Automatic pain estimation from facial expressions: a comparative analysis using off-the-shelf CNN architectures - Archive ouverte HAL
Article Dans Une Revue Electronics Année : 2021

Automatic pain estimation from facial expressions: a comparative analysis using off-the-shelf CNN architectures

Résumé

Automatic pain recognition from facial expressions is a challenging problem that has attracted a significant attention from the research community. This article provides a comprehensive analysis on the topic by comparing some popular and Off-the-Shell CNN (Convolutional Neural Network) architectures, including MobileNet, GoogleNet, ResNeXt-50, ResNet18, and DenseNet-161. We use these networks in two distinct modes: stand alone mode or feature extractor mode. In stand alone mode, the models (i.e., the networks) are used for directly estimating the pain. In feature extractor mode, the “values” of the middle layers are extracted and used as inputs to classifiers, such as SVR (Support Vector Regression) and RFR (Random Forest Regression). We perform extensive experiments on the benchmarking and publicly available database called UNBC-McMaster Shoulder Pain. The obtained results are interesting as they give valuable insights into the usefulness of the hidden CNN layers for automatic pain estimation.
Fichier principal
Vignette du fichier
ElMorabit_Electronics-10-01926.pdf (2.46 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03360279 , version 1 (30-09-2021)

Licence

Identifiants

Citer

Safaa El Morabit, Atika Rivenq, Mohammed-En-Nadhir Zighem, Abdenour Hadid, Abdeldjalil Ouahabi, et al.. Automatic pain estimation from facial expressions: a comparative analysis using off-the-shelf CNN architectures. Electronics, 2021, 10 (16), pp.1926. ⟨10.3390/electronics10161926⟩. ⟨hal-03360279⟩
83 Consultations
302 Téléchargements

Altmetric

Partager

More