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Simple Summary: The approval of the two antibody combinations trastuzumab/pertuzumab and
ipilimumab/nivolumab in oncology has paved the way for novel antibody combinations or oligo-
clonal antibody mixtures to improve their efficacy in cancer. The underlying biological mechanisms
and challenges of these strategies will be discussed using data from clinical trials listed in databases.
These therapeutic combinations also lead to questions on how to optimize their formulation and
delivery to induce a therapeutic polyclonal response in patients with cancer.

Abstract: Monoclonal antibodies have revolutionized the treatment of many diseases, but their
clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown
that combinations of antibodies that bind to the same target (homo-combinations) or to different
targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their
therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast
cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel
antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer man-
agement. We found more than 300 phase II/III clinical trials on antibody combinations, with/without
chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such
combinations enhance the biological responses and bypass the resistance mechanisms observed
with antibody monotherapy. Usually, such antibody combinations are administered sequentially
as separate formulations. Combined formulations have also been developed in which separately
produced antibodies are mixed before administration or are produced simultaneously in a single cell
line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity
and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to
optimize their delivery and their therapeutic effects.

Keywords: cancer; antibody; biologic; immunotherapy; combination; oligoclonal; mixture

1. Introduction

In the 19th century, the pioneering work of Shibasaburo Kitasato and Emil von Behring
in Germany and Emile Roux in France paved the way for serotherapy. This treatment is
based on the use of sera that originate from previously immunized animals or humans and
contain pathogen-specific antibodies as the active substance. César Milstein and Georges
Köhler revolutionized this concept by inventing the lymphocyte hybridization technique
that led to the development of a new pharmacological class of biologics called “mono-
clonal” antibodies (mAbs). However, partial and short-lived responses, often associated
with resistance phenomena (extensively studied in basic research), limit the clinical efficacy
of mAbs. To overcome these obstacles, mAb combinations, most often evaluated separately,
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and oligoclonal antibody cocktails, considered as a single biologic, have been developed. In-
deed, the immune system has naturally evolved to generate a polyclonal humoral response
to optimize its ability to fight diseases, rather than the monoclonal strategy proposed by
the currently approved antibody biologics. In this review, we first describe pre-clinical
studies showing the potential of co-targeting tumor and/or immune checkpoint molecules
with antibodies in oncology. Antibody mixtures can be made of antibodies against the
same target (i.e., homo-combinations) or against different targets (i.e., hetero-combinations).
The approval of two therapeutic antibody combinations, trastuzumab/pertuzumab and
ipilimumab/nivolumab, validated this concept of “mimicking” the polyclonal humoral
immune response for cancer treatment. We then list the antibody combinations that are
currently tested in phase II and III clinical trials. Finally, we discuss how the technical
improvements for the reproducible manufacturing of oligoclonal antibody mixtures, in
which each antibody is selected on the basis of specific criteria (e.g., epitope specificity,
affinity or intrinsic biological activity), now allow the natural polyclonal humoral immune
response to be mimicked, paving the way for 21st century serotherapy.

2. Homo-Combinations and Hetero-Combinations of Antibodies in Preclinical Studies
2.1. Tumor Co-Targeting in Oncology

Around the year 2000, the notion of homo-combination of antibodies, involving
distinct epitopes on the same receptor, was pioneered by Yosef Yarden (Weizmann Institute,
Israel) and then by other research groups. For instance, homo-combinations of antibodies
against epidermal growth factor receptor (EGFR) [1–5], human epidermal growth factor
receptor-2 (HER2) [6–9] or hepatocyte growth factor (HGF) receptor (i.e., cMET) [10,11]
induce synergistic anti-tumor activity due to accelerated degradation of the targeted
receptors and enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) (Figure 1).
Moreover, these antibody combinations bypass the resistance to treatment induced by
monotherapy with cetuximab (anti-EGFR mAb) in colorectal cancer [12] and with an anti-
cMET antibody in gastric cancer [13]. They also maintain anti-tumor activity despite the
presence of EGFR extracellular domain mutations that might impair antibody binding [14].
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In 2007, our team demonstrated that the hetero-combination of antibodies against
EGFR and HER2, two functionally collaborating receptors (Figure 1), has a higher anti-
tumor effect by promoting ADCC, by reducing the expression of these receptors and
homodimer formation [16–18] and also by inhibiting intracellular signaling pathways [19].
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This preclinical work, confirmed by other research groups [20–22], led to the initiation of
the THERAPY phase I/II clinical trial in patients with metastatic pancreatic cancer who
progressed on gemcitabine. This trial showed that the combination of cetuximab and
trastuzumab (targeting EGFR and HER2, respectively) stabilizes the disease in 27% of pa-
tients, without objective response but with a positive correlation between skin toxicity and
progression-free survival [23]. The clinical trial was discontinued because of high toxicity,
highlighting the need to rethink the active dose when using antibody combinations. The
idea behind the administration of this hetero-combination was to avoid compensatory sig-
naling phenomena related to the targeting of a single receptor. It was then extended to the
dual targeting of EGFR and HER3 in cetuximab- and osimertinib-resistant tumors [12,24].
Such antibody hetero-combinations can also include antibodies against a ligand, for in-
stance vascular endothelial growth factor (VEGF) or HGF, and a receptor (Figure 1), to
target both the tumor microenvironment and a tumor-specific receptor [25–27].

Finally, oligoclonal cocktails of three [28,29] or six [30,31] antibodies against EGFR,
HER2 and HER3 have an increased anti-tumor effect in experimental models, with block-
ade of the underlying extracellular signal-regulated kinase (ERK) and protein kinase B
(AKT) signaling pathways and accelerated receptor degradation. The six-mAb cocktail
PanHER (Sym013) demonstrated strong efficiency in gemcitabine-sensitive and also in
chemotherapy-resistant pancreatic cancer by downregulating these three receptors [32].
Homo- or hetero-combinations of antibodies against CD20, CD22 or CD52 expressed by B
lymphocytes (and T cells for CD52) have also been proposed for blood malignancies [33].

