cannot always be lifted to automorphisms of X, nor of any hyperplane
section of X .

This was already observed in [PV99] for the general hyperplane sections of
IG(2, 6) and IG(2, 8). More recently, hyperplane sections of the symplectic Grass-
mannians IG(2, 2n) were coined bisymplectic Grassmannians and studied in greater
details in [Ben21].
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8. Adjoint varieties

For a simple complex Lie algebra g, the adjoint varietyXad(g) is the unique closed
G-orbit inside P(g), where G = Aut(g) is the adjoint group (or any connected Lie
group with Lie algebra g). Although they are not always generalized Grassmannians
(type A is the exception), or when they are, not necessarily minimally embedded
(type C is the exception), adjoint varieties have several nice common properties
that we will first discuss.

8.1. Preliminaries. First observe that by Demazure’s results (Theorem 2.2),

Aut(Xad(g)) = Aut(g) = Go Γ,

where G = Aut0(g) is the adjoint group of g and Γ is the symmetry group of the
associated Dynkin diagram.

In the rest of this section we will exclude type C, for which a hyperplane section
of the adjoint variety is just a quadric. We will also exclude type A, since the
adjoint varieties in this type are flag manifolds Fl(1, n − 1, n) and were already
considered before.

The results of the previous sections imply the following statement:

Proposition 8.1. For any smooth hyperplane section Hx, defined by [x] ∈ P(g),

Aut(Hx) = StabAut(g)([x]) ⊂ Aut(g).

Proof. We have seen that an element of Aut(Hx) can be lifted to Aut(g), hence
more precisely to StabAut(g)([x]). There just remains to check that the restriction
morphism from StabAut(g)([x]) to Aut(Hx) is injective.

So consider g ∈ Aut(g) stabilizing [x] ∈ P(g) and acting trivially on Hx, hence
as a homothety on x⊥. If x /∈ x⊥ then g is semisimple. If x ∈ x⊥, consider an
element y /∈ x⊥ such that (y, y) = 0 (if necessary, add to y a multiple of x). Since g
preserves the Killing form and it acts as a homothety on x⊥, the space x⊥∩y⊥ ⊂ x⊥
is stabilized by g, and so is its orthogonal 〈x, y〉. Moreover [x] and [y] are the only
points in P(〈x, y〉) whose Killing norm is zero; g stabilizes Cx thus it also stabilizes
Cy, and therefore we can again conclude that g is semisimple.

As a consequence, the centralizer of g inside G o Γ contains a torus T whose
rank is the same as G (even though a priori it is not contained in the connected
component of the identity of GoΓ). Then g acts as the identity on the Lie algebra
of T , whose dimension is greater than one, which implies that it acts as the identity
on x⊥. Since G is simple, det(g) = 1 and g acts as the identity on P(g), thus
g = id. �

An interesting and important property of adjoint varieties is that they admit
contact structures; according to the celebrated LeBrun-Salamon conjecture, they
should even be the only Fano varieties of Picard number one (this excludes type
A) admitting such a structure (see e.g. [Be98] for an introduction). Recall that a
contact structure is given by a special distribution of tangent hyperplanes. Since
the adjoint variety is homogeneous, its tangent space at [Z] is simply [g, Z], and
the contact hyperplane is

P[Z] = [Z⊥, Z] ⊂ [g, Z] = T[Z]Xad(g),

where Z⊥ ⊂ g is the orthogonal to Z with respect to the Killing form K. Recall
that this contact hyperplane admits a non degenerate skew-symmetric form, defined
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up to scalar by

ωZ(U, V ) = K(Z, [U, V ]).

This is nothing else than the projective version of the famous Kostant-Kirillov
form. Except in type A, the isotropy representation is in fact irreducible on the
contact hyperplane, and the unique closed orbit defines a Legendrian cone LC[Z] ⊂
P(T[Z]Xad(g)) (see section 3.2 of [LM02]). Geometrically, this is the union of the
lines in the adjoint variety passing through [Z] (that some authors will rather see
as the VMRT, or Variety of Minimal Rational Tangents, at this point, see e.g.
[FH12, BFM18]).

