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Selection Rules and Intensity Calculations for a C; Asymmetric Top
Molecule Containing a Methy! Group Internal Rotor
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* Molecular Physics Division, National Instinte of Standards and Technology, Gaithershurg, Maryland
20899, t Laboratoire de Physique Moléculaire er Applications, Université Pierre et Marie Curie et
CN.R.S. 4 Place Jussieu, Tour 13, 75252 Paris Cedex 05, France; and t Laboratoire
de Chimie Physique Moléctlaire-CPI60 /09, Université Libre de Bruxelles,

Avenue F. D. Roosevelt, 50, 1050 Bruxelles, Belginm

A detailed discussion is presented of the relationships between four different molecular symmetry
groups, i.e.. Dy, C;, (5, and (‘;:,"’, commonly used to discuss energy level symmetry species and
electric-dipole selection rules for internal rotor problems in molecules with a symmetric rotor top
and a frame with a plane of symmetry, paying particular attention to confusion arising from the
fact that the smaller groups are not always subgroups of the larger, and the groups are applied to
different parts of the internal rotation problem (i.e., Ds to pure rotation, C to vibration-rotation,
(3, and (‘;f" to torsion-rotation). The meaning in this context of the traditional X,, K, labels
for rotational energy levels in molecules with internal rotation is examined in detail. A discussion
is also given of the relationship between three different schemes for defining a molecule-fixed axis
system in internal rotation problems, i.e., the principal axis method, the internal axis method,
and a hybrid method referred to here as the “rho axis method,” paying particular attention to
the meaning of a-type, b-1ype, and ¢-type transitions when using each of these axis systems. Some
of the above ideas were helpful in adding intensity calculations to our earlier computer program
treating internal rotation and overall rotation in acetaldehyde-like molecules, and these intensity

calculations are also brielly discussed.

1. INTRODUCTION

In spectroscopic studies of an asymmetric top molecule containing an internal rotor
group it is not uncommon to use a mixture of language and formalism arising from
a rigid-rotor model, a traditional vibration-rotation model, and an internal rotor model.
In this paper we discuss some aspects of the confusion which can arise from this
simultaneous use of physical ideas from three rather different models. To simplify an
already complicated situation, we limit consideration to an asymmetric rotor molecule
consisting of a symmetric rotor top which has C;, symmetry and a frame which has
a plane of symmetry. This class of molecules contains methanol, propene, acetalde-
hvyde, etc.

In Section 2 we discuss four molecular symmetry groups and their range of appli-
cation, namely D, for pure rotation, C, for vibration-rotation, and Cs, or Cgi,") for
torsion—-rotation (or vibration-torsion-rotation), paying particular attention to the
use of asymmetric rotor K, K. labels for the rotational states and to the use of a-type,
b-type, and c-type labels for electric-dipole transitions.

In Section 3 we discuss three different molecular axis systems in common use for
treating the torsion-rotation problem, namely a system (PAM ) locked to the principal
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inertial axes, a system (RAM) locked in the frame with the z axis parallel to a vector
often called p in the literature, and a system (IAM) “floating” with respect to both
the frame and the top, in which torsional angular momentum vanishes. Details of the
form of the Hamiltoman, and hence details of the K, K, labeling and of the «, b, ¢-
type labeling, depend on which of these three axis systems is used.

In Section 4 we return to the question of a-type, b-type, and c-type transitions for
the RAM and IAM systems. We also describe a computer program for calculating
intensities in the RAM system.

2. GROUP THEORY AND SYMMETRY LABELS

A question that soon arises, when large-amplitude motions are present in a molecule,
is which symmetry group to work with. In fact, four different symmetry groups (i.e.,
D;, C,, Cy, = Ggand G ém)), and therefore four different ways of labeling the energy
levels, have been used in discussing vibration—rotation—torsion (vrt) energy levels in
molecules of the type under discussion here. In an attempt to eliminate some of the
confusion arising from the simultaneous use of these four groups, we consider the
limiting cases of applicability and the symmetry operations for each of these groups
in turn.

Limiting Case (r) with Point Group D,

This limiting case arises when only overall rotation (r) is considered. The traditional
group-theoretical treatment of rotational energy levels for all asymmetric top molecules
(1), regardiess of the symmetry propertics of their equilibrium geometry, corresponds
to use of the point group D,, which contains the four symmetry operations E, C,(a),
Ca(b), and Ca(c), where C; represents a twofold rotation, and a, b, ¢ represent the
three mutually perpendicular principal axes of inertia of the asymmetric top. The
well-known character table of this group is given in Table I.

TABLE 1
Character Table® of D,

r K K. E Cy(a) Cy(b) Ca(c) OperatorP
A ee 1 1 1 1 UgsHpsHe
B, eo 1 1 -1 -l Jav 0z,
Bb o0 1 ~1 1 -1 Jb‘ QZb
B, oe 1 -1 -1 1 Jev 5c

4The species T are one of several notations
used; e(ven)o(dd) labels for K, K. are common
asymmetric rotor notation.

bMolecule-fixed components of J and components
?3., etc. of the direction cosine matrix are
defined on pp. 282 and 286 of Ref. (2), with
a,b,c » z,x,y. Molecule-fixed components of
the dipole moment operator u are independent
of the Euler angles and are therefore
invariant to the opetations of this group.



Although it is not always explicitly stated, the effect of these symmetry operations
can be defined for many asymmetric tops only for the three Eulerian angles describing
the overall rotational motion of the molecule (as is done, for example, in Appendix
I of Ref. (2)). A given C, operation has vibrational significance only when it can
move every vibrational displacement vector from its original atom to an identical
atom located at a position defined by rotating the original atom through 180° about
the G axis. This will only be the case when the molecule has an equilibrium geometry
such that this C, operation belongs to the point group of the molecule.

Transformation properties of the Eulerian angles under the operations of D, with
da, b, ¢ = z, x, y are given in Table II. Transformation properties of the molecule-
fixed components of the total angular momentum operator (2) derived from the co-
ordinate transformations in Table Il are given in Table 1.

The reason why D, is useful for a// asymmetric top molecules arises from the fact
that the effective rotational Hamiltonian H, for any isolated asymmetric top molecule
can be expanded, as is well known (3-35), in a series of products containing even
powers of the three components of the molecule-fixed angular momentum components;

e.g.,
H. = AJ:+ BJ: + CJ? — D)(J*)? — D J2J? — DiJ4 — 28,J%(J% — J?)
— 8x[J2(J3 — J?) + (JE — J?)J2] + higher order terms. (1)

It can be seen from Tabte I that all the operators in H, (and all higher order terms
containing even powers of each angular momentum component) are totally symmetric
under the operations of D;. This implies that the symmetry species of D, can be used
to label all eigenvalues (rotational energy levels) obtained from H; in Eq. (1).

Rather than use the species A, B,, By, and B, (or some other notation for the
irreducible representations of D,), spectroscopists normally prefer to use instead the
two labels K, and K., where from a purely formal group-theoretical point of view
(—1)*s, and therefore the parity of K,, gives the +1 or —1 character in the Cs(a)
column of Table I, and (—1)*- gives the character in the C,(c¢) column. (Characters
for C;(b) need not be specified since they are simply the product of those for C,(a)
and C,(c¢).) Since the prolate (or oblate) symmetric top basis functions used to set
up the asymmetric rotor Hamiltonian matrix contain a factor e*** (or e*'%*), and
since Cy(a)fora, b,c— z, x, y(or Cy(c)fora, b, c—> x, y, z) corresponds to X —
X + =, the rigorous, but purely formal, group-theoretical characters also conveniently
permit a physical interpretation, i.e., the parity of K.