2.2. Co-Targeting of Immune Checkpoint Molecules (ICM): Awakening the Immune System

The importance of immune checkpoints, such as cytotoxic T lymphocyte-associated
protein 4 (CTLA-4) and programmed cell death 1 (PD-1), in modulating the anti-tumor
T-cell response has been highlighted by the awarding of the 2018 Nobel Prize in Physiology
or Medicine to James Allison and Tasuku Honjo. The understanding of their roles in
regulating lymphocyte activation and tumor immune escape led to the development of
antibody combinations against molecules of this functional family that are classified in
co-inhibitory molecules (that must be blocked) and co-activating molecules (that must
be stimulated). In 2010, it was shown that the hetero-combination of anti-CTLA-4/-PD-1
blocking antibodies (Figure 1) displays an increased anti-tumor efficacy in mouse models
of colorectal cancer and melanoma. This effect is characterized by increased infiltration
of cytotoxic T cells and inhibition of regulatory T cells and suppressive myeloid cells [34].
Other hetero-combinations of antibodies targeting the ICMs PD-1 and 4-1BBL (also known
as tumor necrosis factor receptor superfamily member 9 or CD137), PD-1 and lymphocyte-
activating gene 3 (LAG3) [35], or CD137 and T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3) [36], among others, have been proposed to modulate the immune
response in cancers. The link between the expression or overexpression of PD-L1 (the
ligand of PD-1) and the efficacy of anti-HER2 antibodies in some patients [37–39] led to the
testing of the combination of tumor-targeting mAbs (TTmAbs), for instance against HER
family members, and of antibodies against ICMs in some cancers.

2.3. Pre-Clinical Studies to Understand the Mechanisms of Tumor-Targeting Antibodies in
Combination with Immune Checkpoint Blockade

The first clinical successes with anti-CD20, anti-HER2 or anti-EGFR TTmAbs were
mainly attributed to the interruption of their respective signaling pathways or their ability
to induce ADCC; however, several data also suggested an essential role for the innate and
adaptive immunity in the therapeutic outcome. Unfortunately, the use of these naked
antibodies as monotherapy in advanced solid tumors, such as breast cancer, metastatic
colorectal cancer and head and neck squamous cell carcinoma, results in a high proportion
of tumors displaying primary and acquired resistance, and relatively low lasting thera-
peutic response rates. This suggested that TTmAbs should be associated with anti-ICM
antibodies to obtain synergistic effects and sustained antitumor activity. Many clinical trials
have been set up in recent years, but with variable success, depending on the cancer type
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and drugs used. To optimize these combinatorial approaches, preclinical animal models
must be developed to better characterize and understand the mechanisms implicated in
their effects.

We and others recently demonstrated, using several immunocompetent mice mod-
els of solid and hematological tumors, that TTmAbs can overcome immune tolerance
and induce the development of an adaptive immune memory, leading to long-lasting
effects [40–43]. It is now clear that TTmAbs have immunomodulatory effects via the Fc
fragment, through the recruitment of antigen-presenting cells at the tumor site, better anti-
gen presentation and stronger adaptive immunity with consequences for both the memory
cytotoxic and humoral responses [44,45]. Therefore, antitumor therapeutic approaches
in which TTmAbs and anti-ICM antibodies are combined to reinforce this antitumor re-
sponse are interesting for awakening the exhausted antitumor immune response and to
reach long-term remission. We demonstrated in the mouse B16F10 melanoma model that
anti-PD1 antibodies synergize with the TA99 mAb against TYRP-1 expressed at the surface
of malignant melanocytes. In mice treated with this combination, CD8+ T cells, natural
killer (NK) and γδ T cells with cytolytic activity were increased as well as plasma antitumor
IgGs, leading to better overall survival [40]. Similar results were described recently by
another group using the TA99 mAb with the anti-CTLA-4 mAb or the agonist anti-CD137
mAb in the B16F10 mouse melanoma model [46]. In both cases, treatment with the TA99
mAb resulted in an increased expression of the secondary targets CTLA-4, PD1 or CD137,
leading to an optimal combinatorial effect of the anti-PD1 or anti-CD137 mAbs.

In the past ten years, other groups have shown that TTmAbs in combination with
anti-ICM antibodies might have synergistic effects on the host adaptive anti-immune
response and on tumor eradication. For example, anti-angiogenic therapy using anti-
VEGFR antibodies can elicit or enhance the anti-tumor immune response, and reciprocally,
the immune system can support angiogenesis. Yasuda et al. demonstrated, in a mouse
model of colorectal cancer, that the simultaneous blockade of PD1 and VEGFR2 induces a
synergistic anti-tumor effect. This might occur through different mechanisms that may not
be mutually exclusive [47]. More recently, Allen et al. investigated the efficacy of the anti-
PDL-1 and anti-VEGFR2 antibody combination in mice bearing pancreatic neuroendocrine
tumor, mammary carcinoma or glioblastoma [48]. They found that the anti-VEGFR2
antibody treatment is associated with lymphocyte homing into the tumor, whereas the
anti-PD-L1 antibody induces activation of infiltrated CD4+ and CD8+ T cells that produce
IFNγ. Another study showed that in head and neck cancer, the anti-EGFR mAb cetuximab
combined with an anti-CD137 agonist antibody leads to tumor regression and prolonged
survival. This might be dependent on enhanced NK cell degranulation and cytotoxicity,
dendritic cell presentation and tumor antigen cross-presentation [49]. Moreover, it is
known that blocking VEGF induces ICM expression, and that the combination of anti-
PD-L1 and anti-VEGF antibodies synergistically suppresses tumor growth in small cell
lung cancer [50]. Another example illustrates the capacity of TTmAbs to modify the tumor
microenvironment and increase the efficacy of anti-ICM antibodies. Indeed, the anti-HER2
mAb trastuzumab can increase IFNγ production through the MyD88 pathway, and IFNγ

induces PD-L1 expression on tumor cells. Consequently, anti-PD1/anti-PD-L1 antibodies
can strengthen the antitumor activity of anti-HER2 TTmAbs [51].

The CD47 ligand and its receptor SIRPα are other ICMs targeted by antibodies in
several clinical trials in combination with TTmAbs. In mouse models of hematological
or solid cancer, rituximab synergizes with the humanized anti-CD47 antibody HU5F9-G4
to promote phagocytosis and to eliminate non-Hodgkin lymphoma and solid tumors in
xenografted mice [52]. Interestingly, the combination of HU5F9-G4 with cetuximab or pani-
tumumab (anti-EGFR mAbs) reduces tumor burden more than any of the monotherapies
in immunodeficient mice harboring patient-derived xenografts [53].

Altogether, these data show that TTmAbs can modulate the tumor microenvironment
(vasculature, cytokine profiles, innate immunity activation, increase of the adaptive im-
mune repertoire) and therefore reinforce the antitumor response of anti-ICM antibodies
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to achieve tumor regression. However, drug combination protocols are complex and re-
quire data obtained in preclinical studies to find the optimal conditions for the combined
delivery (administered doses, concomitant vs. sequential administration, formulations,
pharmacokinetics). Understanding the mechanisms involved in their synergistic effects
will allow optimal clinical therapeutic approaches to be developed to counteract treatment
resistance in patients with cancer [54].