Now if x ∈ h is regular semisimple with h a Cartan subalgebra of g, the hyper-
plane section Hx contains the Legendrian cone LC[Z] exactly when [Z] is a root

space of a long root. Indeed, since the linear span of LC[Z] is [Z⊥, Z], by the
usual invariance property of the Killing form it is contained in Hx if and only if
0 = K([Z⊥, Z], x) = K([x, Z], Z⊥), which implies the claim. In particular, any
automorphism of Hx permutes the points [Z] at which the VMRT coincides with
LC[Z] (i.e. the long root spaces), and thus permutes the Legendrian cones. This
was used in [PZ21] to help understanding the finite part of Aut(Hx), but we will
follow another route. Note nevertheless the interesting geometric property that
any hyperplane section Hx contains some of these nice Legendrian cones, studied
in detail in [Bu06].

8.2. Tevelev’s formula. In order to be able to describe Aut(Hx) more precisely,
we will need to know for which x ∈ g the hyperplane section Hx is smooth. The
answer to this question is provided by Tevelev’s formula [Te05].

Indeed, as always the projective dual variety parametrizes the singular hyper-
plane sections. For the adjoint variety Xad(g) this is a hypersurface Xad(g)∨ in
the dual projective space P(g∨) and Tevelev’s formula gives an equation for this
hypersurface.

Note that P(g∨) is naturally identified to P(g) by the Killing form. Being G-
invariant, an equation of the dual is given by some G-invariant homogeneous poly-
nomial on g. Once we fix a Cartan subalgebra h of g, we get a root space decomposi-
tion, a root system R made of linear forms on h, and a Weyl group W that permutes
the roots. By Chevalley’s Theorem, the algebra of G-invariant polynomials on g is
isomorphic to the algebra of W -invariant polynomials on t.

Proposition 8.2 (Tevelev’s formula). The invariant polynomial

Pg =
∏
α∈R`

α ∈ C[h]W ' C[g]G

gives the equation of Xad(g)∨, where R` ⊂ R is the subset of long roots (with the
usual convention that in a simply laced root system, all the roots are long).

A first consequence is the following:

Proposition 8.3. Suppose that g is simply laced. Let x ∈ g be such that the
hyperplane section Hx = Xad(g) ∩ P(x⊥) is smooth. Then x is regular semisimple.

Proof. Let x = xs+xn be the Jordan decomposition of x, with xs ∈ h and [xs, xn] =
0. By Tevelev’s formula Hx is smooth if and only if Pg(x) 6= 0. Since Pg is G-
invariant this is equivalent to Pg(xs) 6= 0, which implies that the centralizer of xs
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is exactly h, so that xs is regular. Then from [xs, xn] = 0 we deduce that in fact
xn = 0. �

In the non simply laced case the situation is richer.

Proposition 8.4. Suppose that g is not simply laced nor of type C. Let x ∈ g be
such that the hyperplane section Hx = Xad(g) ∩ P(x⊥) is smooth. Consider the
Jordan decomposition x = xs + xn, and suppose that xs ∈ h. Then one of the
following holds:

(1) xs is regular, and therefore xn = 0;
(2) x = xs and there is a unique short positive root β such that β(xs) = 0;
(3) there is a unique short positive root β such that β(xs) = 0, and we may

suppose that xn 6= 0 belongs to the root space gβ;
(4) x = xs and there exist two short positive roots β, β′ such that β(xs) =

β′(xs) = 0, and they generate a subroot system of type A2;
(5) there exist two short positive roots β, β′ such that β(xs) = β′(xs) = 0, and

they generate a subroot system of type A2; moreover xn = Xβ;
(6) there exist two short positive roots β, β′ such that β(xs) = β′(xs) = 0, and

they generate a subroot system of type A2; moreover xn = Xβ +Xβ′ .