TABLE I

Transformation Properties in D,* of the Eulerian Angles®

f(x,0,0)

E £(x,6,¢)

£(m+x,8,¢)

Cy(a) £(x,0,4)

f(*x,“'ﬁ,"+¢)

Cy(b) £(x,8,0)

Cylc) £(x,8,¢) = f(m-x,7m-6,7+¢)

8See Table I.
f(x,9,¢) represents an arbitrary
function of these angles.



Selection rules for electric dipole transitions can be determined ( /) by considering
transformation properties of the laboratory-fixed Z component of the electric dipole
moment operator,

e = Py + q)Zy“_l' + .. (2)

Since the direction cosine matrix elements ® are functions only of the Eulerian angles
(2), their transformation properties can be determined from Table II. Species of the
three direction cosines occurring in Eq. (2) for a, b, ¢ = z, x, y are shown in Table
1. The three molecule-fixed components of the electric-dipole moment operator u
occurring on the right of Eq. (2) are constants within the framework of the purely
rotational problem (i.e., independent of the Euler angles), and thus remain unchanged
under the symmetry operations of D,. As a result, the laboratory-fixed Z component
of 1 does not have a well-defined symmetry species. Although this difficulty with the
symmetry species of u, will disappear when we consider vibration-rotation symmetry
properties, it is nevertheless possible to determine selection rules for purely rotational
transitions from the species of ®,,, ®,,, and ®,.. Examination of Table I, together
with the relation between K, K, and the characters for C;(a), C;(¢), indicates that
transitions induced by u, (and therefore involving matrix elements of ®,. for a, b,
c—* z, X, y)obey AK,, AK, = even, odd; transitions induced by y; obey AK,, AK.
= odd, odd; and transitions induced by u. obey AK,, AK, = odd, even. It is thus
clearly possible to define four mutually exclusive types of pure rotational transitions
in an asymmetric top, namely (1) AK,, AK, = even, odd, (i) AK,, AK,. = odd, odd,
(i11) AK,, AK, = odd, even, and (iv) AK,, AK,. = even, even, which are then conve-
niently referred to as a-type. b-type, c-type, and forbidden transitions, respectively.

This concludes our brief discussion of limiting case (r), but in preparation for later
limiting cases, we note that operators of the form J,J;, 7.J,, or p.J,, where = is the
vibrational angular momentum (2) and p, = —ih d/d« is the internal rotation angular
momentum (¢ is the torsional angle), would not be totally symmetric in the group
D,. The operator J,J, is of species B. # A in Table 1; transformation properties of «
and p, are not defined at all in Table 1.

Limiting Case (vr) with Point Group C,

This limiting case is appropriate when small-amplitude vibrations (v) and overall
rotation (r) are considered together (vr). The traditional group-theoretical treatment
of vibration—rotation energy levels when large-amplitude vibrations are absent {2, 6)
involves use of the point group to which the equilibrium geometry of the molecule
belongs. In the present paper, this point group is by hypothesis C,, which contains
only two elements (£ and ¢). Table Il gives the symmetry species and characters
for C,.

The fact that the vibration-rotation point group here (and in general) is not a
subgroup of the group D, used for the purely rotational problem prevents any rigorous
mathematical use of group-theoretical correlation tables, etc., when passing from the
pure rotational to the vibration-rotation problem.

Symmetry operations in C; are defined for both the small-amplitude vibrational
displacement variables d; (2) and the Eulerian angles Xf¢ (2) describing the overall
rotation of the molecule. These vibrational and rotational variables can in turn be
precisely defined, as explained in more detail elsewhere (7, 8), in terms of the labo-
ratory-fixed coordinates R; of the atoms in the molecule by means of the equation



TABLE 1ll

Character Table® of C
E (23)*
E Oy Operatorsb
Al 1 1 JK’JY'JZ; JC; “C; l-laxllb
A 1 -1 uxsHy»bzs JarJpi TarThs M

4The point-group operation o, corresponds to
the permutation-inversion operation (23)* for
the acetaldehyde atom numbering in Fig. 1.
Z and abc are laboratory-fixed and molecule-
fixed axis systems. The molecular symmetry
plane is assumed to contain the a and b axes.

R, = R+ S '(x8¢)[a; +d,]. (3)

where R represents the laboratory-fixed coordinates of the center of mass of the mol-
ecule, a, represents the equilibrium position of atom i in the molecule-fixed axis system,
and S(Xxf¢) is the direction cosine matrix defined in Ref. (2). Table IV gives the
transformation properties of the Eulerian angles, small-amplitude vibrational dis-
placement vectors, and vibrational normal coordinates under the operations of C,.
These transformation properties lead to the symmetry species shown in Table III for
molecule-fixed components of the total angular momentum (J), vibrational angular
momentum (=), and electric dipole moment operator (u).

We see from Tabie III that operators of the form =,J, are now totally symmetric;
i.e., they are totally symmetric with respect to the point group C,. The complete
vibration-rotation Hamiltonian /., (2), which contains these and other vibration-
rotation operators, is also totally symmetric, so that the two symmetry species (4" and
A") of C; give us a rigorous classification system for eigenfunctions of #,,.

Selection rules can again be found by considering Eq. ( 2). The species of components
of the direction cosine matrix & and of molecule-fixed components of the dipole

TABLE 1V

Transformation Properties® in C, of the Born-Oppenheimer Variables®

R X,8,¢ dy dq d;, i#2,3 Qj=1-10 Qj=11-15

Oy = (23)* -R m=X,T-6,n+¢ Gvd3 Dvdz Uvdi, 1*2,3 +Q_]=l'10 —Qj=11‘15

3The correspondence abc + zxy is assumed, so that g, = o,(xz), and aV[dx,dy,d ]
= [d,,-d,,d,] for any vector d. The equivalent rotation (10) for o, is cz(yf.

bThe variables traditionally used in the molecular wave function, as found on
the right of Eq. (3). For acetaldehyde, linear combinations of the d; (atom
numbering as in Fig. 1) are used to form the normal coordinates Qj, j=1-10
(species A') and j = 11-15 (species A").



moment operator p in C; are as given in Table 1II, so that the laboratory-fixed Z
component of the dipole moment operator u, now belongs to the symmetry species
A”. As is well known, we can use the species of the molecule-fixed components u.,
uy, M- 1o determine vibrational selection rules, and the species of u, to determine
overall vibration-rotation selection rules.

For a molecule with no large-amplitude vibrations, symmetry elements of the point
group can be placed in a one-to-one correspondence with symmetry elements of the
Longuet-Higgins group (9) of feasible permutation-inversion operations. For the
equilibrium geometry and atom numbering scheme for CH;CHO shown in Fig. 1, we
find that £ — E and ¢ — (23)*. Bunker ( /0) has introduced the concept of equivalent
rotation to describe the effects of permutation-inversion operations on the Eulerian
(rotational ) angles. Using this terminology, we find that the equivalent rotation for
(23)* is (L (c).

One might expect, because the character under (23)*, and therefore under C;(c¢),
is well defined, that the parity of K. would also retain a rigorous group-theoretical
meaning. As is seen below, this is strictly true only if the vibrational symmetry of the
vibration—rotation state is either purely * 4" or purely *4". Table V shows the relations
between *'T', *T", 'T, and K, obtained for these two cases, where for clarity and emphasis,
left superscripts are used to differentiate between vibrational ( v), rotational (r), and
vibration-rotation ( vr) symmetry species (I').

The parity of K, does not have an absolutely rigorous meaning, even for vibration—
rotation states with purely YA’ or 4" vibrational symmetry, since c¢-type Coriolis
interactions will mix states according to the selection rules " A"« YA or V4" <+ 4",
and AK, = 1, AK, = 0. Nevertheless, for a near-prolate rotor with a large A rotational
constant and only moderate Coriolis interactions, the absolute value of K, often remains
an excellent approximate quantum number.

