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Abstract

This paper studies an optimal boundary control law for a heterogeneous traffic flow model with disturbances in order to remove
the traffic congestion. The macroscopic first-order N-class Aw-Rascle (AR) traffic model consists of 2N hyperbolic partial
differential equations (PDEs). The vehicle size and driver’s behavior characterize the type of vehicle. There are m positive
characteristic velocities and 2N −m negative velocities in the congested traffic after linearizing the model equations around
the steady-states depending on the spacial variable. By using the backstepping method, a controller implemented by a ramp
metering at the inlet boundary is designed for rejecting the disturbances to stabilize the 2N × 2N hetero-directional traffic
system. The developed controller in terms of proportional integral (PI) control is derived from mapping the original system
to a target system with a PI boundary control rejecting the disturbances. The integral input-to-state stability (iISS) of the
target system is proved by using the Lyapunov method. Finally, an optimization problem is established and solved for seeking
the optimal controller.
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1 Introduction

Traffic congestion is a pervasive problem that leads
to the increased fuel consumption and risky driving
conditions. It is natural to use boundary control on
available control signals as ramp metering or variable
speed limits to stabilize the highway traffic systems.
Paper [15] contributes to the boundary control design
for multi-directional congested traffic evolving on large-
scale urban networks represented by a continuum two-
dimensional plane. In [18], the reinforcement learning
boundary controllers is designed to mitigate stop-and-go
congested traffic for 2× 2 quasilinear Aw-Rascle-Zhang
(ARZ) partial differential equations (PDEs) model by
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using the proximal policy optimization that is an algo-
rithm based on neural networks. In [3], a delay-robust
stabilizing state feedback boundary control law is devel-
oped for an underactuated network of two subsystems
of heterodirectional linear first-order n + m hyperbolic
PDE systems.

Usually, macroscopic models typically described by
PDEs are more suitable to study the congested traffic
and disturbances in the traffic flow. The exact bound-
ary controllability of a class of nonlocal conservation
laws modeling traffic flow is studied in [5]. In [10], the
authors propose a new continuum model with an addi-
tional anisotropic term which ensures the characteristic
velocities can be less than or equal to the macroscopic
flow speed. An extension of speed gradient (SG) model
is introduced to study the mixed traffic flow system
in [11]. Paper [12] extends the Aw-Rascle (AR) model
for heterogeneous traffic by using area occupancy and
analyzes the properties of the extended model. A new
car-following model for heterogeneous traffic flow is
presented in [14]. In [12], the macroscopic N -class AR
traffic model with the consideration of vehicle size is
used because of the validation of simulation. A contin-
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uum multi-class traffic model is proposed on the basis
of a three-dimensional flow–concentration surface in
[13]. Paper [9] studies a two-type vehicle heterogeneous
traffic model to acquire overtaking and creeping traffic
flows.

The backstepping method is used to derive a boundary
controller in some papers. In [16], a boundary observer
for nonlinear ARZ traffic flow model is designed to esti-
mate the information of traffic states using the backstep-
ping method. A controller is designed for the underactu-
ated cascade network of interconnected PDEs systems
using backstepping in [2]. In consideration of the limits
of technology and cost, there have been works inspired
by [8], designing a control law for the linearized ARZ
traffic flowmodel by using backstepping transformations
(see also [17]). Paper [7] uses the backstepping method
to design an output feedback boundary control for the
stop and go traffic problem of linearized two-class AR
traffic flow system. Paper [8] uses a backstepping trans-
formation to design a control law and derives H2 expo-
nential stability for a quasilinear 2 × 2 system of first-
order hyperbolic PDEs. Paper [4] studies the sufficient
conditions for local Input-to-State Stability in sup norm
of general quasilinear hyperbolic systems with boundary
input disturbances.

Contribution: This paper states a new result on con-
troller design by using backstepping method for the lin-
earized multi-type traffic flow system around a nonuni-
form steady-state to reject disturbances and then to re-
move the traffic congestion. Firstly, this work presents
the derivation of an extended multi-type AR traffic flow
model in the characteristic form. Secondly, we prove the
iISS of the target system which has a source term of in-
tegral form and a proportional-integral (PI) boundary
control for rejecting disturbances. Moreover, a controller
implemented by ramp metering is designed to robustly
stabilize the heterogeneous traffic system by applying
the backstepping method to the multi-type vehicle traf-
fic model.

This paper is organized as follows: Section 2 introduces
the multi-type AR traffic flow model with the parame-
ters characterizing different vehicle types and the formu-
lation of the control problem to be solved. In Section 3,
the iISS of the target system is proved by the Lyapunov
method and a controller is designed by using the back-
stepping approach. In Section 4, the optimization prob-
lem is presented and the numerical results are provided
for verifying the existence of the optimal controller. The
paper ends with concluding remarks in Section 5.

Notation. Mn,n(R) denotes the set of n × n real
matrices. [A]i,j denotes the entry of matrix A in the
i-th row and the j-th column. For a function φ =
[φ1, . . . , φn]

⊤ : [0, L] × [0,∞) → Rn, ∥φ∥L∞((0,L);Rn) =

max
(
∥φ1∥L∞((0,L);Rn), . . . , ∥φn∥L∞((0,L);Rn)

)
.

∥φ∥L2((0,L);Rn) =
√∫ L

0
(φ2

1(ξ, t) + · · ·+ φ2
n(ξ, t))dξ,

∥φ∥H1((0,L);Rn) = ∥φ∥L2((0,L);Rn) + ∥φx∥L2((0,L);Rn).
The symbol ∗ stands for a symmetric block in a matrix.

2 Traffic Flow System and Control Problem

In this section, the multi-type AR traffic flow model and
the interpretation of crucial parameters are presented.
The preparations for designing controller are also done
including the transformations of states and the lineariza-
tion around a nonuniform steady-state. On the basis
of the control problem to be solved, the corresponding
boundary conditions are derived.