Proof. The proof is similar to the one of Proposition 8.3. The only difference is
that in this case xs is not required to be regular, but it can be orthogonal to some
short roots whose span does not contain any long root; then these roots generate
a root subsystem consisting only of short roots. The claim of the proposition is
then a consequence of the fact that the root subsystems of the root systems of type
B,F,G consisting only of short roots are of type A1 or A2. �

The last three possibilities can only occur in type F4, for which we get exactly
six cases up to conjugation. Indeed there is a unique short root subsystem of type
A2 up to the Weyl group action. Let us denote by β, β′ the two simple roots of this
subsystem, and by X• a non-zero vector in the root space g•. Then the six cases
are given by x = xs + xn with:

xs xn
regular semisimple 0,

Kerβ 0, Xβ

Kerβ ∩Kerβ′ 0, Xβ , Xβ +Xβ′ .

8.3. The connected component. We already have enough information to deter-
mine the connected component of Aut(Hx), since

Aut0(Hx) ' N0
G(Cx),

where the RHS is the connected component of the identity of the normalizer of Cx
inside G. Indeed this reduces to Lie algebra computations, since Aut0(Hx) ⊂ G
is uniquely determined by its Lie algebra ng(Cx). According to the six cases of
Proposition 8.4, we obtain the following possibilities.

First case: x ∈ h is regular semisimple, then ng(Cx) = h and Aut0(Hx) = T .

Second case: Here G is of type Bn, G2, F4 and x ∈ h is semisimple with (x, αn) = 0
for αn a short simple root, and (x, α) 6= 0 for all roots α 6= αn. Then

ng(Cx) = h⊕ gαn
⊕ g−αn

.
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and Aut0(Hx) is an extension of a type A2 group by the torus corresponding to
α⊥n .

Third case: Here again G is of type Bn, G2, F4 and x = xs + xn, with xn 6= 0
and xs ⊂ h subregular. In particular we can assume that xn ∈ gαn

. We get
ng(Cx) = α⊥n ⊕ gαn

with α⊥n ⊂ h, so that Aut0(Hx) is an extension of the additive
group Ga by the torus corresponding to α⊥n .

Fourth case: Here G is of type F4, x ∈ h is semisimple and orthogonal to the two
short simple roots α3, α4 (and no other root). Then

ng(Cx) = 〈α3, α4〉⊥ ⊕ sl3(α3, α4).

where sl3(α3, α4) is the sl3 subalgebra generated by the root spaces of ±α3 and ±α4.
Then Aut0(Hx) is an extension of a type A3 group by the torus corresponding to
〈α3, α4〉⊥.

Fifth case: Here again G is of type F4, x = xs + xn with xs ∈ h semisimple and
orthogonal to the two short simple roots α3, α4 (and no other root) and we can
assume that 0 6= xn = Xα3+α4 ∈ gα3+α4 . Then

ng(Cx) = (α3 + α4)⊥ ⊕ gα3
⊕ gα4

⊕ gα3+α4

and Aut0(Hx) is an extension of a three-dimensional unipotent group by the torus
corresponding to (α3 + α4)⊥.

Sixth case: Here again G is of type F4, x = xs + xn with xs ∈ h semisimple and
orthogonal to the two short simple roots α3, α4 (and no other root) and we can
assume that xn = Xα3

+Xα4
. Then

ng(Cx) = 〈α3, α4〉⊥ ⊕ gα3+α4
⊕ Cxn

and Aut0(Hx) is an extension of a two-dimensional unipotent group by the torus
corresponding to 〈α3, α4〉⊥.

Note that if r is the rank of g, the dimension of Aut0(Hx) is r+ε, where according
to the six previous cases we have ε = 0, 2, 0, 6, 2, 0. Also note that the six cases give
each only one conjugacy class of subgroups of G.

Remark 8.5. Notice that when x is not semisimple, by Matsushima’s theorem
[Ma57] the Fano variety Hx cannot admit any Kähler-Einstein metric, since its
automorphism group is not reductive.