Consider now, with the help of Table VI, what is meant by an a-, b-, or c-type
vibration-rotation transition. Table VI gives schematically eight “upper-state” vibra-

FIG. I. Approximate structure and atom numbering scheme for the acetaldehyde molecule, CH,CHO.
In the x', y', z-axis system, which is used in Eq. (7), (i) the methyl carbon atom, C,,, lies at the origin, (ii)
the z' axis lies along the C’; axis of the methyl group. (iii) all atoms lie in the x'z' plane, except for H, and
H; (hidden by Hs in the figure), which lie symmetrically above and below the plane of the paper, respectively,
and (iv) the center of mass of the molecule lies at the point A (near the aldehyde carbon C,).



TABLE V

Values of K, Corresponding to Values of ((23)* for
Vibrational States of Pure A" or 4” Symmetry

vrra Al A A" A"
<(23)k>b +1 +1 -1 -1
vre A A" A A"
rrd Al A" A" A
K_& e o o e

[«

8yibration-rotation symmetry of the wavefunction.
PExpectation value of (23)* for this symmetry.

CSymmetry species assumed for the vibrational
factor of the vibration-rotation wavefunction.

dSymmetry required for the rotational factor by
rows 1 and 3.

€parity of Kq required by row 4 (e=even, o=odd).

tion-rotation wavefunctions (¥}, each of which consists of a main component
(Yunpen) Plus components mixed in by a-type (Y, (Cor,)), b-type (Ypen(Cory)), and
c-type (¥pen(Cor,)) Coriolis interactions. Each component is written as a simple prod-
uct of a vibrational factor and a rotational factor. As mentioned earlier, the parity of
K, remains a good quantum number only under Coriolis interactions which do not
mix ¥ A4 and ¥ 4" states. Immediately below the main component of each wavefunction
is indicated the molecule-fixed dipole moment component (u,, s, or u.) of the operator
¢, in Eq. (2) which gives a nonvanishing transition moment from a lower state
(chosen as an example) of the form ¢, = | 4" > |Jee », where the subscripts ¢ = even,
o = odd on J give the parity of K, K,. The dipole moment component y; under each
Vunpent giVes rise to the usual terminology of a-type, b-type, ¢-type, or forbidden tran-
sition, and leads to the well-known result for a molecule like acetaldehyde with z, x,
y->a,b, cthat"A' "4 and 4" <> ¥ A" transitions are induced by the ¢ and/or b
component of the dipole moment operator (an a/b hybrid band (6)), while 4" &
¥4’ bands are induced by the ¢ component (a c-type band (6)).

Consider next the effects of Coriolis mixing on the transition moment for a nominal
(main component) YA’ <> ¥4’ g/ b hybrid band. We see from rows 2 and 4 of Table
VI that u, and g, dipole matrix elements now contribute intensity to the nominal -
type lines, and that y, and u. matrix elements contribute intensity to the nominal b-
type lines, but that no dipole moment components, not even u., contribute intensity
to the nominal c-type transition | A" )| Joe) <> | A" )| Jee ) (see Tow 3). Also, no com-
ponents give intensity to the forbidden transition |A4'M|Je) < | A D |Jeey (se€
row |).

Similar considerations for the effects of Coriolis interaction on a nominal Y4" «
YA’ c-type band show that both u, and u, matrix elements contribute intensity to the
nominal c¢-type lines, but neither contributes intensity to the nominal a-type or b-
type transitions, i.e.,t0 | A" ) |[Jeo ) < [ A" ) [Jec) OF [ A" Y[ Joo ) < | A" |Jee ) transitions.
On the other hand, all three transition moments contribute to the nominally forbidden
| A" Jeey <> | A" )| Jee ) transition.



TABLE V]

Dipole Moment Components Giving Nonzero® Transition Moment Matrix Elements
from Wigue = | A" Y1 Jkyme n-ep to Coriolis-Perturbed®” ¥ ... Wavefunctions

Yypper = Vunpert * ¢pert(C°ra) + wpert(corb) + Wpert(corc)

fvra'>

|VA‘;|Jee> + Ea‘vA";|Jeo> + EbivA";|J00> + EclvA';er)

|V!’.‘A">

[VA'> 30> + e4| VA" |Jae> + ep|VA™ [ Jg0> + e |VA'> [T
Ha f He Hp

fVEA'> = IVA|;IJoe> + g,)Y ";3J00> + SblvA";|3e0> + sC]VA';}Jee>

[VTA™S = [VA'S[I > + e VA" [Jge> + ep| VA [Jae> + e |VA'> [Too?
Hp He £ Ha

[VEA"™S> = [VA">|Joe> + €5 |VA' > |Tgg> + e |VA'>|To0> + e |VA™> T
f Ha 3] He

[VTA'> = lVA";]Jeo> + ea|vA';|Jee> + gb\VA';|J0e> + EclvA"?|J00>

,VI‘A!'>

VA" [Joe> + g4 1VA' > 000> + ep| VA | Jag> + e |[VA"> | Jge>
e up Ha £

1vrA-> = IVAH;lJOO> + Ea|VA';"JQe> + eb’VAf;LJee) + ECIVAII;IJec’)

BMatrix elements from ¥qguer = |VA'>}Jge> (e=even, o=0dd) to
wavefunctions above the symbol Ui=a,b,c aTe allowed for the term
$7:44 in Eg. (2). Matrix elements above an f are forbidden.
£4:Ep1Eq represent a,b,c-type Coriolis mixing coefficients.

We have discussed the examples in Table VI in some detail to illustrate the ambi-
guities and confusion which arise when the nominal a-, b-, or ¢-type character of a
transition does not coincide with the direction of the dipole moment component
actually responsible for the major contribution to the transition moment matrix ele-
ment. This discussion also serves as preparation for the similar but more complicated
discussion of a-, b-, and c-type transitions when internal rotation splittings are present.
In that case the torsion—rotation coupling p,J; plays a role analogous to the vibration-
rotation Coriolis coupling here.

Limiting Cases (vrt and rt) with Permutation-Inversion Group Gy

The first limiting case (vrt) is appropriate when small-amplitude vibrations (v),
overall rotation (r), and internal rotation (t for torsion) are considered. The other
case (1) is appropriate when only overall rotation and internal rotation are considered
(rt). For both cases point groups can no longer be used (/1), and one must change
to a Longuet-Higgins permutation—inversion group (9, 10). For the problem at hand,
this group contains six elements, which for acetaldehyde with the numbering scheme
in Fig. 1 are E, (123), (132), (12)* (13)*, and (23)*. This permutation-inversion
group, often called G, is isomorphic with the point group Cs,, even though the atoms



in acetaldehyde have an exceedingly low probability of passing through a Cs, config-
uration during their vibrational excursions. Because the symmetry species and character
table notation of (5, are so well known, however, it is customary for spectroscopists
to simply adopt the notation for the isomorphic Cs, point group when dealing with
the permutation-inversion group G,. Table VII gives this character table and symmetry
species.

Table VII indicates that wavefunctions of species 4, transform into themselves, and
wavefunctions of species A, transform into their negatives under the operation (23 )*.
This situation is similar to that described in the preceding section, with 4, and 4,
here playing the role of 4" and A" there. The precise meaning of the Cs, symmetry
operations is defined in Section 3; only a summary of the results obtained from those
detailed considerations is presented now.