2.1 Multi-type AR traffic flow model

We investigate the multi-type AR traffic flow model
in [12] that describes the dynamics of a heterogeneous
traffic consisting of N vehicle types on a road segment
with the length L,

∂tρi(x, t) + ∂x

(
ρi(x, t)vi(x, t)

)
= 0, (1)

∂t

(
vi(x, t) + pi(Ao)

)
+ vi(x, t)∂x

(
vi(x, t) + pi(Ao)

)
=

Ve,i(Ao)− vi(x, t)

τi
, (2)

with the independent space variable x ∈ (0, L) and the
independent time variable t ∈ [0,∞), where i is the index
of vehicle type with i = 1, 2, · · · , N , ρi(x, t) and vi(x, t)
are respectively the density and velocity of vehicle type i.
Additionally, the density ρi(x, t) is defined as the number
of vehicles passing road section per unit length and the
velocity vi(x, t) is defined as the average speed of vehicles
passing location x in unit time. The relaxation time τi
of vehicle type i is subject to the driving behavior, the
variable Ao(ρ) is the area occupancy, and

Ao(ρ) =

∑N
i=1 aiρi
W

, (3)

where ρ = (ρ1, ρ2, · · · , ρN )⊤, ai is the occupied surface
per vehicle for type i and W is the width of the road
segment. Area occupancy Ao describes the percentage
of road space that is occupied by all the vehicle classes
on the considered road section. In the physical sense,
0 < Ao ≤ 1.

For the heterogeneous traffic, the traffic pressure func-
tion pi(Ao) of vehicle type i is an increasing function of
the area occupancy Ao as follows (see [7]),

pi(Ao) = vMi

(
Ao(ρ)

AoMi

)γi

, i = 1, 2, · · · , N, (4)
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where the free-flow velocity vMi and the maximum area
occupancy 0 < AoMi ≤ 1 of vehicle type i repectively
describe the maximal velocity in the free regime and
the maximum percentage of occupied surface in the con-
gested regime, if there is only vehicle class i on the road.
The constant γi > 1 is the pressure exponent of type
i and it makes formulating the experienced traffic pres-
sure pi(Ao) correct and flexible.

The steady-state speed-Ao relationship of vehicle class
i (= 1, 2, · · · , N) is given by Greenshields model in [6] as

Ve,i(Ao) = vMi − pi(Ao) = vMi

(
1−

(
Ao

AoMi

)γi
)
. (5)

There is a negative connection from the decreasing
function Ve,i(Ao) describing the desired velocity of the
drivers to the crowded degree.

2.2 Linearization of multi-type AR traffic flow model

Inspired by the case (2 vehicle classes) in [7], the multi-
type AR traffic model (1)-(2) is linearized around a
nonuniform steady-state

u∗(x) = (ρ∗1(x), v
∗
1(x), ρ

∗
2(x), v

∗
2(x), · · · , ρ∗N (x), v∗N (x))⊤,

for x ∈ (0, L), where ρ∗i , v
∗
i ∈ C2([0, L];R) satisfy, for

i = 1, 2, · · · , N ,

v∗i (x)
dρ∗i (x)

dx
+ ρ∗i (x)

dv∗i (x)

dx
= 0, (6)

v∗i (x)
dv∗i (x)

dx
+ v∗i (x)

dpi(x)

dx
=

Ve,i(Ao(ρ∗(x)))− v∗i (x)

τi
.

(7)

From (6), note that ρ∗i (x)v
∗
i (x) = di with constants

di, i = 1, 2 · · · , N .

Denote (ρ̃1, ṽ1, ρ̃2, ṽ2, · · · , ρ̃N , ṽN )⊤ with ρ̃i = ρi −
ρ∗i (x), ṽi = vi − v∗i (x), i = 1, 2, · · · , N , x ∈ (0, L) by
ũ ∈ H1([0, L] × [0,∞);R2N ), the system (1)-(2) is
transformed to the following equation,

A(ũ)ũt(x, t) +B(ũ)ũx(x, t) + C(ũ)ũ(x, t) = 0, (8)

where, for i, j = 1, 2, · · · , N ,

A(ũ) =


A11(ũ) A12(ũ) · · · A1N (ũ)

A21(ũ) A22(ũ) · · · A2N (ũ)
...

...
. . .

...

AN1(ũ) AN2(ũ) · · · ANN (ũ)

 , (9)

with

Aij(ũ) =


[

1 0

δii(ρ) 1

]
, if j = i,[

0 0

δij(ρ) 0

]
, if j ̸= i,

(10)

B(ũ) =


B11(ũ) B12(ũ) · · · B1N (ũ)

B21(ũ) B22(ũ) · · · B2N (ũ)
...

...
. . .

...

BN1(ũ) BN2(ũ) · · · BNN (ũ)

 , (11)

with

Bij(ũ) =


[

ṽi + v∗i (x) ρ̃i + ρ∗i (x)

(ṽi + v∗i (x))δii(ρ) ṽi + v∗i (x)

]
, if j = i,[

0 0

(ṽi + v∗i (x))δij(ρ) 0

]
, if j ̸= i,

(12)

and

C(ũ) =


C11(ũ) C12(ũ) · · · C1N (ũ)

C21(ũ) C22(ũ) · · · C2N (ũ)
...

...
. . .

...

CN1(ũ) CN2(ũ) · · · CNN (ũ)

 , (13)

with

Cij(ũ) =

[
dv∗

i (x)
dx

dρ∗
i (x)
dx

1
τi
δii(ρ) + v∗i (x)σii(ρ)

dρ∗
i (x)
dx

1
τi

+
dv∗

i (x)
dx +

∑N
j=1 δij(ρ)

dρ∗
j (x)

dx

]
,

if j = i,[
0 0

1
τi
δij(ρ) + v∗i (x)σij(ρ)

dρ∗
j (x)

dx 0

]
, if j ̸= i.

(14)

Therein,

δij(ρ) =
∂pi(Ao)

∂ρj
=

vMi γiaj
AoMi W

(
Ao

AoMi

)γi−1

,

σij(ρ) =
∂δij(ρ)

∂ρj
=

vMi γi(γi − 1)a2j
(AoMi W )2

(
Ao

AoMi

)γi−2

.

Because of the invertibility of A(ũ), i.e., |A(ũ)| ≠ 0,
we transform and linearize the system (8) around the
nonuniform steady-state u∗, then for all t ∈ [0,+∞),
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x ∈ (0, L), the linearized system is derived with ρ∗(x) =
(ρ∗1(x), ρ

∗
2(x), · · · , ρ∗N (x))⊤ as follows,

ũt(x, t) + F (u∗(x))ũx(x, t) = G(u∗(x))ũ(x, t), (15)

where, for i, j = 1, 2, · · · , N ,

F (u∗(x)) =


F11(u

∗(x)) F12(u
∗(x)) · · · F1N (u∗(x))

F21(u
∗(x)) F22(u

∗(x)) · · · F2N (u∗(x))
...