Beyond adjoint varieties, this criterion applies to a couple of other cases like
hyperplane sections of G(2, 5), or of the spinor tenfold OG(5, 10). Indeed, we know
that in these cases the automorphism group of a smooth hyperplane section Hx of
our variety X ⊂ PV is just the stabilizer of Cx in the group G = Aut(X). By
Matsushima’s theorem this stabilizer is reductive if and only if the G-orbit of Cx
in PV is affine. But here this G-orbit is simply the complement of X, and is not
affine since X is not a divisor.

Let us now turn to the component group of Aut(Hx), which can vary in a more
subtle way. In the next two subsections we will describe πx := NG([x])/N0

G([x]), and
in the last one we will discuss the possible contribution of the outer automorphism
group Γ.
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8.4. Regular semisimple elements. If x = xs ∈ h is regular, its centralizer is T
and the normalizer of the line [x] must be contained in the normalizer of T . We are
thus reduced to computing its normalizer inside the Weyl group. This normalizer
has been completely described by Springer [Sp74], whose results we will summarize
in this section. A first observation is:

Lemma 8.6. Let x be a regular semisimple element. Then πx is equal to StabW ([x])
and it is a cyclic group.

Proof. By [Sp74, Proposition 4.1]), x is regular if and only if its stabilizer inside W
is trivial. Therefore StabW ([x]) acts effectively on Cx, hence the statement. �

Recall that the algebra of invariants C[g]G is the same as C[h]W , and is therefore a
polynomial algebra. We fix a basis f1, . . . , fr of C[h]W of algebraically independent
homogeneous elements, where r is the rank of g, and we denote their degrees by
d1, . . . , dr. The corresponding hypersurfaces will be denoted Fi = V (fi) ⊂ P(h).
For any positive integer d, let

Vd :=
⋂
d-di

Fi.

Since
⋂r
i=1 Fi = 0, the codimension of Vd is equal to a(d), where

a(d) := #{di such that d - di}.
The stratification given by the Vd’s is closely related to the stabilizers in the Weyl
group. Indeed, if ξ is a d-th root of unity, for any element w ∈W let us define

V (w, ξ) := {v ∈ h | w(v) = ξv}.
The following result can be found in [Sp74, Proposition 3.2, Theorem 3.4, Theorem
4.2].

Theorem 8.7. Let us fix a primitive d-th root of unity ξ. Then

Vd =
⋃
w∈W

P(V (w, ξ)) and max
w∈W

dim(V (w, ξ)) = a(d).

If v ∈ V (w, ξ) is a regular element then

i) the order of w is d;
ii) dim(V (w, ξ)) = a(d);
iii) the elements w in W satisfying ii) form a single conjugacy class.

An element w ∈ W is regular if it admits a regular eigenvector. For such a w,
its order will be called a regular number. The sets E# of regular numbers of simple
Lie algebras were computed in [Sp74] and are reported in Table 4.

Corollary 8.8. Let x be a regular element in h. Then StabW ([x]) = Zd, for d the
maximal integer in E# such that [x] belongs to Vd.

Corollary 8.9. The list of possible stabilizers in W of regular elements in g is
given by all the groups Zd with d maximal inside E# with respect to the partial
ordering: m ≺ m′ if m | m′ and a(m) = a(m′).

Proof. If m ≺ m′ then Vm = V ′m and therefore, if the stabilizer of a regular element
contains Zm then it also contains Zm′ . If d is maximal for the partial ordering then
the stabilizer of a general regular element in Vd is equal to Zd. More precisely for
any d′ such that d | d′, the variety Vd′ is a strict closed subvariety of Vd; outside all
those subvarieties Vd′ , a regular element in Vd has stabilizer equal to Zd. �
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Type d1, . . . , dn E#