The variable transformations described in Section 3 can be appliedto J= K =0
high-barrier torsional wavefunctions to show that they consist of an 4, + F pair when
v, = even, and an A, + E pair when v, = odd. (The 4,/ A4; alternation with v, is related
to the fact that the small-amplitude torsional vibration v;5 in CH;CHOQ is antisymmetric
with respect to the plane of symmetry and is thus of species A” in the C; point group
of the non-internally rotating molecule.) One can further show that rotational functions
with K, = even and odd are of 4, and 4> symmetry species, respectively. Rotation-
torsion levels of 4 species (4, or A,) thus arise only from torsional levels of A species,
while rotation-torsion levels of E species arise only from torsional levels of E species.

It is tempting, for completeness, to include a discussion of the small-amplitude
vibrations at this point, but such discussions can be quite complicated when a large-
amplitude motion is present ( /2-14). This complication can be understood in the
case of acetaldehyde by noting that the role of the “in-plane’ methyl hydrogen is
plaved by all three methyl hydrogens in turn during the internal rotation motion,
making impossible any simple definition for a small-amplitude mode of the in-plane
methyl hydrogen. Even though the vibration-rotation-torsion ( vrt) case is not carefully

TABLE VII

Character Table? for G = (s,

E 2C3 3°V

(13)*
(132) (12)*
E (123) (23)* Operator®
Al 1 1 1 Jx,JY,Jz;QZy;Jy;ux,uz
Ay 1 1 -1 UK By s W73 87502723 5 T2 1y
E 2 -1 0

4symmetry operations are given in C3y notation in the
upper row and Gg notation in the lower three rows.
Symmetry species for molecule-fixed (xyz) components
are valid for the PAM and RAM Born-Oppenheimer
coordinates in Eqs. (7) and (25). The species for
laboratory-fixed (XYZ) components are always valid.



considered here, it seems likely that small-amplitude vibrational motions localized in
the frame, which are of symmetry A’ and A" in C;, can simply be considered as small-
amplitude motions of 4, and 4, symmetry in C;,. We thus limit consideration in this
paper to states with vibrational excitations localized in the frame (¢.g., in the aldehyde
group of acetaldehyde).

Consider now vibration-rotation—torsion states of symmetry species *" 4, and " A4,.
We find from energy considerations that such levels are grouped into close-lying pairs
of K-type doublets, one member of the pair having the symmetry species *"A4,, the
other Y".4,. Because the equivalent rotation for (23)* is (5(c¢) for the conformation
shown in Fig. 1, the parity of K. can be defined by equating the *1 group-theoretical
character of (23)* to (—1 ) v+ 24" where v, is the torsional quantum number and
2 vi(4”) is a sum over all small-amplitude A" vibrations. (As mentioned in the
preceding paragraph, this expression is probably only valid when modes localized in
the top are not excited.) Such a definition leads naturally to the traditional Jg_ g,
= Jx,s-x, and Jx, s x,+1 values, and ultimately to the result that no ¢-type transitions
can occur {at least not until nuclear spin hyperfine interactions become important)
involving Y™ A;, *" 4. levels in a nominally a4, # hybrid band, and no a-type or b-type
transitions can occur involving *"4,, '™ 4, levels in a nominally c-type band.

It is common in some parts of the literature to make use of principles similar to
those in the paragraph above to introduce a + or — “parity” designation for rotation-
torsion A states. This label is unfortunately not a true parity, since the true parity
describes transformation properties under the symmetry operation E*, which does
not happen to belong to the group ;. Instead, these + labels are related in a slightly
complicated way to the 4, and A, species in Gg; namely, if the product (*“parity™)
X (—1)7v* 284 §s positive or negative, the vibration-torsion—rotation symmetry
species is 4, or A,, respectively. (The J dependence of the phase factor arises from
the behavior of the rotational wavefunction under (23)*.) For vibrational transitions
YA'—= V4 and YA" < V4" the G, overall selection rules 4, +> A4 then translates for
this parity into + < =+ for P and R branches within a given v, level, or for  branches
in a Ay, = %1 transition, or = < F for (J branches within a given v, level, or P and
R branches in a Av, = %1 transition. These rules must be interchanged for YA’ « ¥ 4"
transitions. While J is clearly a good quantum number for the isolated molecule, v,
is a bad quantum number for energy levels lying near or above the top of the barrier.
In such cases, the group-theoretical labels A,, 4> remain unambiguous; the + “parity”
labels do not. ( Again, the discussion above may not be valid when 2, v,(4") includes
vibrational excitations localized in the methyl top.)

Consider next wavefunctions of species *"E. For such levels there is no energy
grouping into nearly degenerate pairs. More importantly, however, the character for
(23)* is zero, so that the expectation value for (23)*, i.e., the diagonal elements of
the 2 X 2 transformation matrix induced by (23)*, must be equal and opposite for
the two members of the degenerate F state. (The magnitude of these diagonal elements
can be adjusted to hie between zero and unity by suitable choice of linear combinations
of the degenerate E pair.) A value of zero for the character of (23)* implies that the
significance of K, labels for "™ E functions (if such labels are used at all) must be based
on something other than symmetry properties, and that K labels will not obey math-
ematically well-defined selection rules.

K. Labels from Energy Ordering

The most popular method for associating K, labels with rotational energy levels in
internal rotor molecules is not based on considering symmetry properties of the levels



as discussed above, but involves 1nstead reasoning by analogy with the energy ordering
of rotational levels in a rigid asymmetric top molecule. In this method, which we now
examine in some detail, one simply requires that K, + 1 levels always lie above K,
levels, and that Jg_; 5, levels always lie above J, ;4 levels.

In the moderate to high-barrier limit, such as that found for the v, = 0 and 1 levels
in acetaldehyde, or the v, = 0 level of methanol, the torsional and symmetric top
rotational contributions to the energy levels of a near-prolate top are approximately
given by an equation of the form (15)

Fa,cos[(27/3Y(Kp — )] + BJ(J + 1) + (4 — BYK?, (4)

where approximate values of Fa, = —1400 MHz, p = }, B=(B + C)/2 = 10 000
MHz, and 4 = 56 000 MHz apply to the ground state of acetaldehyde (16), and a
value of Fa, = +35 000 MHz with p, B, and 4 unchanged can be obtained by refitting
microwave and infrared data for the first torsional state given in Ref. (/7). (Note that
the sign convention for p in Refs. (16, 17) is opposite that in Ref, (/5) and Eq. (4).)
Rotational constants for both torsional states are such that asymmetric rotor K-type
doubling increases approximately as 500J(J + 1) MHz for X = 1 levels.

Consider first rotation-torsion levels of "4 species. These have ¢ = 0 in Eq. (4),
and will occur as doubly degenerate "4, "A> pairs for K > 0, with wavefunctions of
the approximate form

¢L!,,A’a.a:0(a)[|JsKanM> * ,Jv - KU!M>]s (5)

where the torsional wavefunction y¥{«) depends on the v,, K, and ¢ quantum numbers.
This pair of rotation-torsion wavefunctions will be split by the usual asymmetric rotor
term (1/2)(B — C)(J: — J})and by the term D,,(J.J, + J.J;), and matrix elements
of these operators in the basis functions of Eq. (5) will be modified by a torsional
overlap integral (Y., x:.-0|¥u.x,0-0. In spite of these differences from the usual
asymmetric rotor formalism, the rotational energy level pattern is not very different
from that of an asymmetric rotor, and the labels K, K, can be attached to energy-
ordered eigenfunctions in the usual way.