...
. . .

...

FN1(u
∗(x)) FN2(u

∗(x)) · · · FNN (u∗(x))

 ,

(16)

with

Fij(u
∗(x)) =

[
v∗i (x) ρ∗i (x)

0 v∗i (x)− ρ∗i (x)δii(ρ
∗(x))

]
, if j = i,[

0 0

(v∗i (x)− v∗j (x))δij(ρ
∗(x)) −ρ∗j (x)δij(ρ

∗(x))

]
, if j ̸= i,

(17)

and

G(u∗(x)) =


G11(u

∗(x)) G12(u
∗(x)) · · · G1N (u∗(x))

G21(u
∗(x)) G22(u

∗(x)) · · · G2N (u∗(x))
...

...
. . .

...

GN1(u
∗(x)) GN2(u

∗(x)) · · · GNN (u∗(x))

 ,

(18)

with (19).

Assume that the system (15) is hyperbolic, for all u∗ ∈
R2N ([0, L]), the matrix F (u∗) has 2N real distinct eigen-
values different to zero. Given an invertible transforma-
tion matrix T (x) ∈ M2N,2N (R) and 2N eigenvalues

λ1(x) > λ2(x) > · · · > λm(x) > 0 > −λm+1(x)

> · · · > −λ2N (x), ∀x ∈ [0, L], (20)

of F (u∗) (λi ∈ C2([0, L]), i = 1, . . . , 2N ,m is the number
of positive eigenvalues and 1 ≤ m < 2N), by using the
transformation ω = T−1(x)ũ, the linearized system (15)
is rewritten as follows, for ∀t ∈ [0,+∞), x ∈ (0, L),

∂tω(x, t) + Λ(x)∂xω(x, t) = M(x)ω(x, t), (21)

where

Λ(x) = diag{Λ+(x),−Λ−(x)} ∈ D2N ,

Λ+(x) = diag{λ1(x), λ2(x), · · · , λm(x)} ∈ D+
m,

Λ−(x) = diag{λm+1(x), λm+2(x), · · · , λ2N (x)} ∈ D+
2N−m,

M(x) = T−1(x)G(u∗(x))T (x) ∈ M2N,2N (R).

Note that the columns of matrix T (x) are the corre-
sponding right eigenvectors of 2N eigenvalues, and for
x ∈ [0, L],

|Λ(x)| = diag{Λ+(x),Λ−(x)},

Λ′(x) = diag{λ′
1(x), · · · , λ′

m(x),−λ′
m+1(x), · · · ,−λ′

2N (x)}.
In (20), 1 ≤ m < 2N means that the traffic waves moves
against the traffic flow (upstream) in congested traffic
due to the reaction of the drivers to their respective lead-
ing vehicles, and the value of the derivative of Ao with
respect to the spacial variable x ∈ (0, L) is very high.
Therefore, we will study the traffic congested regime in
the H1 sense in this paper.

2.3 Problem statement

The control problem is motivated by the dissolution of
traffic congestion on a road segment with the distur-
bances at the inlet boundary and the flow restriction at
the downstream boundary. For example, the occurance
of traffic congestion is attributed to the excess of the
capacity of bottleneck downstream outlet and the high
traffic demand (serve as disturbances) upstream inlet on
the considered road section.

In order to control the traffic system, we develop a
boundary control law to reject disturbances by ramp
metering installed at the inlet x = 0 of a investigated
road segment with a constant density ρ∗i (L) and a flow
restriction at the downstream boundary. The diagram
of the control model is illustrated in Figure 1.

We can derive the following equation on the basis of the
flow conservation at the upstream inlet x = 0,

Q∗
in + p̄(t) +Q∗

rmp +ΘU(t) =


ρ1(0, t)v1(0, t)

ρ2(0, t)v2(0, t)
...

ρN (0, t)vN (0, t)

 ,

(22)

where Q∗
in ∈ RN is a constant inflow, and p̄ ∈

C1([0,∞);RN ) is the unknown disturbances of flow rate
serving as an exogenous variable depending on time t.
The actuation signal vector U ∈ C0([0,∞);R2N−m)
with a coefficient matrix Θ ∈ MN,2N−m(R) is im-
plemented by the on-ramp metering at the upstream
boundary of the considered road segment. The nominal
on-ramp flux rate at the inlet x = 0 of road section
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Gij(u
∗(x)) =

[
dv∗

i (x)
dx

dρ∗
i (x)
dx

1
τi
δii(ρ

∗(x)) + v∗i (x)σii(ρ
∗(x))

dρ∗
i (x)
dx − δii(ρ

∗(x))
dv∗

i (x)
dx

1
τi

+
dv∗

i (x)
dx +

∑N
j=1,j ̸=i δij(ρ

∗(x))
dρ∗

j (x)

dx

]
, if j = i,

[
0 0

1
τi
δij(ρ

∗(x)) + v∗i (x)σij(ρ
∗(x))

dρ∗
j (x)

dx − δij(ρ
∗(x))

dv∗
j (x)

dx −δij(ρ
∗(x))

dρ∗
j (x)

dx

]
, if j ̸= i.

(19)

0 L

U(t)Q∗
rmp

Q∗
in

p̄(t)

ρi(0, t)vi(0, t) ρ∗i (L)

Flow Restriction

Fig. 1. Multi-type vehicles traffic on a road with disturbances and flow restriction.

Q∗
rmp ∈ RN satisfying the relation

Q∗
in +Q∗

rmp =


ρ∗1(0)v

∗
1(0)

ρ∗2(0)v
∗
2(0)

...

ρ∗N (0)v∗N (0)

 . (23)

From the boundary condition at x = L, by combining
control laws (22) with (23) and linearizing, the boundary
conditions are derived, for t ≥ 0,

A1ũ(0, t) = p̄(t) + ΘU(t), (24)

B1ũ(L, t) = 0, (25)

with

A1 = diag{[v∗1(0), ρ∗1(0)], . . . , [v∗N (0), ρ∗N (0)]} ∈ MN,2N ,

B1 = diag{

[
1 0

0 0

]
, . . . ,

[
1 0

0 0

]
} ∈ M2N,2N .