3. The Initial Clinical Proof of Concept about Antibody Combinations

In 2012, the first TTmAb homo-combination (the anti-HER2 mAbs trastuzumab and per-
tuzumab) was approved with docetaxel for the treatment of patients with HER2-amplified
metastatic breast cancer. The phase III trial CLEOPATRA (n = 808 patients) found a mean
progression-free survival of 18.7 months in the antibody homo-combination + docetaxel
arm compared with 12.4 months in the trastuzumab alone + docetaxel arm [55]. Cardiac
toxicity was comparable in the two arms. This antibody homo-combination with doc-
etaxel was subsequently approved for neo-adjuvant treatment of newly diagnosed patients
(APHINITY and NeoSphere trials [56,57]). However, the NeoSphere trial reported increased
toxicity in the trastuzumab/pertuzumab + docetaxel arm. Recently, a subcutaneous for-
mulation of the TTmAbs trastuzumab and pertuzumab with recombinant hyaluronidase
in one ready-to-use, fixed-dose vial plus chemotherapy was approved by the U.S. Food
and Drug Administration (FDA) and European Medicines Agency (EMA) for patients with
HER2-positive early and metastatic breast cancer (FeDeriCa trial [58], MetaPHER trial [59]).
In these open-label phase III trials, non-inferiority, safety and tolerability were satisfactorily
addressed. Therefore, they paved the way to improve the patients’ quality of life by signifi-
cantly reducing the treatment time for patients, physicians, nurses and pharmacy staff. This
sub-cutaneous formulation brings opportunities for more flexible home management of
patients with cancer.

However, not all phase III clinical trials on TTmAb combinations produced posi-
tive results. For example, in HER2-positive gastric cancer (JACOB study), the combina-
tion of pertuzumab and trastuzumab with cisplatin or 5-fluorouracil did not improve
patient survival [60]. Similarly, the CAIRO2 study [61] on the hetero-combination of
bevacizumab/cetuximab with oxaliplatin and capecitabine, the PACCE study [26] on beva-
cizumab/panitumumab combined with oxaliplatin and irinotecan in metastatic colorectal
cancer, and the AVEREL [27] study on trastuzumab and bevacizumab in HER2-amplified
breast cancer also were unsuccessful. Therefore, the co-targeting of VEGF and of EGFR
or HER2 does not seem to be relevant in terms of synergy or additivity, possibly due to
negative interactions between signaling pathways, or pharmacodynamic interactions (lack
of tumor vascularization, inhibition of the expression of one of the two receptors) [62,63].

Only 20–30% of patients with metastatic melanoma responds to monotherapy with
anti-CTLA-4 or anti-PD-1 antibodies to block immune checkpoints. In 2013, a phase I
clinical trial in which ipilimumab (anti-CTLA-4 mAb) was combined with nivolumab
(anti-PD1 mAb) reported tumor regression in 50% of treated patients [64]. In the phase III
Checkmate 067 clinical trial (n = 945 patients with metastatic melanoma), progression-free
survival was longer in the arm treated with the ipilimumab/nivolumab hetero-combination
(11.5 months) than in the arms treated with nivolumab (6.9 months) or ipilimumab
(2.9 months) alone [65,66]. However, this survival benefit was associated with increased
toxicity in the nivolumab/ipilimumab hetero-combination arm compared with the two
monotherapy arms (55% of patients with grade 3 and 4 adverse events in the hetero-
combination arm vs. 16% in the nivolumab and 27% in the ipilimumab arms) [66]. This
trial led the FDA to approve this hetero-combination of anti-ICM antibodies for metastatic
melanoma. Since then, phase III clinical trials on anti-CTLA-4 antibodies combined with
anti-PD-1 or anti-PD-L1 antibodies have shown positive results in lung cancer and renal
cell carcinoma. In lung cancer, the combination of the anti-PD-L1 antibody atezolizumab
with the anti-VEGF TTmAb bevacizumab, associated with chemotherapy, has shown a
benefit in terms of progression-free survival compared with the arm without atezolizumab
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(8.3 months vs. 6.8 months) [67]. Similarly, the phase I/II trial PANACEA, which tested
the anti-ICM pembrolizumab combined with the TTmAb trastuzumab in patients with
HER2-amplified breast cancer, showed an improved clinical benefit in the subset of patients
with PD-L1-positive tumors [68].

To date, the cocktail of nivolumab (anti-PD1 antibody) and ipilimumab (anti-CTLA-4
antibody) was the first approved and remains the only anti-ICM antibody combination ap-
proved in the clinic as first-line treatment for untreated patients with metastatic melanoma.
The latest clinical data for melanoma showed up to 4 years of survival in 53% of patients
receiving this hetero-combination [69]. Its use has been extended also to patients with
low-risk renal carcinoma [70] and mismatch repair-deficient colorectal cancer [71]. The opti-
mism for these mAb-based combination treatments in overcoming therapeutic resistance in
different malignancies is very high. They also improve survival compared with platinum-
based chemotherapy in advanced non-small cell lung cancer [72]. The combination of
ipilimumab and nivolumab has been approved by the FDA for all patients with tumor
displaying ≥1% of PD-L1 expression. Although these antibodies are currently used in clin-
ical practice, some questions remain unanswered, such as the best-treatment strategy, the
role of different biomarkers for patient selection and the effectiveness of immunotherapy
according to specific clinical characteristics.

4. Antibody Combination in Phase II and Phase III Clinical Trials: A 2021 Update
in Oncology

More than 300 phase II/III clinical trials in patients with cancer to test combinations
of antibodies, mainly against ICMs, angiogenic factors, CD20 and receptor tyrosine kinases
(RTKs), combined or not with chemotherapy, radiotherapy, small molecules or vaccines,
are currently registered and in progress [15,73–76] (www.clinicaltrials.gov (accessed on
3 May 2021)). Most of these studies, completed, active or recruiting (as listed in Table 1),
involve the combination of ipilimumab (anti-CTLA-4 antibody) and nivolumab (anti-PD-1
antibody) (more than 80 trials [76]), tremelimumab (anti-CTLA-4 antibody) and durval-
umab (anti-PD-L1 antibody) (more than 25 trials), trastuzumab or anti-CD20 antibodies
combined with anti-ICM antibodies (more than 10 and 15 trials, respectively), bevacizumab
(anti-VEGF-A antibody) and atezolizumab (anti-PD-L1 antibody) (more than 10 trials) and
trastuzumab combined with pertuzumab (anti-HER2 antibody) (more than 5 trials [75]). It
is worth noting that most of the listed phase II/III clinical trials concern antibodies targeting
ICMs (CTLA-4, PD1/PD-L1, LAG-3, TIM-3, GITR, TIGIT, CD73, ICOS, PVRIG) combined
or not with TTmAbs. Conversely, fewer than 25 trials concern only TTmAb combinations.