An 2, 3, . . . , n+ 1 {d ≥ 2 such that d | n or d | n+ 1}
Bn, Cn 2, 4, 6, . . . , 2n {d ≥ 2 such that d | 2n}
Dn 2, 4, 6, . . . , 2n− 2, n {d ≥ 2 such that d | 2n− 2 or d | n}
G2 2, 6 2, 3, 6
F4 2, 6, 8, 12 2, 3, 4, 6, 8, 12
E6 2, 5, 6, 8, 9, 12 2, 3, 4, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18 2, 3, 6, 7, 9, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30

Table 4. Fundamental degrees and regular numbers

Type degrees
An d | n or d | n+ 1

Bn, Cn d | 2n, d even
Dn d | n or d | n− 1, d even
G2 2, 6
F4 2, 6, 8, 12
E6 2, 4, 6, 8, 9, 12
E7 2, 6, 14, 18
E8 2, 4, 6, 8, 10, 12, 15, 20, 24, 30

Table 5. Orders of stabilizers

We finally obtain the list of all possible degrees d ≥ 2 of non trivial stabilizers
of regular elements, as reported in Table 5.

8.5. General case. In this section we show that even when x is not regular
semisimple, we can use Springer’s results to compute the normalizer of [x] in the
adjoint group G. For this we will need to restrict to a smaller root system. We will
need to introduce the following notations.

• Let j denote the subspace of h generated by the roots α ∈ R such that
(xs, α) = 0, and let S(j) denote the subgroup of G of type Adim(j) defined
by the root subsystem R ∩ j.
• Let k denote the orthogonal of j inside h, with the corresponding subtorus
T⊥ := exp(k) ⊂ T = exp(h), and the corresponding root subsystem R⊥ =
R ∩ k with Weyl group W⊥. These definitions make sense because in this
situation it turns out, after a case by case inspection, that the orthogonal
of the root subsystem R ∩ j is indeed a root system inside k.

The rank of R⊥ is the dimension of k. Of course when x is regular semisimple,
j = 0 and R⊥ = R. Otherwise, if xs is as in cases (2-3) of Proposition 8.4, then R
is of type G2, F4 or Bn with n ≥ 3 and R⊥ is of type A1, B3 or Bn−1, respectively.
If xs is as in cases (4-5-6) of Proposition 8.4, R is of type F4 and R⊥ is of type A2.

Lemma 8.10. πx = NG([x])/N0
G([x]) embeds inside W⊥ = Aut(R⊥).

Proof. Let us deal first with πx when we are not in cases (4-5-6) of Proposition 8.4.
By the unicity of the Jordan decomposition, any g ∈ NG([x]) stabilizes [xs] and
(when xn 6= 0) [xn]. Let us show that NG([xs]) ⊂W⊥ n (T⊥ × S(j)).
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The analysis of its Lie algebra made in Section 8.3 implies that N0
G([xs]) =

T⊥ × S(j). We can therefore identify k with the subspace of elements in g on
which N0

G([xs]) acts trivially. Since N0
G([xs]) is a normal subgroup of NG([xs]),

this implies that k, and therefore T⊥ as well, are stabilized by NG([xs]). Similarly,
we can identify k⊕sl(j) with the subspace of elements in g on which T⊥ acts trivially.
So again NG([xs]) preserves k ⊕ sl(j), and since it preserves k it also preserves its
orthogonal complement with respect to the Killing form, namely sl(j). But this is
0 or sl2, so modulo the action of S(j) we can suppose that the action of NG([xs])
on sl(j) is trivial. Then it stabilizes h, so embeds inside W n T . Since it also fixes
j, the image is contained in W⊥ n T⊥, so

NG([xs]) ⊂W⊥ n (T⊥ × S(j)).

To conclude, notice that for any xn 6= 0 in Proposition 8.4 we have

StabS(j)([xn]) = Stab0
S(j)([xn]),

from which we deduce that

NG([x]) ⊂W⊥ n (T⊥ × Stab0
S(j)([xn])).