Consider next rotation-torsion levels of E species, which have o = £1 in Eq. (4).
There are actually two ™E levels for a given value of K, > 0, and each of these levels
in turn is doubly degenerate. If only the energy contributions in Eq. (4) are considered,
the four eigenfunctions for these two " E levels correspond to the degenerate pair (+ X,
¢ = *1)and (K, o = 1), respectively, where for convenience the first pair is often
called the + K level and the second pair the — K level. The energy separation AFE
between the two E states is calculated from Eq. (4) to be

AFE = E(+K) — E(—K)
Fay[cos(2m/3)(Kp — 1) — cos(2m/3)(Kp + 1)]
V3 Fasin(27pK/3). (6)

Asymmetric rotor K-type doubling effects cannot split the degeneracy of these "E
states, but such effects can cause the two states to interact.

The energy ordering of E levels in the first excited torsional state of CH;CHO is
relatively simple to understand, because the large v, = 1 torsional splitting (V3Fa1
= +60 000 MHz) makes it possible to neglect K-type doubling contributions to
the energy for J values below 10. We then find from Eq. (6) that levels with K. = J
— K, (the higher energy level of each K-type doublet) correspond to (+K, o = +1)

I



when sin(27pK/3) is positive, but to (¥ K, 6 = *1) when sin(27pK/3) is negative.
Figure 2, which displays sin(27pK/ 3) for a value of p = 3 as appropriate for CH;CHO,
shows that this sine function is positive for K, = 1, 2, 3, 4, 10, . . . and negative for
K.=56,7,8,14,. ...

This same K, labeling scheme could also be applied to F levels in the ground state.
Here Fa, is negative, so that levels with K. = J — K, would correspond to (=K,
¢ = *1) for just the opposite ranges of K,,.

For the ground state, however, the values of AE from Eq. (6) and the asymmetric
rotor K-type doubling splittings are comparable in magnitude, and K-type doubling
effects cannot be ignored. Instead, internal rotation splitting and K-type doubling
compete to determine the mixing coefficients of basis set functions in the final eigen-
functions. This more complicated situation leads one to consider a method other than
simple energy ordering for associating K, labels with rotational energy levels. This
second method involves trying to define and determine how much even K, character
and how much odd K, character is present in each wavefunction. The mathematical
procedures needed to formalize such a procedure were beautifully set forth and applied
by Alexander and Dagdigian ( /8) to the somewhat analogous problem of determining
how much in-plane and out-of-plane p-orbital character is present in each A-doublet
component of a rotating diatomic molecule in a *II state.

Since the procedures of Ref. { /8) are based on symmetry operations, we must begin
by defining the transformation properties of coordinates and wavefunctions under the
operations of the (-; molecular symmetry group. Before giving a table of transformation
properties of the rotational. vibrational, and torsional (internal rotational) variables
used in writing a wavefunction for acetaidehyde, it turns out to be necessary to clearly
specify whether the internal rotation problem is being treated using a principal-axis-
method (PAM) Hamiltonian (13), an internal-axis-method (1AM ) Hamiltonian (75),
or some intermediate method Hamiltonian (/9, 20), since the coordinate systems
used in these various Hamiltonians (often defined only implicitly following one or
more contact transformations of the Hamiltonian operator) are quite different, giving
rise to different boundary conditions in Schrédinger’s differential equation (75),
different molecular symmetry groups, and different transformation properties under

jv=0,E,-K>  |v=0,E,+K> |v=0,E,-K> |v=0,E,+K>
lv=1,E+K> |v=1,E-K> [|v=1,E+K> |v=1,E,-K>

/

1234%678A1011 13\ 15 17

sin{2nK/9)

K -
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FiG. 2. Display of the sine function in Eq. (6), which governs the K-splitting of torsion-rotation levels
of species £, drawn for a value of p = {, which is very close to the p value for acetaldehyde. This sine
function passes through zero at K = 0, 4.5, 9, 13.5, 18, etc. The |+ K} or | - K wavefunction (for ¢ = +1)
which would correspond to the Jx, ,_x, function following traditional asymmetric rotor energy ordering
considerations is shown for the v = 0 and 1 torsional states in four regions of positive or negative sine
function,



the symmetry operations. ( For example, in the next section we see that an m-fold
extended group G = Ci 0 18 required for the IAM treatment, whereas only the
permutation—inversion group G, = Cs, is required for the PAM treatment.)

3. VARIOUS AXIS SYSTEMS FOR INTERNAL ROTATION PROBLEMS

One of many ways of looking at the confusing variety of coordinate systems for
treating internal rotation in molecules is as follows. Consider first a principal axis
system which defines the axis labels 4, b, ¢ in the molecule by the traditional spectro-
scopic moment-of-inertia ordering: I, < I, < I.. We expect to find, in a molecular
Hamiltonian written using an arbitrary x, y, z molecule-fixed axis system, cross terms
in J,J,, J,J-, and J.J, arising from the failure to use a principal axis system and cross
terms in p,J., p.J,, and p,J. arising from Coriolis interactions between the internal
rotation angular momentum p, and the overall angular momentum. It turns out that
by a suitable choice of contact transformation it is possible to eliminate some of these
terms.

Let us now limit discussion to a molecule with a plane of symmetry containing the
a and b inertial axes and the arbitrary z and x axes. Symmetry restrictions then eliminate
the inertial cross terms J,J, and J,.J., as well as the Coriolis cross term in p,J,. If the
inertial term (/~"),.(JJ- + J-J,) is eliminated by a contact transformation, the resulting
Hamiltonian is referred to as a PAM Hamiltonian. If instead both the p,J, and the
P.J- terms are eliminated, the resulting Hamiltonian is referred to as an IAM Ham-
iltonian. If only the p.J, term is eliminated, the resulting Hamiltonian has no name
in the literature (19, 20): for reasons given below, we refer to it here as the rho-axis-
method (RAM ) Hamiltonian.

From the point of view of eliminating terms by suitable contact transformations,
the existence of these various Hamiltonians is analogous to the existence of an A-
reduction, an S-reduction, and intermediate reductions in Watson’s treatment (3-5)
of the ordinary asymmetric rotor centrifugal distortion Hamiltonian.

PAM Coordinates and Hamiltonian

It is convenient to summarize the principal axis method first because it is concep-
tually the simplest, both for deriving a Hamiltonian operator and for determining
group-theoretical transformation properties of the coordinates. A PAM coordinate
system for molecules with a methyl top rotor can be defined by the equation

R, = R+ 8 '(X0¢) Tram{S7'(a00):[a; + d;] — A}, (7)

which can be understood as follows. The sum a, + d; represents the equilibrium
position and small-amplitude displacement vector for each atom, with vector com-
ponents given in an x’, ', z’ axis system, where the z’ axis is along the (5 axis of the
methyl top, and the center of mass of the molecule is at A (see Fig. 1). The rotation
matrix S;'(«00), which does not occur in the analogous Eq. (3) for an ordinary
molecule, i1s the unit matrix for atoms / in the frame, but rotates the equilibrium
positions and displacement vectors of atoms / in the top through an angle « about the
z' axis. The constant rotation matrix Tpam, Which also does not occur in Eq. (3),
rotates the equilibrium positions (and displacements) of all atoms in the molecule,
so that the final positions Tpam { S7'(«00)- a, — A } are located in a principal inertial
axis system a, b, ¢. (Note that A and Tranm are constants because internal rotation of
the symmetric top methyl group affects neither the center of mass nor the orientation



of the principal axes of the molecule.) The rotation matrix S~ '(x#¢), containing the
Eulerian angles, orients the whole molecule in the laboratory-fixed axis system, and
the center-of-mass vector R translates the whole molecule to its final position in the
laboratory.