In addition to “classical” naked antibodies, new formats, such as bispecific anti-
bodies, probodies, antibody–drug conjugates, immunocytokines, immune-stimulating
antibody conjugates or chimeric antigen receptor T (CAR-T) cells, also are included in the
antibody combinations tested in phase II/III clinical trials (Table 1). Interestingly, triple
antibody combinations are emerging (more than 15 trials), mainly using anti-PD1/anti-
CTLA-4 antibodies with antibodies against RTKs, other ICMs (GITR, TIGIT), killer-cell
immunoglobulin-like receptor, antibody–drug conjugates or immunocytokines. Triple
combinations of anti-PD-L1 antibodies and TTmAbs (against RTKs, and anti-CD20 and anti-
CD79b antibody-drug conjugates), or ICM inhibitors (anti-CD137, anti-CTLA-4 antibodies)
also have been assessed for cancer management, as well as the anti-PD1/TIGIT/PVRIG
and anti-PD1/CD40/CFS1 combinations.

Most of these antibody combinations are administered sequentially, using antibodies
developed individually as active substances and initially licensed as single-agent mAbs.
The treatment sequence has not been optimized yet, especially when TTmAb and anti-ICM
antibody combinations are proposed, or when a chemotherapeutic agent also is added.
The delivery of antibody combinations (schedule, dose and timing) has to be carefully
addressed to improve the pharmacokinetics and pharmacodynamics in patients and to
avoid toxicities and side effects.

www.clinicaltrials.gov
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Table 1. Antibody-based drug combinations currently examined by clinical trials at the date of 3 May 2021, updated
from [73].

Drug Combination Antibody Targets Major Tumor Types ClinicalTrial.gov
Identifier (NTC0)

Anti-PD-1 + ADG106 PD-1 + CD137 Solid cancers, NHL 4775680
Anti-PD-1 + LYT-200 PD-1 + galectin 9 Solid cancers 4666688
Anti-PD-1 + TJ004309 PD-1 + CD73 Solid cancers 4322006
Anti-PD-L1 + IMC-F106C PD-L1 + CD3/PRAME (BsAb) PRAME-cancers 4262466
Atezolizumab + ado-trastuzumab
emtansine PD-L1 + HER2 (ADC) Breast cancer 2924883

Atezolizumab + anetumab ravtansine PD-L1 + mesothelin (ADC) NSCLC 3455556
Atezolizumab + daratumumab PD-L1 + CD38 NSCLC 3023423
Atezolizumab + isatixumab PD-L1 + CD38 Solid cancers 3637764
Atezolizumab + KY1044 PD-L1 + ICOS Solid cancers 3829501
Atezolizumab + mosunetuzumab PD-L1 + CD20/CD3 (BsAb) NHL, CLL 2500407
Atezolizumab + obinutuzumab + CT PD-L1 + CD20 FL 2596971
Atezolizumab + obinutuzumab +
ibrutinib PD-L1 + CD20 CLL 2846623

Atezolizumab + obinutuzumab +
lenalidomide PD-L1 + CD20 FL 2631577

Atezolizumab + obinutuzumab +
polatuzumab vedo,
Atezolizumab + rituximab +
polatuzumab vedo

PD-L1 + CD20 + CD79b (ADC),
PD-L1 + CD20 + CD79b (ADC) FL, DLBCL 2729896

Atezolizumab + pertuzumab +
trastuzumab PDL-1 + HER2 + HER2 Breast cancer 3417544

Atezolizumab + RO6958688 PD-L1 + CEA/CD3 (BsAb) NSCLC 3337698
Atezolizumab + tiragolumab
Atezolizumab + tiragolumab + CT

PD-L1 + TIGIT
PD-L1 + TIGIT

NSCLC
Esophageal cancer

3563716, 4294810
4540211

Atezolizumab + trastuzumab + CT PD-L1 + HER2 GC, GEJ 4661150
Atezolizumab + trastuzumab +
pertuzumab + CT PD-L1 + HER2 + HER2 Breast cancer 3125928

Atezolizumab + tocilizumab PD-L1 + IL-6R Prostate cancer 3821246
Atezolizumab + tocilizumab + RT PD-L1 + IL-6R Astrocytoma, GBM 4729959
Avelumab + ivuxolimab, ivuxolimab +
utomilumab,
Avelumab + utomilumab

PD-L1 + OX40, OX40 + CD137,
PD-L1 + CD137 AML, breast cancer 3390296, 3971409

Avelumab + utomilumab + rituximab PD-L1 + CD137 + CD20 DLBCL 2951156
Avelumab + utomilumab, avelumab +
PD-0360324,
Avelumab + utomilumab + ivuxolimab

PD-L1 + CD137, PD-L1 + CSF1,
PD-L1 + OX40 Solid cancers 2554812

Avelumab + utomilumab,
Avelumab + ivuxolimab,
Avelumab + utomilumab + ivuxolimab

PD-L1 + CD137,
PD-L1 + OX40,
PDL1 + CD137 + OX40

Solidcancers 3217747

Balstilimab + AGEN1181 PD-1 + CTLA-4 Solid cancers 3860272
Balstilimab + zalifrelimab,
Balstilimab + zalifrelimab + CT PD-1 + CTLA-4 Angiosarcoma, cervical

cancer, bladder cancer More than 3 trials

BCD-217 + BCD-100 CTLA-4 + PD-1 + PD-1 Melanoma 3913923
Bevacizumab + AK104 + CT VEGF-A + PD-1/CTLA-4 (BsAb) Cervical cancer 4868708
Bevacizumab + atezolizumab VEGF-A + PD-L1 Solid cancers More than 5 trials

Bevacizumab + atezolizumab + CT VEGF-A + PD-L1 CRC, NSCLC, Breast
cancer More than 3 trials

Bevacizumab + atezolizumab +
eganelisib VEGF-A + PD-L1 Breast cancer 3961698

Bevacizumab + atezolizumab +
endocrine ther. VEGF-A + PD-L1 Breast cancer 3280563

Bevacizumab + atezolizumab +
entinostat VEGF-A + PD-L1 RCC 3024437
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Table 1. Cont.