Killing the connected component then yields the result.
Now suppose that xs is as in cases (4-5-6) of Proposition 8.4, so that R is of

type F4, dim(j) = 2 and R∩ j is of type A2. In order to follow the same arguments
as before we just need to ensure that any automorphism of sl(j) can be lifted to
N0
G([xs]). This is clear for the inner automorphisms, and the outer automorphism

is taken care by the next Lemma, which therefore concludes this proof. �

Let W be the Weyl group of F4 and R its root system. If α3, α4 ∈ R are the
simple short roots and α1, α2 ∈ R the simple long roots, then 〈α3, α4〉⊥ = 〈α1, β〉,
where β = α1+3α2+4α3+2α4. Both root subsystems R∩〈α3, α4〉 and R∩〈α3, α4〉⊥
are of type A2.

Lemma 8.11. Modulo the Weyl groups of R ∩ 〈α3, α4〉 and R ∩ 〈α3, α4〉⊥, there
exists a unique σ ∈ W acting as an outer isomorphism on both root subsystems.
Moreover no element of W can act as an outer automorphism on one of the two
root subsystems, and as an inner automorphism on the other.

Proof. If σ does not act as an outer automorphism on 〈α3, α4〉, we can assume that
it acts on this subspace as the identity by composing with an element of the A2

Weyl group of R∩ 〈α3, α4〉. Moreover an outer automorphism of 〈α3, α4〉⊥ modulo
the A2 Weyl group of R ∩ 〈α3, α4〉⊥ acts by exchanging α and β. One can check
that σ(α2) is not a root, thus such a σ cannot exist. An analogous argument applies
if σ does not act as an outer automorphism on 〈α3, α4〉⊥.

If σ acts as an outer automorphism both on 〈α3, α4〉 and 〈α3, α4〉⊥, modulo the
action of the two Weyl groups stabilizing the two subspaces, σ exchanges α3 with
α4 and α1 with β. One can check that σ := sα2

◦ sα3
◦ sα2

◦ sα4
◦ sα3

◦ sα2
does the

trick. Moreover, since 〈α1, α3, α4, β〉 = h, the condition that σ must exchange α3

with α4 and α1 with β (modulo the action of the Weyl groups) defines it uniquely
as a linear automorphism of h, hence in W . �

Now we can deduce the statement we are aiming at.
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Proposition 8.12. The finite group πx = NG([x])/N0
G([x]) is given by

πx ' StabW⊥([xs]) oBx,

where Bx = Z2 in cases (4-5-6) of Proposition 8.4 if α1(x) = α2(x) for α1, α2 ∈ R⊥
which are W⊥-conjugate to the simple roots of R⊥ = A2; and Bx = 1 otherwise.

Proof. When xn is nonzero the group Γ is trivial. In cases (2-3) of Proposition
8.4 we can identify πx with StabW⊥([xs]) because (W⊥)(xn) = xn and we can
always rescale xn by an element of G fixing xs in order to fix x. t In cases (4-
5-6) of the Proposition, the nilpotent element xn can be chosen among 0, Xα3+α4

or Xα3 + Xα4 , so that it is fixed by the Cartan involution exchanging α3 and α4.
Moreover a conjugate of the element σ appearing in Lemma 8.11 acts by exchanging
α1 and α2 on k and fixes xn ∈ sl(j). By rescaling xn as before, we deduce that a
conjugate of σ fixes [x] and thus descends to an automorphism of Hx, giving the
extra Z2. �

As we already mentioned we can then describe StabW⊥([xs]) with the help of
Springer’s result summarized in the previous subsection.

Example. Let us describe πx when g is of type F4. If x is regular then πx is either
Z2,Z6,Z8 or Z12 (see Table 5); if x is subregular then R⊥ is of type B3 and πx is
either Z2 or Z6 (see Table 5); if x is as in case (4-5-6) of Proposition 8.4 then R⊥

is of type A2 and πx is either Z2 or Z3 (if Bx = 1, see Table 5), Z2 oZ2 or Z3 oZ2

(in the hypothesis of case i) of the previous proposition, i.e. when Bx = Z2).