If small-amplitude vibrations are neglected, as is commonly done, Eq. (7) can be
used to derive the classical kinetic energy expression given in Eq. (2-36) of (/5).
This in turn leads to the rotation-torsion Hamiltonian operator

Heoam = F(pa — p-3)° + V() + 4T3 + BJ} + CJ} (8)

given in Eq. (2-38) of (/5). which is valid for a molecule with a symmetric-top rotor,
but with no other symmetry whatever. The rotational constants 4, B, C, the internal
rotation constant F, and the vector p in this expression are related to the principal
moments of inertia of the molecule /,, I, I, and the moment of inertia of the methyl
top 1., by the expressions

A=h?>21,  pa=\JJI,
B=h?%21 on = Mo/ 1y
C=h?/21 pe = N1/
F=h%2rl, r=1—I(N/L+N/1,+N/1), (9)

where J 1s the total angular momentum, p, is the angular momentum conjugate to
the nertial rotation angle a, A,, A, A, are direction cosines of the symmetry axis of
the methyl group in the principal axis system of the molecule, and V' («) is the internal
rotation potential energy function, which for a methyl rotor can always be expanded
as a Fourier series in cos 3na.

We note, despite the use of principal axes, that if Eq. (8) is expanded and like
powers of components of J are collected, the resulting expression (/5) contains all
three quadratic cross terms in (J;J; + J,J;) and all three quadratic cross terms in p,J; .
Furthermore, the coefficient of J? is not simply & >/2 ;. Note also, that for the specific
case of an acetaldehyde-like molecule, where the direction of the C; axis of the methyl
rotor lies in the a, b plane of symmetry of the molecule, that A, = p. = 0 in Egs. (8)
and (9), and Tpam 1n Eq. (7) takes the simple form of a rotation about the y axis;
1.€., Tpam = S(0, Bpam, 0), fora, b, c — z, x, y.

We now seek a set of transformations for the variables on the right side of Eq. (7)
which will lead to the operations of the permutation-inversion group (¢ on the left
side of Eq. (7). Since all elements of (s can be written as products of the form
[(23)*]1™[(123)}", where 0 < m < | and 0 < n < 2, it is sufficient to determine
transformation properties for the variables under the two operations (123) and (23)*.
It can be seen by direct substitution that the transformations given in Table VIII,
when carried out on the right side of Eq. (7), lead to the desired permutation-inversion
operation on the left.

PAM Wavefunctions

Matrix elements of the Hamiltonian in Eq. (8) are normally written in a basis set
containing products of the type

| RN T, 2K, M), (10)



TABLE VIl

Transformation Properties® in G, of the PAM and RAM Born-Oppenheimer Vanables®

R X0, o dcm d; d 43 dy, i#Cy,1,2,3

(123) +R X,8,¢ at+2n/3 c3dcm C3dy C3dy Cad;  +dy, i#C,,1,2,3

(23)* -R  T-x,7-8,mp -a oydc  oydy oydy oydy  oudy, i#Cp,1,2,3
m

40nly the generating operations (123) and (23)* of G in Table VII (atom
numbering in Fig. 1) are considered. Cid = st1(+24/3,0,0)-d and o,ldg,dy,d,] =
[dy,-dy,d,]) for any vecter d. Equivalent rotations (10) for (123) and (XZ")’iE
are E and Cp(y), respectively.

bThe variables on the right of Eq. (7) or (25), as traditionally used in a PAM
or RAM wavefunction, respectively.

where the symmetric top wavefunctions |J, +K, M) (K = K, for acetaldehyde)
are assumed here to have the form and phases of normalized Wigner D functions
[(27 + 1)/8721'2D\(x84) (21). The two factors of the basis function in Eq. (10)

transform as follows under the two generating operations for G given in Table VIII:
( 123)|eil3k+o)ﬂ> I J, iK, M> - e+i2:mf,'3) lei[3k+a)a>f J" :.'_'K. ﬂf)
(23)*|e N T £ K MYy = e N (= 1)K K, M) (1)

Equations ( 11) indicate that the "I" = E basis set functions in Eq. ( 10) have been
chosen such that {(23)*) = 0. Because the Hamiltonian is totally symmetric under
G, E-species eigenfunctions will also occur in pairs transforming according to Egs.
(11). In particular, {(23)* ) will be zero for all "£ eigenfunctions obtained in the
present work.

We are now in a position to adapt Alexander and Dagdigian’s procedure (/8) to
our problem. We consider an operator (C2(c¢) which acts only on the Eulerian angles
Xf¢ (and not on «) so that

Cole)[e"F ) I, 2K, M)y = (= 1) Ke | J, K, M). (12)

Consider further the expectation values of (>(c¢) for a wavefunction which can be
written as a product of a Wang rotational factor of the form

Ve = 2720, K MY £ |, — K, MD] (13)

multiplied by some unspecified vibration-torsion ff’iCtOI' Y. Since the expectation
value for C,(¢) gives by definition a value for (—1)*, we find

(Watre | Co() [ ) = (= 1) H = (=D)X, (14)

which implies that K. = J — K for the sum and K, = J — K + 1 for the difference.
Since, for the axis identification a, b, ¢ = z, x, y, for K = K,, and for ordinary
asymmetric rotor K-type doubling effects, the sum function in Eq. (13) always lies
higher in energy than the difference, this definition for the parity of K, agrees with
ordinary usage.

As demonstrated for the analogous problem in Ref. (/8), this definition of the
“parity of K.” can be extended to any linear combination of wavefunctions of the



Expectation Values® of (23)* and ({¢). and Percentage of Even and Odd K, Character.® for Various
Torsion-Rotation Eigenfunctions of Acctaldehyde

ve J Ky Ko BET <(23)%> <Cyle)>  Zle) (o) ve TR K, T <23)% <Cyle)> %) Z(o)
0 00 0 + A L 1.000 100.00  0.00 0 000 E O 1.000  100.00  0.00
1 00 0 + A -l 1.000 100.00  0.00 1 000 E O 1.000 100,00  0.00
0 1 0 1 + A -1.  -1,000 0.00 100.00 o 101 E 0 -1.000 0.00 100.00
0 1 1 1 + & -1.  -0.989 0.55  99.45 0 1-11 E 0 -0.567  21.65 78.35
0 11 0 - A 1. 0.989  99.45  D0.55 0 110 E 0O 0.567  78.35 21.65
110 1 4 A L. -1.000 0.00 100.00 1 101 E 0 -0.998 0.10  99.90
1 1 1 1 + & 1. -0,95 2.20 97.80 1 1-10 E 0 0.028  51.40 48.60
1 110 - & -l 0.956  97.80  2.20 1 111 E 0 -0.030  48.50 51.50
0 3 0 3 + Ay -l.  -1.000 0.00 100.00 0 303 E 0. -1.000 0.00 100.00
0 3 1 3 + Ay -i.  -0.989 0.55  99.45 0 3-13 E 0. -0.962 1.90 98,10
0 31 2 - A} 1. 0.988  99.40  0.60 0 312 E O 0.961  98.05  1.95
0 3 2 2 - A L 0.956  97.80  2.20 0 3-2 2 E O 0.037  51.85 48.15
0 3 2 1 + Ay -1.  -0.956 2,20 97.80 0 321 E 0. -0.037 48.15 51.85
0 3 3 1 + a5 -l.  -0,903 4.85  95.15 0 3-3 1 E 0. -0.000 50,00 50.00
0 330 - A I 0.903  95.15  4.85 0 330 E O 0.000  50.00 50.00
1 3 0 3 + A 1. -0.998 0.10  99.90 1 303 E 0. -0.989 0.55  99.45
1 31 3 + & 1. -0.95 2.20  97.80 i 3-12 E o0 0.166  58.30 41.70
13 1 2 - A& -l 0.953  97.65  2.35 1 313 E 0. -0.177 41,15 58.85
1 3 2 2 - Ay -L 0.835  91.75  8.25 1 3-2 1 E 0. -0.001 49.95 50.05
1 3 2 1 + A] ! -0.835 8.25 91.75 1 322 E o 0.000 50,00 50.00
1 3 3 1 + A 1. -0.664 16.80 83.20 1 3-30 E 0. -0.000 50.00 50.00
1 3 30 - A -l 0.664  83.20 16.80 1 331 E 0. -0.000 50.00 50.00