For the sake of reducing the congestion and preventing
the capacity drop, a controller is designed by using the
backstepping approach in this paper. In the next sub-
section, the Riemann coordinate transformation of the
state ω is dealt with in order to make the development
and analysis of controller easier.

2.4 Riemann Coordinates Transformation

By the transformation

R =

[
R+

R−

]
= Ψ(x)ω, x ∈ [0, L], (26)

with Ψ(x) = diag {Ψ+(x),Ψ−(x)} ,

Ψ+(x) = diag

e
−
∫ x

0

[M(s)]1,1
λ1(s)

ds
, e
−
∫ x

0

[M(s)]2,2
λ2(s)

ds
,

· · · , e
−
∫ x

0

[M(s)]m,m

λm(s)
ds

 ,

Ψ−(x) = diag

e

∫ x

0

[M(s)]m+1,m+1

λm+1(s)
ds

,

e

∫ x

0

[M(s)]m+2,m+2

λm+2(s)
ds

, · · · , e

∫ x

0

[M(s)]2N,2N

λ2N (s)
ds

 ,

from ω to the new variable R with R+ : [0, L] ×
[0,+∞) → Rm, R− : [0, L] × [0,+∞) → R2N−m, we
can derive the following system with a simpler source
term in which all the diagonal entries of the coefficient
matrix are zero,

Rt(x, t) + Λ(x)Rx(x, t) = Σ(x)R(x, t), (27)
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Rin(t) = KPRout(t) + Γ0(p̄(t) + ΘU(t)), (28)

where

Σ(x) =

[
Σ++(x) Σ+−(x)

Σ−+(x) Σ−−(x)

]
,

Rin(t) =

[
R+(0, t)

R−(L, t)

]
, Rout(t) =

[
R+(L, t)

R−(0, t)

]
,

KP =

[
0m×m Γ1

Γ3 0(2N−m)×(2N−m)

]
,

Γ0 =

[
Γ2

0(2N−m)×N

]
,

with

Σ++(x) = {ϵij(x)}1≤i,j≤m,

Σ+−(x) = {ϵij(x)}1≤i≤m,m+1≤j≤2N ,

Σ−+(x) = {ϵij(x)}m+1≤i≤2N,1≤j≤m,

Σ−−(x) = {ϵij(x)}m+1≤i≤2N,m+1≤j≤2N ,

and ϵij ∈ C0([0, L]),

ϵij(x) =

{
0, if j = i,

[Ψ(x)]i,i · [M(x)]i,j · [Ψ(x)]−1
j,j , if j ̸= i.

Under the assumption that there are matrices Υ1 ∈
Mm,N (R) andΥ2 ∈ M2N−m,N (R) such thatΥ1A1T

+(0) ∈
Mm,m(R) and Υ2A2T

−(L) ∈ M2N−m,2N−m(R) are
invertible, we obtain

Γ1 = −(Υ1A1T
+(0))−1Υ1A1T

−(0),

Γ2 = (Υ1A1T
+(0))−1Υ1,

Γ3 = −Ψ−(L)(Υ2A2T
−(L))−1Υ2A2T

+(L)(Ψ+(L))−1,

with A2 = diag{[1, 0], . . . , [1, 0]} ∈ MN,2N ,

T+(0) = {Tij(0)}1≤i≤2N,1≤j≤m,

T−(0) = {Tij(0)}1≤i≤2N,m+1≤j≤2N ,

T+(L) = {Tij(L)}1≤i≤2N,1≤j≤m,

T−(L) = {Tij(L)}1≤i≤2N,m+1≤j≤2N .

Since the transformation (26) is invertible, the linearized
system in density and velocity has the same stability
property as the system R. Inspired by [1], we are now in
position to design the controller.

3 Controller Design

3.1 Target system

Consider the backstepping transformations

Z+(x, t) = R+(x, t), (29)

Z−(x, t) = R−(x, t)−
∫ L

x

G1(x, ξ)R+(ξ, t) dξ

−
∫ L

x

G2(x, ξ)R−(ξ, t) dξ, (30)

where

G1 =
{
G1

ij

}
1≤i≤2N−m,1≤j≤m

∈ C2(T1),

G2 =
{
G2

ij

}
1≤i,j≤2N−m

∈ C2(T1),

are kernels defined on the triangular domain T1 ={
(x, ξ) ∈ R2| 0 ≤ x ≤ ξ ≤ L

}
.

The following target system is introduced,

Zt(x, t) + Λ(x)Zx(x, t) = Σ1(x)Z(x, t)

+

∫ L

x

C1(x, ξ)Z(ξ, t) dξ, (31)

Ẋ(t) = KIZout(t) + Γ0 ˙̄p(t), (32)

Zin(t) = KPZout(t) +X(t), (33)

X(t) = KI

∫ t

0

Zout(σ) dσ + Γ0p̄(t), (34)

where

Z(x, t) =

[
Z+(x, t)

Z−(x, t)

]
, Σ1(x) =

[
Σ++(x) Σ+−(x)

0 0

]
,

C1(x, ξ) =

[
C+(x, ξ) C−(x, ξ)

0 0

]
,

Zin(t) =

[
Z+(0, t)

Z−(L, t)

]
, Zout(t) =

[
Z+(L, t)

Z−(0, t)

]
,

KI =

[
K11

I K12
I

0(2N−m)×m 0(2N−m)×(2N−m)

]
,

withK11
I = {KI}1≤i,j≤m,K12

I = {KI}1≤i≤m,m+1≤j≤2N .
Here C+, C− are given as the solutions to the Volterra
integral equations, for all (x, ξ) in T1,

C+(x, ξ) = Σ+−(x)G1(x, ξ) +

∫ ξ

x

C−(x, s)G1(s, ξ) ds,

(35)
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C−(x, ξ) = Σ+−(x)G2(x, ξ) +

∫ ξ

x

C−(x, s)G2(s, ξ) ds.

(36)

The system (31)-(34) is considered under the initial con-
ditions,

Z(·, 0) = Z0(·) =

[
Z+
0 (·)

Z−
0 (·)

]
, (37)

X(0) = X0 = Γ0p̄(0) ∈ R2N . (38)

The exponential stability for the H1-norm of target sys-
tem (31)-(34) is as follows.