8.6. The action of outer automorphisms. In order to completely describe
Aut(Hx), there remains to understand the automorphisms coming from Γ. If the
latter is non trivial, we are either in type An (n ≥ 2), Dn (n ≥ 4) or E6, and
Γ = Z2 except in type D4 for which Γ ' S3. Recall moreover that since we are in
the simply laced case, x must be regular semisimple.

Denote by w0 the longest element of W . Since w0 ◦ Γ ◦ w0 = Γ, if Γ ∼= Z2 then
either Γ ◦w0 = ± id |h or w0 = − id |h, the first possibility occurring exactly in type
D2m+1 and E6 (see [Bo68], tables at the end of Chapter 6).

Let G be of type D2m, m ≥ 3. The root system orthogonal to any root α is of
type D2m−2 × A1. Indeed, any root can be sent to the n-th root of the Dynkin
diagram of D2m by an element w ∈ W . The group w−1 ◦ Γ ◦ w acts on the set of
roots by exchanging α with one of the two roots of the orthogonal root system A1.
Any conjugate of Γ acts in this way.

If G is of type D4, the root system orthogonal to any root is of type A1×A1×A1

and a certain conjugate of Γ acts by exchanging the three A1 factors.
Let us denote by π̃x := Aut(Hx)/Aut0(Hx). At this point, we know that, when

Γ is not trivial, π̃x is an extension by StabW ([x]) of the group Cx of elements of Γ
that descend to Hx.

Proposition 8.13. The group Cx is non trivial exactly in the following cases:

• G is of type D2m+1 (m ≥ 2) or E6, and then Cx ' Z2.
• G is of type An (n ≥ 2) and (x, αi) = (x, αn−i+1) for some set {α1, . . . , αn}

of roots which is W -conjugate to the set of simple roots; then Cx ' Z2.
• G is of type D2m (m ≥ 3), and (x, α) = (x, α′) for two roots α, α′ such that
〈α, α′〉⊥ is of type D2m−2; then Cx ' Z2.
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• G is of type D4, and (x, α) = (x, α′) = (x, α′′) for three mutually orthogonal
roots α, α′, α′′; then Cx ' S3.
• G is of type D4, the previous condition is not satisfied but there exist two

orthogonal roots α, α′ such that (x, α) = (x, α′); then Cx ' Z2.

Proof. The first statement follows by noticing that [x] is fixed by Γ ◦ w0 (which
sends x to −x). If G is of type D2m with m ≥ 3, suppose that w ∈ W sends α to
the n-th simple root, and α′ to the (n− 1)-th simple root of the root system. Then
w−1 ◦ Γ ◦ w fixes x and thus Cx ' Z2. The cases of D4 and An can be treated
similarly. �

Example. Let us describe completely Aut(Hx) when g is of type E6. Since E6

is simply connected, x is regular and Aut0(Hx) = T . Then, depending on the
stabilizer of [x] inside W ,

Aut(Hx) ∼= (Aut0(Hx) o StabW ([x])) o Γ ∼= (T o Zd) o Z2

for d = 2, 4, 6, 8, 9, 12 (see Table 5).

8.7. Conclusion. Let us synthetize the results we have obtained. Using the no-
tations of the previous sections, the automorphism group of a smooth hyperplane
section Hx of an adjoint variety can be decomposed as

Aut(Hx) = NG([x]) o Cx,

where Cx = StabΓ([x]) ⊂ Γ (a subgroup of the outer automorphism group of the
root system R) is described in Proposition 8.13. We showed in Section 8.3 that
Aut0(Hx) = N0

G([x]) and we described this group explicitly. By Proposition 8.12,
the quotient πx = NG([x])/N0

G([x]) can be decomposed as

πx = StabW⊥([xs]) oBx,

where W⊥ ⊂ W is described in Section 8.5. In the same Proposition Bx is made
explicit, while StabW⊥([xs]) is a cyclic group completely described in Corollary 8.9.