"(Cz(c)) is from an expression like Eq. (14) using numerical torsion-rotation eigenfunctions from the least
squares fits of vp = 0 and 1 acetaldehyde data in Refs. (16,17).

e percent of even (%(e)) and odd (%(o)) K. character is determined from the expectation value of the
operator C;(c) such that: Z(e) + Z(o) = 108 and Z{e) - Z(o) = 100<Cy(c)>.
CThe "parity" of the Aj,A; levels (see text).

e sign of K, in this column is taken from Refs. (16,17), and is thus opposite to that described in the
text associated with Eqs. (4)-(6) in this work.



form given in Eq. (10). When the expectation value of C3(c¢) is +1 for a given linear
combination, the parity of K. is even; when it is —1, the parity of K. is odd. When the
expectation value is exactly zero (as it is for either of the two functions in Eq. (10)),
the wavefunction is a 50-50 mixture of even K, and odd K. functions. Table IX gives
a number of expectation values for C;(¢) and for (23)* obtained from actual eigen-
functions generated in our fits of v, = 0 and |1 microwave and infrared data for acet-
aldehyde (/6. 17). (Even though these least-squares fit calculations were carried out
in an RAM axis system (see below), expectation values for (23)* and C:(c¢) are the
same as those for a PAM calculation, since the PAM and RAM systems for CH;CHO
differ only by a rotation about the ¢ axis.)

PAM Transition-Moment Matrix Elements
Consider now the schematic matrix element of g
[e,(TA2(K = 0)'4,(v, = 0)] + 2 {"A,(K. = ¢)' 4;(v, = 1)]]
X [@rapa + Py + Pren )" A(K. =)' A1 (v, = 0)), (15)

representing an allowed ™4, <> " A, transition. The coefficients ¢{ and ¢3 correspond
to the % (o) and %{e) entries in Table IX, respectively. Similar to the Coriolis mixing
examples discussed in Table VI, nonzero matrix elements to the ¢, component can
be induced by ®,.u, or ®,.u,, while nonzero matrix elements to the ¢; component
can be induced by ®,.u.. If ¢? » 3, the transition would be classified as belonging
toa Av, = 0 a, b hybrid band: if ¢ » ¢1, the transition would be classified as belonging
toa Av, = | c-type band.
Consider next the matnx element

[C’3<rA|(K¢- =e)'A (v, =0)| + C4<r‘42(Kp =0)'42(v, = 1)]]
X [ Prapta + Pommtsr + Prep )" A1 (K. = €)' A (v, = 0)), (16)

representing a forbidden "4, < ™A, transition. The coefficients ¢3 and ¢; correspond to

the %(e) and %(0) entries in Table IX. Again, similar to the examples in Table VI,

matrix elements of ®,u,, Poup, and $,.p, to the ¢; and ¢, components are all zero,

corresponding to the fact that no components of the dipole moment can make this group-

theoretically forbidden (in the absence of hyperfine mixings) transition allowed.
Consider finally the matrix element

[es{"Ax(K, = 0) E(a = 1)| + (" A, (K. = e)'E( = 1)|]
X [ Prapta + Poostr + Prep]|"A(K. = €)' E(a = 1)), (17)

representing an allowed "E <> "E transition. The coefficients ¢ and ¢ correspond
to the %(0) and %(e) entries in Table IX. Here we find that nonzero matrix elements
to the ¢s component can be induced by ®,,u, or ®,,u,, while nonzero matrix elements
to the ¢, component can be induced by ®,.u.. The transition would be classified as
an a, b hybrid or c¢-type line depending on the relative magnitudes of ¢s and ¢s. Note
that we have specified the ¢ value, but not the v, value, of the torsional factors in the
wavefunctions, because there is no group-theoretical distinction between torsional E
functions characterized by even and odd v, values. Further, it is not necessary to
consider ¢ = — 1 functions on the left of Eq. (17), because u obeys the strict selection
rule Ag = 0 in the absence of hyperfine mixings.



Table IX shows that " E states for acetaldehyde sometimes have 100% even or odd
K, character, but at other times they are 50-50 mixtures of even and odd character.
Qualitatively speaking, the parity of K, for " E states is better defined when the effects
of asymmetric rotor K-type doubling interactions dominate over the internal rotation
splittings, e.g., in low- K, high-J, v, = 0 states. When internal rotation splittings dom-
inate, as in high-K, low-J, v, = | states, the evenness or oddness of K, is essentially
not defined at all.

As a final task in this section, we consider the laboratory-fixed Z component of the
dipole moment operator u, when the molecule-fixed components p,, u,, u. are ex-
pressed as a Fourier series in the internal rotation angle « and a Taylor series in the
small-amplitude vibrational coordinates Q;,

pr = P Xﬂd))u,(a; QJ) + (I)Zy( Xad))uy(a; Qr) + q’Z:(XB(I))p.:(C{; Ql) (18)

From the character table and transformation properties given in Tables VII and VIII,
we see that u is of species A, in G, and the direction cosines &, ®,,, $,. are of
species Az, A,, 45. This requires that the molecule-fixed dipole moment components
x> My, - be of species A;, 43, A;, which is consistent with the fact that permanent
moments (i.e., constants and therefore necessarily of species A4,) can exist along the
x and z axes, but not along the y axis.

We use below explicit symbols like u,., to indicate constant coefficients in the
mixed Taylor (subscript 1) and Fourier (subscript n) expansions, which are truncated
after the linear terms in the Taylor series and after an arbitrary number of terms in
the Fourier series. The transformation properties in Table VIII then require that the
molecule-fixed dipole moment operators can be expressed as

pua, Q) = Moo t Z ‘-’-.x';On(l — €08 3na)

n

+ Z Qi[#,x:f(ﬁ + E lu.\".in(l - COS8 3’70’)] + Z QJ[Z l—‘fx;jnSin 3’1(1]

J n

o a, Q)= Z ﬂ)';OnSin 3na + z Qi Z f-‘)':mSin 3na]

n i

+ 2 Oiluyjo + 2 pygn(1 — cos 3na)]
i n

ﬂ:(a5 Q) = H::00 + Z #Z:On(l — COS§ 3)’la)

n

+ Z Qi[“::i() + Z Auz;in(l — COs 3”‘1)] + Z QJ[Z #:;JnSin 371(!]. (19)

J n

where X, includes only the 4’ small-amplitude vibrations, and 2; includes only the
A” small-amplitude vibrations. Again, a more careful treatment will probably be re-
quired when Eqgs. (19) are used to derive results concerning small-amplitude vibrations
localized in the top.

Rho Axis Method

The presence of the term —2 Fp.p + J in the PAM Hamiltonian of Eq. (8) makes it
difficult to separate the torsional calculation from the rotational calculation. For this
reason several investigators have preferred a slightly different coordinate axis system
for numerical computational purposes, which is related to the principal a4, b, ¢ axis



system by a rotation chosen to eliminate the —2Fp,p.J, and —2Fp,p,J, coupling
terms; i.e., chosen so that the resultant torsional Hamiltonian operator has only AK
= 0 matrix elements. This rotation corresponds to making the new z axis coincident
with the p vector, since then p, = p, = 0 by definition. The formalism associated with
this procedure has no name in the literature; for convenience we call it the rho axis
method (RAM) here. In the case of an acetaldehyde-like molecule with an a, b plane
of symmetry and a, b, ¢ — z, x, v, the Coriolis cross term p,,J, does not exist because
of symmetry restrictions. A rotation about the y axis, which we now examine in more
detail, will eliminate the p,.p.J, coupling term.