Theorem 1 The steady-state Z(x, t) ≡ 0 of the sys-
tem (31)-(34) is integral input-to-state stable for theH1-
norm if there exist positive constants α, q1, q2, q3, diag-
onal positive-definite matrices P1, P4 ∈ R2N×2N , a sym-
metric positive-definite matrix P2 ∈ R2N×2N and a ma-
trix P3 ∈ R2N×2N such that the following matrix inequal-
ities hold, for all x ∈ [0, L],

(i)

Ω(x) =


Ω11(x) Ω12 Ω13(x) Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ Ω33 Ω34

∗ ∗ ∗ Ω44

 ≥ 0, (39)

where

Ω11(x) = −Λ′(x)P1 − αP1 −
[
Σ⊤

1 (x)P1 + P1Σ1(x)

+ q1Lν
2
1I2N +

(
L

q1
+

L

q2

)
C⊤

1 (0, x)C1(0, x)

]
,

Ω12 = −P3KI ,

Ω13(x) = −Λ′(x)P3 − αP3 − Σ⊤
1 (x)P3,

Ω14 = 0,

Ω22 =
1

L
E2P1 −

1

L
K⊤

P E1P1KP − 1

L
K⊤

I E1P4KI ,

Ω23 = − 1

L
K⊤

P E1P1 −
1

L

(
K⊤

P M1 +M2

)
−K⊤

I P2,

Ω24 = − 1

L
K⊤

I E1P4KP ,

Ω33 = − 1

L
E1P1 −

1

L

(
M1 +M⊤

1

)
− αP3

− q2Lν
2
2I2N ,

Ω34 = 0,

Ω44 =
1

L
E2P4 −

1

L
K⊤

P E1P4KP ,

with

M1 =

[
Λ+(0)P++

3 Λ+(0)P+−
3

−Λ−(L)P−+
3 −Λ−(L)P−−

3

]
,

M2 =

[
−Λ+(L)P++

3 −Λ+(L)P+−
3

Λ−(0)P−+
3 Λ−(0)P−−

3

]
,

P++
3 = {P3}1≤i,j≤m,

P+−
3 = {P3}1≤i≤m,m+1≤j≤2N ,

P−+
3 = {P3}m+1≤i≤2N,1≤j≤m,

P−−
3 = {P3}m+1≤i≤2N,m+1≤j≤2N ,

E1 = diag{Λ+(0),Λ−(L)}, E2 = diag{Λ+(L),Λ−(0)},
ν1 = max (λ(P1)) , ν2 = max (|λ(P3)|) ,

(ii)

M(x) = (−Λ′(x)− αI2N )P4 −
[
Σ⊤

1 (x)P4 + P4Σ1(x)

+ q3Lν
2
3I2N +

L

q3
C⊤

1 (0, x)C1(0, x)
]
≥ 0, (40)

with ν3 = max (λ(P4)) .

In other words, there exist positive constants b1, c1 such
that, for every Z0 ∈ H1((0, L);R2N ), X0 ∈ R2N , and
for any p̄ such that ˙̄p ∈ L1[0,∞), the solution Z ∈
C0([0,+∞);H1((0, L);R2N ), X ∈ C0([0,+∞);R2N ) to
the Cauchy problem (31)-(34), (37)-(38) is defined on
[0,+∞)× [0, L] and satisfies

∥Z(·, t)∥2H1((0,L);R2N ) + ∥X(t)∥2

≤c1e
−αt

(
∥Z0∥2H1((0,L);R2N ) + ∥X0∥2

)
+ b1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds, ∀t ∈ [0,+∞). (41)

Proof. The followingH1 Lyapunov function candidate is
introduced for the stability analysis of system (31)-(34),
for ∀t ∈ [0,+∞),

V (Z(x, t), X(t), Zt(x, t)) = V1 + V2 + V3 + V4, (42)

where

V1 =

∫ L

0

[
Z⊤(x, ·)P1(x)Z(x, ·)

]
dx, (43)

V2 =

∫ L

0

[
Z⊤(x, ·)P3(x)X(·) +X⊤(·)P⊤

3 (x)Z(x, ·)
]
dx,

(44)

V3 = LX⊤(·)P2X(·), (45)
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V4 =

∫ L

0

[
Z⊤
t (x, ·)P4(x)Zt(x, ·)

]
dx, (46)

and
P1(x) ≜ P1diag

{
e−µxIm, eµxI2N−m

}
,

P3(x) ≜ P3diag
{
e−

µ
2 xIm, e

µ
2 xI2N−m

}
,

P4(x) ≜ P4diag
{
e−µxIm, eµxI2N−m

}
,

where, by definition, the notationZt must be understood
as

Zt(x, t) ≜− Λ(x)Zx(x, t) + Σ1(x)Z(x, t)

+

∫ L

x

C1(x, ξ)Z(ξ, t) dξ.

Under the definition of V and straightforward estima-
tions, there exists a positive real constant β such that,
for every Z, we can obtain the following inequality,

1

β

∫ L

0

(
|Z(x, ·)|2 + |X(·)|2 + |Zx(x, ·)|2

)
dx

≤ V

≤ β

∫ L

0

(
|Z(x, ·)|2 + |X(·)|2 + |Zx(x, ·)|2

)
dx. (47)

By time differentiation of (31) and (33), Zt can be shown
to satisfy the following equations, for all x ∈ [0, L], t ∈
[0,+∞),

Ztt(x, t) = −Λ(x)Ztx(x, t) + Σ1(x)Zt(x, t)

+

∫ L

x

C1(x, ξ)Zt(ξ, t) dξ, (48)

Żin(t) = KP Żout(t) + Ẋ(t). (49)

Taking time derivative of V1 along the solutions to (31)-
(34) and using integrations by parts, the following result
is achieved,

V̇1 ≤Z⊤
out(t)

[
K⊤

P Ē1P1KP − e−µLĒ2P1

]
Zout(t)

+ Z⊤
out(t)K

⊤
P Ē1P1X(t) +X⊤(t)P1Ē1KPZout(t)

+X⊤(t)Ē1P1X(t)

+

∫ L

0

Z⊤(x, t) [Λ′(x)P1(x)− µ|Λ(x)|P1(x)]Z(x, t) dx.

+

∫ L

0

[(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ

)⊤

P1(x)Z(x, t) + Z⊤(x, t)P1(x)(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ

)]
dx.

(50)

with
Ē1 = diag

{
Λ+(0), eµLΛ−(L)

}
,

Ē2 = diag
{
Λ+(L), eµLΛ−(0)

}
.