Drug Combination Antibody Targets Major Tumor Types ClinicalTrial.gov
Identifier (NTC0)

Bevacizumab + atezolizumab +
ipatasertib VEGF-A + PD-L1 Breast, ovarian cancer 3395899, 3363867

Bevacizumab + atezolizumab,
Atezolizumab + ladiratuzumab vedotin

VEGF-A + PD-L1,
PD-L1 + LIV-1 (ADC) Breast cancer 3424005

Bevacizumab + avelumab + Ad-CEA
vax + CT VEGF-A + PD-L1 CRC 3050814

Bevacizumab + BCD-100 + CT VEGF-A + PD-1 Cervical cancer 3912402, 3912415
Bevacizumab + brentuximab vedotin VEGF-A + CD30 (ADC) Germ cell tumor 2988843
Bevacizumab + camrelizumab VEGF-A + PD-1 GTD 4812002
Bevacizumab + carotuximab VEGF-A + endoglin GTD 2664961
Bevacizumab + cetuximab + CT VEGF-A + EGFR CRC 0265850
Bevacizumab + durvalumab + CT VEGF-A + PD-L1 Ovarian cancer 3737643
Bevacizumab + pembrolizumab VEGF-A + PD-1 RCC 2348008
BI-1206 + CD20 Ab CD32b + CD20 BCL 2933320
Cemiplimab + isatuximab PD-1 + CD38 MM, lymphoma 3194867, 3769181
Cemiplimab + REGN5668,
Ubamatamab + REGN5668

PD-1 + MUC16/CD28 (BsAb)
MUC16/CD3 + MUC16/CD28 Ovarian cancer 4590326

3564340
Cemiplimab + REGN7075 PD-1 + EGFR/CD28 (BsAb) Solid cancers 4626635
Cemiplimab + SAR439459 PD-1 + TGFβ Solid cancers 3192345
Cetrelimab + daratumumab PD-1 + CD38 Solid cancers 3547037
Cetuximab + avelumab EGFR + PD-L1 HNSCC 3494322
Cetuximab + Hu5F9-G4 EGFR + CD47 CRC 2953782
CX-2009 + CX-072 CD166 (PDC) + PD-1 (PDC) Breast cancer 4596150
Dostarlimab + cobolimab PD-1 + TIM3 HCC 3680508
Durvalumab + axatilimab PD-L1 + CSF1-R CC 4301778
Durvalumab + daratumumab PD-L1 + CD38 MM 2807454
Durvalumab + cetuximab + RT PD-L1 + EGFR HNSCC 3051906
Durvalumab + monalizumab PD-L1 + NKG2A NSCLC 3822351, 3794544
Durvalumab + oleclumab,
Durvalumab + oleclumab + RT PD-L1 + CD73 Breast cancer, NSCLC 3875573, 3822351,

3794544
Durvalumab + rituximab PD-L1 + CD20 Lymphoma, CLL 2733042
Enoblituzumab + retifenlimab,
Retifenlimab + MGC018
Enoblituzumab + tebotelimab

B7-H3 + PD-1,
PD-1 + B7-H3 (ADC)
B7-H3 + PD-1/LAG-3 (DART)

HNC, solid cancers 4633485, 3729596

Iodine-131 tositumomab + rituximab +
CT CD20 + CD20 NHL 0770224

Ipilimumab + cemiplimab + CT CTLA-4 + PD-1 NSCLC 3409614, 3430063
Ipilimumab + envafolimab CTLA-4 + PD-L1 Sarcoma 4480502

Ipilimumab + nivolumab CTLA-4 + PD-1 Solid/hematological
cancers More than 60 trials

Ipilimumab + nivolumab + CT CTLA-4 + PD-1 Sarcoma, NSCLC, TCC 3138161, 3215706,
3036098

Ipilimumab + nivolumab + DC-based
vaccine CTLA-4 + PD-1 SCLC, RCC 3406715, 4203901

Ipilimumab + nivolumab + epacadostat,
Nivolumab + lirilumab + epacadostat

CTLA-4 + PD-1,
PD-1 + KIR Solid cancers 3347123

Ipilimumab + nivolumab + TKIs CTLA-4 + PD-1 Melanoma 4655157
Ipilimumab + nivolumab +
glembatumumab vedotin CTLA-4 + PD-1 + GPNMB (ADC) Solid cancers 3326258

Ipilimumab + nivolumab + ragilifimab,
Ragilifimab + ipilimumab,
Ragilifimab + nivolumab

CTLA-4 + PD-1 + GITR,
GITR + CTLA-4,
GITR + PD-1

Solid cancers 3126110

Ipilimumab + nivolumab + lirilumab,
Nivolumab + lirilumab

CTLA-4 + PD-1 + KIR,
PD-1 + KIR Solid cancers 1714739
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Table 1. Cont.

Drug Combination Antibody Targets Major Tumor Types ClinicalTrial.gov
Identifier (NTC0)

Ipilimumab + nivolumab +
panitumumab CTLA-4 + PD-1 + EGFR CRC 3442569

Ipilimumab + nivolumab +
prednisolone CTLA-4 + PD-1 Melanoma 3563729

Ipilimumab + nivolumab + RT CTLA-4 + PD-1 NSCLC, PDAC, OSCC More than 3 trials
Ipilimumab + nivolumab +
IT-hu14,18-IL2 +RT CTLA-4 + PD-1 + GD2-IL2 (IC) Melanoma 3958383

Ipilimumab + nivolumab + TKIs CTLA-4 + PD-1 CRC, NSCLC More than 3 trials
Ipilimumab + nivolumab +
trastuzumab,
Nivolumab + trastuzumab + CT

CTLA-4 + PD-1 + HER2,
PD-1 + HER2 GC 3409848

Ipilimumab + nivolumab, nivolumab +
BMS-986016,
Nivolumab + daratumumab

CTLA-4 + PD-1, PD-1 + LAG3,
PD-1 + CD38 CRC 2060188

Ipilimumab + nivolumab, nivolumab +
lirilumab,
Nivolumab + daratumumab

CTLA-4 + PD-1, PD-1 + KIR,
PD-1 + CD38 Hematological cancers 1592370

Ipilimumab + pembrolizumab CTLA-4 + PD-1 Melanoma 2743819
Ipilimumab + vopratelimab CTLA-4 + ICOS NSCLC, UC 3989362
Magrolimab + mogamulizumab CD47 + CCR4 T-cell lymphoma 4541017
MGD007 + retifanlimab gpA33/CD3 (DART) + PD-1 CRC 3531632
Margetuximab + retifanlimab +/− CT
Margetuximab + tebotelimab + CT

HER2 + PD-1
HER2 + PD-1/LAG-3 (DART) GC, GEJ 4082364

Nivolumab + andecaliximab PD1 + MMP9 GC, GEJ 2864381
Nivolumab + anetumab ravtansine,
Nivolumab + ipilimumab + anetumab
ravtansine +/− CT

PD-1 + mesothelin (ADC),
PD-1 + mesothelin (ADC) + CTLA-4 PDAC 3816358

Nivolumab + bevacizumab
Nivolumab + bevacizumab + RT PD-1 + VEGF-A Ovarian, peritoneal cancer,