Notice on the one hand that if Γ is non trivial, then x is regular semisimple and
W = W⊥; on the other hand Bx is non trivial only if W⊥ (W , and it is essentially
the group of outer automorphisms of R⊥ that are contained in G and stabilize [xs].
Thus Bx and Cx play similar roles and cannot be both non trivial; we denoted their
product by Dx in Theorem 1.2. Finally, Aut(Hx) can be decomposed as

Aut(Hx) = Aut0(Hx) o StabW⊥([xs]) oDx.

In Table 6 we reported all the possibilities for each term of this decomposition, with
the following notation:

• T is a maximal torus in G, TV ⊥ is the torus whose Lie algebra is V ⊥ ⊂ h
for a subspace V ⊂ h and h a Cartan subalgebra of g;

• Ga is an additive one dimensional group, U2 (respectively U3) is a two (resp.
three) dimensional unipotent group, Ai is a Lie group of type Ai.

The second column follows the notation of Proposition 8.4. In type A we reported
only the subgroup of Aut(Hx) that extends to Aut(Xad(sln+1)), since there could be
some unnatural automorphisms (see Theorem 7.6 and the discussion that follows).
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Type x Aut0(Hx) StabW⊥([xs]) ∼= Zd Dx

An (1) T d ≥ 2 , d | n or d | n+ 1 1 or Z2

Bn (1) T d | 2n, d even 1
Bn (2) Tα⊥n oA2 d | 2n− 2, d even 1
Bn (3) Tα⊥n oGa d | 2n− 2, d even 1
D4 (1) T d = 2, 4 1 or Z2 or S3

D2m (1) T d | 2m or d | 2m− 1, d even 1 or Z2

D2m+1 (1) T d | 2m+ 1 or d | 2m, d even Z2

E6 (1) T d = 2, 4, 6, 8, 9, 12 Z2

E7 (1) T d = 2, 6, 14, 18 1
E8 (1) T d = 2, 4, 6, 8, 10, 12, 15, 20, 24, 30 1
G2 (1) T d = 2, 6 1
G2 (2) Tα⊥2 oA2 d = 2 1

G2 (3) Tα⊥2 oGa d = 2 1

F4 (1) T d = 2, 6, 8, 12 1
F4 (2) Tα⊥4 oA2 d = 2 1

F4 (3) Tα⊥4 oGa d = 2 1

F4 (4) T〈α3,α4〉⊥ oA3 d = 2, 3 1 or Z2

F4 (5) T(α3+α4)⊥ o U3 d = 2, 3 1 or Z2

F4 (6) T〈α3,α4〉⊥ o U2 d = 2, 3 1 or Z2

Table 6. Automorphisms of smooth linear sections Hx of adjoint varieties
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[Ku15] Kuznetsov A., On Küchle varieties with Picard number greater than 1, Izv. Math. 79

(2015), 698–709.
[Ku18] Kuznetsov A., On linear sections of the spinor tenfold I, Izv. Math. 82 (2018), no. 4,

694–751.
[KPS18] Kuznetsov A., Prokhorov Y., Shramov C., Hilbert schemes of lines and conics and

automorphism groups of Fano threefolds, Jpn. J. Math. 13 (2018), 109–185.



AUTOMORPHISMS OF HYPERPLANE SECTIONS 39

[LM02] Landsberg J.M.,Manivel L., Construction and classification of complex simple Lie alge-

bras via projective geometry, Selecta Math. 8 (2002), 137–159.

[LM03] Landsberg J.M.,Manivel L., On the projective geometry of rational homogeneous varieties,
Comment. Math. Helv. 78 (2003), 65–100.

[LiE] LiE, A computer algebra package for Lie group computations, available online at

http://wwwmathlabo.univ-poitiers.fr/∼maavl/LiE/
[Ma57] Matsushima Y., Sur la structure du groupe d’homéomorphismes analytiques d’une cer-
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de Bourgogne et Franche-Comté, 9 Avenue Alain Savary, BP 47870,
21078 Dijon Cedex, France
Email address: Vladimiro.Benedetti@u-bourgogne.fr
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