By taking time derivative of V2 along the solutions to
(31)-(34) and using integrations by parts, we get

V̇2 ≤Z⊤
out(t)

[
K⊤

P M̄1 + M̄2

]
X(t) +X⊤(t)M̄1X(t)

+X⊤(t)
[
M̄⊤

1 KP + M̄⊤
2

]
Zout(t) +X⊤(t)M̄⊤

1 X(t)

+

∫ L

0

Z⊤(x, t)
[
Λ′(x)P3(x)−

µ

2
|Λ(x)|P3(x)

]
X(t) dx

+

∫ L

0

X⊤(t)
[
−µ

2
P⊤
3 (x)|Λ(x)|+ P⊤

3 (x)Λ′(x)
]
Z(x, t) dx

+

∫ L

0

[
Z⊤(x, t)P3(x)KIZout(t)

+Z⊤
out(t)K

⊤
I P⊤

3 (x)Z(x, t)
]
dx

+ κ1

∫ L

0

Z⊤(x, t)P3(x)Γ0

(
Z⊤(x, t)P3(x)Γ0

)⊤
dx

+
L

κ1

˙̄p⊤(t) ˙̄p(t)

+

∫ L

0

[(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ

)⊤

P3(x)X(t) +X⊤(t)P⊤
3 (x)(

Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ

)]
dx,

(51)

with a positive constant κ1 and

M̄1 =

[
Λ+(0)P++

3 Λ+(0)P+−
3

−e−
µ
2 LΛ−(L)P−+

3 −e
µ
2 LΛ−(L)P−−

3

]
,

M̄2 =

[
−e−

µ
2 LΛ+(L)P++

3 −e
µ
2 LΛ+(L)P+−

3

Λ−(0)P−+
3 Λ−(0)P−−

3

]
.

By taking time derivative of V3 along the solutions to
(32), we can derive the following result with a positive
constant κ2,

V̇3 ≤ LZ⊤
out(t)K

⊤
I P2X(t) + LX⊤(t)P2KIZout(t)

+ Lκ2X
⊤(t)P2Γ0

(
X⊤(t)P2Γ0

)⊤
+

L

κ2

˙̄p⊤(t) ˙̄p(t).

(52)

Taking time derivative of V4 along the solutions to (31)-
(34), (48) and using integrations by parts, we get

V̇4 ≤ Ż⊤
out(t)

[
K⊤

P Ē1P4KP − e−µLĒ2P4

]
Żout(t)

+ Ż⊤
out(t)K

⊤
P P4Ē1KIZout(t)

+ Z⊤
out(t)K

⊤
I Ē1P4KP Żout(t)
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+ Z⊤
out(t)K

⊤
I Ē1P4KIZout(t) +

1

κ3

˙̄p⊤(t) ˙̄p(t)

+ κ3Ż
⊤
out(t)K

⊤
P Ē1P4Γ0

(
K⊤

P Ē1P4Γ0

)⊤
Żout(t)

+ κ4Z
⊤
out(t)K

⊤
I Ē1P4Γ0

(
K⊤

I Ē1P4Γ0

)⊤
Zout(t)

+
1

κ4

˙̄p⊤(t) ˙̄p(t) + ˙̄p(t)⊤Γ⊤
0 Ē1P4Γ0 ˙̄p(t)

+

∫ L

0

Z⊤
t (x, t) [Λ′(x)P4(x)− µ|Λ(x)|P4(x)]Zt(x, t) dx

+

∫ L

0

[(
Σ1(x)Zt(x, t) +

∫ L

x

C1(x, ξ)Zt(ξ, t) dξ
)⊤

P4(x)Zt(x, t) + Z⊤
t (x, t)P4(x)

(
Σ1(x)Zt(x, t)

+

∫ L

x

C1(x, ξ)Zt(ξ, t) dξ
)]

dx, (53)

with positive constants κ3 and κ4.

The three rightmost integrals in (50), (51) and (53) are
considered individually,∫ L

0

[(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ
)⊤

P1(x)Z(x, t) + Z⊤(x, t)P1(x)(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ
)]

dx

≤
∫ L

0

[
(Σ1(x)Z(x, t))

⊤ P1(x)Z(x, t)

+ Z⊤(x, t)P1(x) (Σ1(x)Z(x, t))
]
dx

+ q1Le
2µLν21

∫ L

0

Z⊤(x, t)Z(x, t) dx

+
L

q1

∫ L

0

(C1(0, x)Z(x, t))⊤(C1(0, x)Z(x, t)) dx.

(54)

Similarly, we derive the inequalities for the other two
integrals,

∫ L

0

[(
Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ

)⊤

P3(x)X(t) +X⊤(t)P⊤
3 (x)(

Σ1(x)Z(x, t) +

∫ L

x

C1(x, ξ)Z(ξ, t) dξ

)]
dx

≤
∫ L

0

[
(Σ1(x)Z(x, t))

⊤ P3(x)X(t)

+X⊤(t)P⊤
3 (x) (Σ1(x)Z(x, t))

]
dx

+ q2Le
µLν22

∫ L

0

X⊤(t)X(t) dx

+
L

q2

∫ L

0

(C1(0, x)Z(x, t))⊤(C1(0, x)Z(x, t)) dx,

(55)∫ L

0

[(
Σ1(x)Zt(x, t) +

∫ L

x

C1(x, ξ)Zt(ξ, t) dξ

)⊤

P4(x)Zt(x, t) + Z⊤
t (x, t)P4(x)(

Σ1(x)Zt(x, t) +

∫ L

x

C1(x, ξ)Zt(ξ, t) dξ

)]
dx

≤
∫ L

0

[
(Σ1(x)Zt(x, t))

⊤P4(x)Zt(x, t)

+ Z⊤
t (x, t)P4(x)(Σ1(x)Zt(x, t))

]
dx

+ q3Le
2µLν23

∫ L

0

Z⊤
t (x, t)Zt(x, t) dx

+
L

q3

∫ L

0

(C1(0, x)Zt(x, t))
⊤(C1(0, x)Zt(x, t)) dx.