GBM
2873962
3743662

Nivolumab + BA3011 PD-1 + AXL (CAB-ADC) NSCLC 4681131
Nivolumab + blinatumomab PD-1 + CD3/CD19 (BsAb) B-ALL 4546399
Nivolumab + BMS-986012 +/− CT PD-1 + fucosyl-GM1 SCLC 2247349, 4702880
Nivolumab + BMS-986179 PD-1 + CD73 Solid cancers 2754141
Nivolumab + BMS-986207 + COM701 PD-1 + TIGIT + PVRIG Solid cancers 4570839
Nivolumab + BMS-986218 PD-1 + CTLA-4 Solid cancers 3110107, 4785287
Nivolumab + BMS-986249 PD-1 + CTLA-4 (PDC) Solid cancers 3369223
Nivolumab + BMS-986253 PD-1 + IL-8 Solid cancers 3400332, 3689699
Nivolumab + brentuximab vedotin PD-1 + CD30 (ADC) HL, NHL 2572167, 2581631
Nivolumab + elotuzumab PD-1 + SLAMF7 MM 2612779, 3227432
Nivolumab + etigilimab PD-1 + TIGIT Solid cancers 4761198
Nivolumab + nimotuzumab PD-1 + EGFR NSCLC 2947386
Nivolumab + oregovomab PD-1 + CA125 Ovarian cancer 3100006

Nivolumab + relatlimab PD-1 + LAG-3 Solid cancers, melanoma,
HNSCC, CRC More than 3 trials

Nivolumab + rituximab + CT PD-1 + CD20 DLBCL 3259529

Nivolumab + rituximab + lenalidomide PD-1 + CD20 DLBCL, CNS
lymphoma 3558750

Nivolumab + sotigalimab PD-1 + CD40 Melanoma, NSCLC 3123783
Nivolumab + sotigalimab +
cabiralizumab PD-1 + CD40 + CSF1R Melanoma, NSCLC, RCC 3502330

Nivolumab + urelumab PD-1 + CD137 Solid cancers, NHL, TCC 2253992
Nivolumab + varlilumab PD-1 + CD27 Solid cancers, BCL 2335918, 3038672
Nivolumab and/or ipilimumab +
BMS-986178 PD-1 and/or CTLA-4 + OX40 Solid cancers 2737475
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Table 1. Cont.

Drug Combination Antibody Targets Major Tumor Types ClinicalTrial.gov
Identifier (NTC0)

Nivolumab or pembrolizumab +
glembatumumab vedotin,
Glembatumumab vedotin + varlilumab

PD-1 + GPNMB (ADC),
GPNMB (ADC) + CD27 Melanoma 2302339

Obinutuzumab + glofitamab +
CD19-CAR-T
Obinutuzumab + glofitamab

CD20 + CD20/CD3 (BsAb)+CD19,
CD20 + CD20/CD3 (BsAb)

DLBCL,
Lymphomas

4889716
4703686

Obinutuzumab + polatuzumab vedotin CD20 + CD79b (ADC) NHL 1691898
Obinutuzumab + polatuzumab vedotin
+ CT,
Rituximab + polatuzumab vedotin +
CT

CD20 + CD79b (ADC),
CD20 + CD79b (ADC) FL, DLBCL 2600897, 2611323

Pembrolizumab + anetumab ravtansine PD-1 + mesothelin (ADC) Mesothelioma 3126630
Pembrolizumab + bavituximab PD-1 + phosphatidylserine HCC 3519997
Pembrolizumab + BDC-1001 PD-1 + HER2 (ISAC) HER2+ cancers 4278144
Pembrolizumab + BI-1206 PD-1 + CD32b Solid cancers 4219254
Pembrolizumab + BI-1808 PD-1 + TNFR2 Solid cancers 4752826
Pembrolizumab + brentuximab vedotin PD-1 + CD30 (ADC) T-cell lymphoma 4795869
Pembrolizumab + canakinumab + CT PD-1 + IL-1b NSCLC 3631199
Pembrolizumab + cetuximab
Pembrolizumab + trastuzumab,
Pembrolizumab + ado-trastuzumab
emtansine

PD-1 + EGFR
PD-1 + HER2,
PD-1 + HER2 (ADC)

Solid cancers, HNSCC 2318901, 3082534

Pembrolizumab + feladilimab +/− CT PD-1 + ICOS HNSCC 4428333, 4128696
Pembrolizumab + mirvetuximab
soravtansine PD-1 + FRα (ADC) Endometrial cancer 3835819

Pembrolizumab + mogamulizumab PD-1 + CCR4 Lymphoma 3309878
Pembrolizumab + NP137 PD-1 + Netrin-1 Gynecological cancer 4652076
Pembrolizumab + quavonlimab,
Pembrolizumab + vibostolimab,
Pembro + quavonlimab + vibostolimab

PD-1 + CTLA-4,
PD-1 + TIGIT,
PD-1 + CTLA-4 + TIGIT

Melanoma 4305054, 4305041,
4303169

Pembrolizumab + sotigalimab PD-1 + CD40 Melanoma 2706353
Pembrolizumab + vilobelimab PD-1 + C5a SCC 4812535
Pembrolizumab + vofatamab PD-1 + FGFR3 TCC 3123055
Rituximab + belimumab CD20 + BAFF CSC 3844061
Rituximab + BI-1206 CD20 + CD32b NHL 3571568
Rituximab + Hu5F9-G4 CD20 + CD47 NHL 2953509
Rituximab + ibritumomab tiuxetan CD20 + CD20 (ARC) NHL 732498
Rituximab + ibritumomab tiuxetan +
CT CD20 + CD20 (ARC) FL, NHL 372905

Serplulimab + HLX04 +/− CT PD-1 + VEGF-A CRC, HCC, NSCLC More than 3 trials
Serplulimab + HLX07 PD-1 + EGFR HNC 4297995
Sintilimab + camrelizumab +/−
apatinib +/− CT PD-1 + PD-1 Solid cancers 4282278

Sintilimab + IBI305 PD-1 + VEGF-A HCC 3794440
Sintilimab + IBI310 PD-1 + CTLA-4 Cervical cancer, CRC 4590599, 4258111
Spartalizumab + lacnotuzumab PD-1 + CSF1 ESCC 3785496

Spartalizumab + LAG525 PD-1 + LAG-3 Solid and hematological
cancers, breast cancer

3499899, 2460224,
3365791

Spartalizumab + MBG454 PD-1 + TIM-3 Solid cancers 2608268
Spartalizumab + NIS793 +/− CT PD-1 + TGF-β Solid cancers, PDAC 4390763, 2947165
Tislelizumab + BGB-A425 PD-1 + TIM-3 Solid cancers 3744468
Tislelizumab + garivulimab PD-1 + PD-L1 Solid cancers 3379259, 4702009

Tislelizumab + ociperlimab PD-1 + TIGIT Lung cancer, ESCC 4746924, 4732494,
4693234
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Table 1. Cont.