It can be shown by a somewhat tedious application of commutation relations that

e—r‘(i.h./h [J: + l'J"]e+1'ﬁJ}Jh _ e:fﬂ[‘]: + IJ\]
e—iﬁ.)‘y,'h[.]y]e-&iﬁj).fh — J}'
P_"BJJ"'h[(I)z__ + jq)zx]e-»fﬁ.l,.!h — gﬂﬂlq)Z: + l~¢zg]

e—lff.f)-.fk [ Cb.}{y ]e+iﬂf}.fh (I)}'.'_l' s ( 20 )

with equations analogous to the last two for the X and ¥ components of the direction
cosine matrix. Furthermore,

e—rﬂ.],-f'h [j( a, p")]€+fﬁ.1y."h :j'(ur, Pn) (21 )

While the simple rotation of Cartesian axes leading from the PAM to the RAM
system is not normally discussed in this way, the first two of Eqgs. (20) indicate that
the desired rotation can be accomplished by the contact transformation

HRAM — e—r’arclan(p,/p;).fy,’ﬁ HPAME,ﬂ'arclan(px,fp:)Jy,‘h, (22)

sInce
e arcanexlp i (n o J + pup:d.)e” B eled bt = o T (23)

where p = (p? + p2)"/?. Note that the contact transformation in Eq. (22) does not
involve the direction cosines X,, A., which specify the orientation of the methyl top
axis in the PAM axis system, but involves instead

fram = arctan(py/p:) = arctan( A,/ 1\;) (24)

(see Egs. (9)). As a consequence, the RAM z axis is parallel to the (73 axis of the
methyl top only when I. = I,

This same conclusion can be obtained by using the last two of Egs. (20) to transform
the right-hand side of Eq. (7). The new relation between laboratory-fixed and molecule-
fixed coordinates becomes

R, = R + ¢ "“ramli/h Gl (xfg Yo HoRaM M L Tl {87 (a00)  [a, +d, ] — A}
=R+S7"(x0¢) S0, —Oram, 0)+ Toam - {S, '(a00)-[a, +d;] - A}
=R+S'(xX0): Tram * {S7'(a00)-[a, +d;] - A}, (25)

which leads to an equation formally identical to Eq. (7) except that the rotation matrix
Tram has been replaced by Tgam. The presence of Tray indicates that the z axis of
the RAM system is nearly parallel to the C; axis of the methyl top only when 7Txram
represents a small rotation. The last of Egs. (25) also shows that the meaning of the



Eulerian angles Xf¢ has changed as expected; they now describe the orientation in
space of the RAM axis system. ( Note that by definition (2) the laboratory-fixed di-
rections X, Y, Z label the rows, and the molecule-fixed directions x, y, z label the
columns, of the direction cosine matrix S~ '(X#¢), so that atom positions in the x, y,
z system (ignoring the d;) are given by Trim - [S; '(«00)-a; — A] in Eq. (25) and
by TpaAm *[S7'(a00)-a, — Al in Eq. (7).)

The full RAM torsion-rotation Hamiltonian is given by

Hgam = F(p, — pJ-)" + V{a) + A(cos framJ: — sin gamsi)’

+ B(sin HRAMJz + cos HRAMJ,r)z + CJ% (26)

The advantage of this Hamiltonian for computations arises from the fact that all
operators containing the torsional angle « or its conjugate momentum are diagonal
in the rotational quantum number K; all operators off-diagonal in K arise from the
purely rotational part of the problem. Numerical computations can then be divided
into a torsional part and a rotational part. First, a set of torsional calculations, one
for each K value, is carried out using a relatively large torsional basis set. These cal-
culations are presumed to involve interaction energies much larger than rotational
energies (either because the moment of inertia of the methyl top is much smaller than
the moments of inertia of the whole molecule or because the torsional barrier is much
higher in energy than typical rotational spacings). This basis set is then significantly
reduced 1n size by discarding all but the lowest several torsional eigenfunctions for
given K. Finally, the torsional eigenfunctions retained are prepared for the rotational
calculation, involving all 2/ + 1 values of K for given J, by multiplying them by the
appropriate symmetric top rotational function |J, K, M ).

The coordinate relations in Eqs. (25) indicate that the group-theoretical transfor-
mations given in Tabie VIII for xf#¢ and « remain formally unchanged in the RAM
basis set. The dipole moment operator is thus again given by expressions having the
form of Eqs. (18) and (19).

Note that because the x and z axes do not have the same meaning in the PAM and
RAM systems, the coefficients u,.;, and .., must be subjected to a rotation about the
y axis through the angle arctan(p,/p.) when comparing relative intensity contributions
along different axes calculated in the two systems. Figure 3 shows the approximate
ortentations of the PAM z axis and the RAM =z axis in the symmetry plane of acet-
aldehyde. Note that for this molecule, because of the great difference in magnitude of
the A and B rotational constants, the RAM z axis is more nearly parallel to the principal
a axis than to the C; symmetry axis of the methyl group.

Internal Axis Method

The internal axis method for treating the problem of overall rotation and internal
rotation, which we again discuss from the point of view of contact transformations,
is more difficult to understand in depth than the principal axis method. As described
by Lin and Swalen in their classic review article ( /5) the historical development of
the subject by Dennison, Hecht, and co-workers (22-25) led spectroscopists to perform
three contact transformations in succession in order to pass from the PAM to the IAM
Hamiltoman. We write these here as only two contact transformations, indicated
symbolically by

H!AM — eﬂSzeﬂS. HPAMeJrl.S;eﬂSZ

— e*f‘SzHRAMe-FiSz’ (27)



Fi1G. 3. Orientation in acetaldehvde of the methyl top axis =, the principal axis Zpam, and the zg,w axis
of Haan in EQ. (26). As can be seen from Eqgs. (22) and (24). zram — Zpam as (£:/1,) = 0, whereas zpay
becomes parallel to z* as (I./1,) — 1. where /. and I, are the two principal moments of inertia in the
symmetry plane of acetaldehyde in its equilibrium configuration.

where the first contact transformation is just that given in Eq. (22).

The purpose of the second contact transformation is to remove the term —2 Fop,, J,
remaining in the RAM Hamiltonian given in Eq. (26). Physically speaking. this is
accomplished by rotating the whole molecule backward about the p direction (the z
direction after the first contact transformation in Eq. (27)), which generates an angular
momentum along the methyl top symmetry axis direction (X in Egs. (9)). The amount
of rotation is chosen to just cancel the angular momentum generated by the methyl
top internal rotation, thus removing in some sense the physical cause of the Coriolis-
like —2 Fpp.J. interaction term. Mathematically, it can be seen relatively easily that

e-‘“wl]dh [pu - pJ: ]e+jﬂpj:/h = pu
()*lﬂp.f‘-}h[f(a)]e-HupJ_.fh f(a)
e*mp!_—,"h [J.x + I'Jy]e-#—iap.{.jh — e:mp["’x + lj)]

J:, (28)

e izl h [J__]{,Hewi;/h
leading us to write
Hiam = € /M Heame 1" = Fpl + V(a)
+ A[+cos OramJ- — sin Oram(cos pad, — sin pad,)]? + B[+sin OramJ-
+ cos fram(cos pat, ~ sin pat,)]? + C(sin pat, + cos pad,)?, (29)

which can be shown with some effort to be equivalent to Eq. (2-31) of Ref. (15) with
a,b,cand x, y, z(there) > —y, x, zand —c, b, a (here), respectively. The transformed
coordinate equation analogous to Eq. (25) becomes
