(56)

Using (50)-(56), there exists a constant α > 0 such that,
for all t ≥ 0,

V̇ = V̇1 + V̇2 + V̇3 + V̇4

≤ −αV −
∫ L

0


Z(x, ·)
Zout(·)
X(·)
Żout(·)


⊤

Ω̄(x)


Z(x, ·)
Zout(·)
X(·)
Żout(·)

 dx

−
∫ L

0

Z⊤
t (x, t)M̄(x)Zt(x, t) dx

+ ˙̄p⊤(t)

[(
L

κ1
+

L

κ2
+

1

κ3
+

1

κ4

)
I2N + Γ⊤

0 Ē1P4Γ0

]
˙̄p(t),

(57)

where

Ω̄(x) =


Ω̄11(x) Ω̄12(x) Ω̄13(x) Ω̄14

∗ Ω̄22 Ω̄23 Ω̄24

∗ ∗ Ω̄33(x) Ω̄34

∗ ∗ ∗ Ω̄44

 (58)

with

Ω̄11(x) = µ|Λ(x)|P1(x)− Λ′(x)P1(x)− αP1(x)

− κ1P3(x)Γ0(P3(x)Γ0)
⊤ −

[
Σ⊤

1 (x)P1(x)

+ P1(x)Σ1(x) + q1Le
2µLν21I2N

+

(
L

q1
+

L

q2

)
C⊤

1 (0, x)C1(0, x)
]
,

Ω̄12(x) = −P3(x)KI ,
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Ω̄13(x) =
µ

2
|Λ(x)|P3(x)− Λ′(x)P3(x)− αP3(x)

− Σ⊤
1 (x)P3(x),

Ω̄14 = 0,

Ω̄22 =
e−µL

L
Ē2P1 −

1

L
K⊤

P Ē1P1KP − 1

L
K⊤

I Ē1P4KI

− κ4

L
K⊤

I Ē1P4Γ0(K
⊤
I Ē1P4Γ0)

⊤,

Ω̄23 = − 1

L
K⊤

P Ē1P1 −
1

L

(
K⊤

P M̄1 + M̄2

)
−K⊤

I P2,

Ω̄24 = − 1

L
K⊤

I Ē1P4KP ,

Ω̄33(x) = − 1

L
Ē1P1 −

1

L

(
M̄1 + M̄⊤

1

)
− κ2P2Γ0(P2Γ0)

⊤ − αP2 − q2Le
µLν22I2N ,

Ω̄34 = 0,

Ω̄44 =
e−µL

L
Ē2P4 −

1

L
K⊤

P Ē1P4KP

− κ3

L
K⊤

P Ē1P4Γ0

(
K⊤

P Ē1P4Γ0

)⊤
,

and

M̄(x) = (−Λ′(x) + µ|Λ(x)| − αI2N )P4(x)

−
[
Σ⊤

1 (x)P4(x) + P4(x)Σ1(x)

+ q3Le
2µLν23I2N +

L

q3
C⊤

1 (0, x)C1(0, x)
]
. (59)

Under the conditions (39), (40), ∃µ,κ1,κ2,κ3,κ4 > 0
small enough, such that Ω̄(x) ≥ 0 and M̄(x) ≥ 0, thus

V̇ ≤ −αV + α1 ˙̄p
⊤(t) ˙̄p(t), (60)

withα1 = max
(
λ
((

L
κ1

+ L
κ2

+ 1
κ3

+ 1
κ4

)
I2N + Γ⊤

0 P4Ē1Γ0

))
.

Thus along the solutions to the system (31)-(34),

V ≤ V (0)e−αt + α1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds. (61)

Combining this relation with (47), there exist positive
constants c1 = β2, b1 = βα1 such that, for all t ≥ 0,∫ L

0

(
|Z(x, t)|2 + |X(t)|2 + |Zx(x, t)|2

)
dx

≤ c1e
−αt

(∫ L

0

(
|Z0(x)|2 + |X0|2 + |Zx(x, 0)|2

)
dx

)

+ b1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds, (62)

completing the proof of Theorem 1. □

By applying [1] (Theorem D.6), the transformations de-
fined in (29) and (30) are in C2(T1). Moreover, differen-
tiating these transformations with respect to x, and ap-
plying Theorem 1.2 in [1], it can be shown that the H1

norm of Z is equivalent to the H1 norm of R. Thus, the
exponential stability of theH1 norm of Z system implies
the corresponding one for the H1 norm of R system.

3.2 Control law

Take time derivative and spatial derivative on (29) and
(30), and substitute them into (31)-(34) to get the fol-
lowing equations of the kernels G1(x, ξ) and G2(x, ξ),

Λ−(x)G1
x(x, ξ)−G1

ξ(x, ξ)Λ
+(ξ)

= G1(x, ξ)
[
(Λ+)′(ξ) + Σ++(ξ)

]
+G2(x, ξ)Σ−+(ξ),

(63)

Λ−(x)G2
x(x, ξ) +G2

ξ(x, ξ)Λ
−(ξ)

= G2(x, ξ)
[
−(Λ−)′(ξ) + Σ−−(ξ)

]
+G1(x, ξ)Σ+−(ξ),

(64)

with the boundary conditions

G1(x, x)Λ+(x) + Λ−(x)G1(x, x) = Σ−+(x), (65)

G2(x, x)Λ−(x)− Λ−(x)G2(x, x) = −Σ−−(x), (66)

G1(x, L)Λ+(L)−G2(x, L)Λ−(L)Γ3 = K1(x), (67)

andK1(x) is a vector in the formK1(x) = {kj1(x)}1≤j≤m.
These equations are under-determined, and to ensure
the well-posedness, the additional boundary conditions
are added,

G2
ij(0, ξ) = g2ij(ξ), 1 ≤ j < i ≤ 2N −m, (68)

for some arbitrary functions g2ij , 1 ≤ j < i ≤ 2N −m.

The wellposedness of solution to the kernel equations
(63)-(68) follows from a coordinate change (x, ξ) 7→ (L−
x, L− ξ) and an application of Theorem D.6 in [1] in the
triangular domain
T0 =

{
(L− x, L− ξ) ∈ R2| 0 ≤ L− ξ ≤ L− x ≤ L

}
.