Drug Combination Antibody Targets Major Tumor Types ClinicalTrial.gov
Identifier (NTC0)

Tislelizumab + zanidatamab + CT PD-1 + HER2/HER2 (BsAb) Breast, GC, GEJ 4276493
Tocilizumab + CC-1 IL-6R + PSMA/CD3 (BsAb) SCC 4496674
Toripalimab + YH003 PD-1 + CD40 Solid cancers 4481009
Trastuzumab + avelumab + CT,
Trastuzumab + avelumab +
utomilumab +/− CT

HER2 + PD-L1,
HER2 + PD-L1 + CD137 Breast cancer 3414658

Trastuzumab + camrelizumab + CT HER2 + PD-1 GC, GEJ 3950271
Trastuzumab + envafolimab HER2 + PD-L1 Breast cancer 4043195
Trastuzumab + necitumumab +
osimertinib HER2 + HER2 NSCLC 4285671

Trastuzumab + pembrolizumab + CT HER2 + PD-1 GC 2901301
Trastuzumab + pertuzumab HER2 + HER2 Breast cancer 2625441
Trastuzumab + pertuzumab + CT HER2 + HER2 Breast cancer 1796197, 2402712
Trastuzumab + pertuzumab +
copanlisib HER2 + HER2 Breast cancer 4108858

Trastuzumab + pertuzumab +
durvalumab HER2 + HER2 + PD-L1 Breast cancer 3820141

Trastuzumab + QL1209 + CT HER2 + HER2 Breast cancer 4629846
Trastuzumab deruxtecan + durvalumab
+ CT,
Trastuzumab deruxtecan + pertuzumab

HER2 (ADC) + PD-L1,
HER2 (ADC) + HER2 Breast cancer 4538742

Trastuzumab + zenocutuzumab +/−
CT HER2 + HER2/HER3 (BsAb) Breast cancer 3321981

Tremelimumab + durvalumab CTLA-4 + PD-L1 Solid cancers More than 25 trials

Tremelimumab + durvalumab + CT CTLA-4 + PD-L1 HNSCC, CRC, SCLC 3019003, 3202758,
3043872

Tremelimumab + durvalumab +
hormone CTLA-4 + PD-L1 Breast cancer 3430466

Tremelimumab + durvalumab +
IMCgp100 CTLA-4 + PD-L1 Melanoma 2535078

Tremelimumab + durvalumab +
olaparib CTLA-4 + PD-L1 Ovarian, peritoneal cancer 2953457

Tremelimumab + durvalumab + proton
therapy CTLA-4 + PD-L1 HNSCC 3450967

Tremelimumab + durvalumab + RT CTLA-4 + PD-L1 PDAC, HNSCC, HCC,
CRC More than 3 trials

Tremelimumab + feladilimab CTLA-4 + ICOS Solid cancers 3693612
Tripleitriumab + QL1101 PD-1 + VEGF-A CRC 4527068

Zimberelimab + Domvanalimab PD-1 + TIGIT NSCLC, SCC,
Lung cancer 4736173, 4262856

This table lists all current phase II and III clinical studies (not yet recruiting or recruiting, enrolling, active, completed or terminated) testing
two or more antibodies in patients with cancer (phase I studies were excluded). The information was extracted from www.clinicaltrials.gov
(accessed on 3 May 2021). Only the major clinical indications are listed. The clinical trial identifiers have been abbreviated. ACC,
adenoid cystic carcinoma, ADC, antibody–drug conjugate; Ad-CEA, carcinoembryonic antigen; AML, acute myeloid leukemia; BCL, B-cell
lymphoma; BiTE, bispecific T-cell engager; BTC, biliary tract cancer; CC: cholangiocarcinoma; CLL, chronic lymphocytic leukemia; CNS,
central nervous system; CRC, colorectal cancer; CSC, cutaneous systemic sclerosis; CT, chemotherapy; DART, dual-affinity re-targeting
antibody; DC, dendritic cell; DLBCL, diffuse large B-cell lymphoma; ESCC, esophageal squamous cell carcinoma; SCC, squamous cell
carcinoma; FL, follicular lymphoma; GBM, glioblastoma; GC, gastric cancer, GEJ, gastroesophageal junction cancer; GTD, gestational
trophoblastic disease; HCC, hepatocellular carcinoma; HL, Hodgkin lymphoma; HNSCC, head and neck squamous cell carcinoma; IC,
immunocytokine; ISAC, immune stimulating antibody conjugate; BCC, basal cell carcinoma; PDAC, pancreatic adenocarcinoma; MCL,
mantle cell lymphoma; MM, multiple myeloma; NHL, non-Hodgkin lymphoma; NSCLC, non-small cell lung cancer; PDAC, pancreatic
ductal adenocarcinoma; PDC, probody–drug conjugate; Polatuzumab vedo, polatuzumab vedotin; RCC, renal cell carcinoma; RMC, renal
medullary carcinoma; RT, radiotherapy; SCLC, small cell lung cancer; TCC, transitional cell carcinoma; TKI, tyrosine kinase inhibitor; UC,
urothelial cancer.

www.clinicaltrials.gov
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5. Optimization of the Formulation and Delivery of Antibody Combinations

In a few cases, new industrial manufacturing/formulation strategies, developed by
some pharmaceutical companies, have allowed the production of antibody combinations
to be rationalized and optimized (Figure 2). Currently, antibodies for therapeutic combina-
tions are produced and administered following four main strategies (Figure 2) that have
led to the clinical development of oligoclonal antibody mixtures (Tables 1 and 2).
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Table 2. Antibody mixtures in oncology.

Clinical Indication Antibody Formulation Target Clinical Trial Date

Colorectal cancer/lung cancer MM-151 Single
co-formulation 3 × EGFR Phase I * 2015

Colorectal cancer/lung cancer MM-151 + MM-121 Sequential
administration 3 × EGFR + HER3 Phase I * 2015

Colorectal cancer/glioblastoma Sym004: futuximab +
modotuximab

Single
co-formulation 2 × EGFR Phase II 2018

Epithelial cancers Sym013 Single batch 2 × EGFR + 2 ×
HER2 + 2 × HER3 Phase II * 2016

c-MET amplified tumors Sym015 Single batch 2 × cMET Phase II 2016

Breast cancer Trastuzumab +
Pertuzumab +Hyal **

Single
co-formulation 2 × HER2 Approval 2020

* Discontinued; ** Hyal: hyaluronidase.