Assume that there is a matrix Θ ∈ M2N−m,m such

that ΘΓ2Θ is invertible, then we deduce, from (28),
(29), (30), (33), (34), the following controller defined as,
∀t ∈ [0,+∞),

U(t) = (ΘΓ2Θ)−1Θ

∫ t

0

(
K11

I R+(L, σ) +K12
I R−(0, σ)

)
dσ

− (ΘΓ2Θ)−1ΘK12
I

∫ t

0

∫ L

0

[
G1(0, ξ)R+(ξ, σ)

+G2(0, ξ)R−(ξ, σ)
]
dξ dσ
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− (ΘΓ2Θ)−1ΘΓ1

∫ L

0

[
G1(0, ξ)R+(ξ, t)

+G2(0, ξ)R−(ξ, t)
]
dξ. (69)

Under the assumptions of Theorem 1, the target sys-
tem (31)-(34) is integral input-to-state stable. Thus, us-
ing the invertibility of backstepping transformation, the
original system (27), (28) is integral input-to-state sta-
ble in the H1-norm with the control law (69).

4 Optimal controller and numerical studies

In this section, an optimization problem is presented to
obtain the optimal values of parameters of the designed
controller. According to the analysis of the parameters
of controller, conclude that the initial values of density of
all the vehicle classes on the considered road segment are
the key parameters to determine the values of controller
parameters and to compute the area occupancy. The
experiment is set and the results of computation are
presented and discussed.

4.1 Optimal controller

From (3), we note that Ao depends on the density vec-
tor ρ. The higher value of ∥ρ∥L∞((0,L);RN) is, the higher
value of ∥Ao∥L∞((0,L);R) which implies the highest road
occupancy on the road segment under consideration is,
then the traffic congestion is more possible to happen.
In order to minimize the likelihood of congested traffic,
we set the following optimization problem to derive the
optimal control law U(t),

min
Γ1,Γ2,K11

I
,K12

I

∥Ao∥L∞((0,L);R)

subject to (39) and (40). (70)

From (69), the value of U depends on the parameters
Γ1, Γ2, K

11
I , K12

I , and the kernels G1(0, ξ), G2(0, ξ),
ξ ∈ [0, L]. The values of them for the optimal controller
are obtained by solving the optimization problem (70).

The parameters Γ1, K
11
I , K12

I are respectively included
in the proportional and integral tuning matricesKP and
KI , which have effects on the iISS of the target system Z
in the H1 sense in terms of the matrix inequalities. The
parameter Γ2 is contained in the proportional coefficient
matrix Γ0 of the disturbances, moreover, Γ0 has effects
on the coefficient of integral term of iISS. Notice that
the value of u∗(0) determines Γ1 and Γ2, and due to
ρ∗i (x)v

∗
i (x) = di, i = 1, 2, · · · , N , x ∈ (0, L), ρ∗i (0) is key

to the values of Γ1 and Γ2. Similarly, ρ∗i (x) is key to the
values of kernels G1(0, ξ), G2(0, ξ), ξ ∈ [0, L].

The spatial variable x is discretized on the domain [0, L].
The values of ρ∗i (x), v

∗
i (x), (i = 1, 2, · · · , N) are de-

rived by solving the ODEs (6)-(7), given the initial val-
ues ρ∗i (0), v

∗
i (0) through line search methods. The val-

ues of K11
I , K12

I are given and tuned, the values of Γ1

and Γ2 are computed and the variables P1, P2, P3, P4 are
derived by solving linear matrix inequalities (LMIs).

4.2 Numerical studies

For numerical computation, the traffic parameters of
two vehicle classes on a considered road section in
the congested regime are chosen as in [7], see Ta-
ble 1. The steady-state velocities are determined by

Name Symbol Value Unit

Number of vehicle class N 2 1

Relaxation time τ1 30 s

τ2 60 s

Pressure exponent γ1 2.5 1

γ2 2 1

Free-flow velocity vM1 80 km
h

vM2 60 km
h

Maximum AO AoM1 0.9 1

AoM2 0.85 1

Occupied surface per vehicle a1 10 m2

a2 42 m2

steady-state density at the inlet ρ∗1(0) 110 veh
km

ρ∗2(0) 70 veh
km

steady-state velocity at the inlet v∗1(0) 50 km
h

v∗2(0) 25 km
h

Road width W 6.5 m

Road length L 1 km

Number of grid points Nx 40 1

Table 1
Selected values of parameters.

the choice of the steady-state density at the same
location on the considered road. By solving the op-
timization problem (70), the values of steady-state
density and steady-state velocity of two classes are
derived as shown in Table 1. Then the steady-state
u∗(x) = (ρ∗1(x), v

∗
1(x), ρ

∗
2(x), v

∗
2(x))

⊤, x ∈ [0, 1] is de-
rived by solving the ordinary differential equations (6)-
(7) with the initial value ρ∗(0) = (ρ∗1(0), ρ

∗
2(0))

⊤, see
Figure 2. The relationships a1 < a2, τ1 < τ2 in Table 1
and v∗1 > v∗2 in Figure 2 illustrate that, class 1 repre-
sents small and fast vehicles, and class 2 describes big
and slow vehicles. Given

K11
I =


−20 30 30

−24 −7 26

−10 20 −30

× 10−5, K12
I =


60

30

20

× 10−5,
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Fig. 2. Relation between spacial variable x and the nonuni-
form steady-state u∗(x) = (ρ∗1(x), v

∗
1(x), ρ

∗
2(x), v

∗
2(x))

⊤.

we get

Γ1 =


−0.785

1.0467

−4.2039

 ,Γ2 =


0 0.0469

0 −0.0625

0.0332 0.2051

 ,

P1 = diag {2.1347, 2.6029, 4.8043, 2.5084} × 103,

P2 =


8.8861 0 0 0

∗ 8.8862 0 0

∗ ∗ 8.8861 0

∗ ∗ ∗ 8.8861

× 103,

P3 =


−13.2307 −0.0486 −0.0275 −0.0458

0.0555 −15.9336 0.0023 −0.2843

0.0550 −0.0041 −29.1363 1.0618

−0.0411 −0.2236 0.4766 14.8374

 ,

P4 = diag {2.3839, 2.7027, 4.2496, 1.5339} × 103.

The conditions of Theorem 1 are satisfied, thus the iISS
of the target system and the original system are valid.
In addition, the optimal controller exists.

5 Conclusion

The robust control problem was studied to stabilize the
multi-type linearized AR traffic flow system. A controller
was designed by using backstepping and the existence
of the optimal controller was validated by solving the
optimization problem.

Inspired by [8], the H1 locally iISS and state estimation
problem will be studied for the quasilinear system in the
future research. It would be of interest to solve this anal-
ogous problem by using a more complicated backstep-
ping transformations to simplify the target system.
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