5.1. Sequential Administration

The “antibody” active substances are produced separately (one cell line for each
antibody; mainly CHO cells), the pharmaceutical formulations are made individually, and
the antibody biologics are injected sequentially. This is the most classical pharmaceutical
strategy when using already approved “mAb” biologics. It is the basis for the approval of
the trastuzumab/pertuzumab and nivolumab/ipilimumab combinations by regulatory
authorities and is used in most ongoing clinical trials in oncology (Table 1).
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5.2. Single Co-Formulation

The “antibody” active substances are produced separately (one cell line for each
antibody; mainly CHO cells), and during the pharmaceutical formulation step, the active
ingredients are mixed to obtain to the “combination” biologics. The single co-formulation
has been used to develop the approved combination of trastuzumab and pertuzumab (two
TTmAbs) plus recombinant hyaluronidase for sub-cutaneous delivery in breast cancer,
with a 1:1 or 1:2 stoichiometry depending on the formulations [58,59]. This strategy
has also been employed to produce the Sym004 combination (1:1 stoichiometry) of two
anti-EGFR antibodies (futuximab and modotuximab) [77–79] that is currently evaluated
in phase II clinical trials in metastatic colorectal cancer and glioblastoma. This strategy
has also been used to produce MM-151 [14,80,81], a 2:2:1 stoichiometric mixture of three
anti-EGFR antibodies. This mixture has been evaluated in phase I trials in combination
with chemotherapy or the anti-HER3 MM-121 antibody in colorectal and lung cancer
(Table 2). In infectious diseases, a combination of three antibodies against the Clostridium
botulinum neurotoxin has been developed and tested in a phase I trial [82]. Similarly,
the single formulation of three antibodies (atoltivimab + maftivimab + odesivimab) has
been approved by the FDA in 2020 for Ebola hemorrhagic fever. As demonstrated for
the co-formulation of six approved antibodies [83], it seems that therapeutic monoclonal
antibodies of the IgG1 subclass can be combined without severe detrimental effects to the
stability of these proteins in binary mixtures.

5.3. Single-Cell Line Manufacturing

The active “antibody” substances are produced together in a single cell line. A sin-
gle pharmaceutical formulation leads to the “combination” biologics. This Oligoclonics®

process [84,85] uses the PER.C6 cell line transfected with a construct that encodes a single
kappa light chain, and two constructs, each encoding a heavy H chain of different specificity
(“common light chain” technology). This approach has been used to produce mixtures of
mono- and bi-specific antibodies. Moreover, this technology has been combined with CH3
domain engineering to force the preferential production of bispecific antibodies (Biclonics®).
Some bispecific antibodies are currently in clinical development, such as antibodies tar-
geting HER2/HER3 [86,87] in breast, pancreatic and gastric cancer, EGFR/leucine-rich
repeat containing G protein-coupled receptor 5 (LGR5) in solid tumors, CD3/C-type lectin
domain family 12 member A (CLEC12A) in acute myeloid leukemia [88], PD-L1/CD137
and EGFR/cMET in solid tumors.

5.4. Single Batch Manufacturing

The cell lines producing the active drug substances are initially mixed to generate a
polyclonal master-cell bank. A unique pharmaceutical formulation leads to the “combina-
tion” biologics. The process allows the site-specific integration of each antibody construct
on the same chromosomal locus in each cell line (Flp-In, CHO, CHO-DG44) [89,90] to stan-
dardize the expression level of each antibody after mixing the transformed cell lines. For
instance, a controlled mixture of 25 anti-rhesus D antibodies (rozrolimupab or Sym001 [90])
was produced and tested in a phase II trial in patients with thrombocytopenic purpura [50].
Moreover, a mixture of two anti-cMET antibodies (1:1 stoichiometry; Sym015 [10,11,13])
was assessed in cMET-amplified tumors (phase II trial), and an oligoclonal mixture of two
anti-EGFR antibodies, two anti-HER2 antibodies and two anti-HER3 antibodies (PanHER
or Sym013 [12,30–32,91–93]) in epithelial cancers (phase I trials).

6. Challenges and Regulation of Antibody Combinations

Homo- and hetero-combinations of antibodies have many advantages compared
with antibody monotherapy (Table 3). Antibody combinations allow several well-defined
epitopes on one or more antigens to be targeted with a perfectly controlled and adjustable
antibody stoichiometric ratio. Within an antibody cocktail, the affinity, epitope, isotype, or
glycosylation of each antibody can be tailored.
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Table 3. Challenges of antibody combinations.

Benefits Questions

Multi-epitope targeting Manufacturing of antibody mixtures
Biological synergistic effects Cost

Aggregation Regulatory affairs
Activation/inhibition of immune responses Toxicities

Activation/inhibition of signaling Different PKC for each antibody drug
substance *

Target elimination Stoichiometry of antibody drug substances
Avoiding drug resistance Dose, timing and treatment schedule

* PKC: pharmacokinetics.

Antibodies are glycoproteins that contain a glycosylation site at position 297 in the
Fc region. TTmAbs need to be N-glycosylated to display effector functions. Moreover,
the presence or absence of terminal sugars on the glycans in the Fc region strongly influ-
ence the antibody pharmacokinetics (e.g., high mannose content decreases the antibody
half-life), pharmacodynamics, stability, safety (immunogenicity, specifically when the anti-
body is derived from non-human cells) and efficacy. The effector functions (ADCC and
complement-dependent cytotoxicity) can also be affected. Therefore, glycoforms should
be thoroughly analyzed in each antibody batch produced to offer stable and safe antibod-
ies, an essential step for their successful clinical translation. Glycoengineering strategies
have been developed to produce antibodies harboring the desired glycoforms in order to
enhance their efficacy and safety [94,95].

Targeting several epitopes on the same receptor or on several receptors allows the
number of targets recruited to be increased and thus an increased number of antibodies
bound per cell. The biological responses induced by these antibodies are enhanced, such as
the Fc-dependent immune effector mechanisms of IgGs (ADCC, complement-dependent
cytotoxicity, antibody-dependent cell phagocytosis), and the inhibition of compensatory
cell signaling (possibly through the target elimination or internalization/degradation)
based on the Fab portion of IgGs. In hetero-combinations of antibodies against immune
checkpoints or their ligands (e.g., PD-L1), the combination simultaneously counteracts the
redundant negative regulatory mechanisms exploited by tumors to escape the immune
system. Therefore, an oligoclonal mixture of antibodies allows their spectrum of activity
to be broadened by anticipating and avoiding possible resistance to the treatment (pre-
existing or acquired through the emergence of resistant clones under the effect of one of
the combination components). Finally, in oncology, hetero-combinations to target cancer
cells and/or the tumor immune microenvironment and vessels might implicate synergistic
mechanisms of action in vivo, the modalities of which remain to be clarified. In addition,
antibody combinations could also pose unique intellectual property challenges [96].

The production of antibody mixtures is generally regulated by the good manufacturing
practices conventionally used to produce single therapeutic antibodies [97]. Currently, the
strategy of “sequential administration” is still predominant for combinations of two mAbs,
in approved formulations and also in clinical trials. However, if mixtures of three to six
antibodies are going to be developed and tested, the cost of this strategy will progressively
increase, and regulatory procedures and constraints will become more cumbersome and
complicated. Indeed, according to the EMA and FDA regulations, the toxicity, efficacy
and pharmacokinetics of each component of an oligoclonal mixture must be evaluated
individually and in combination. Therefore, the regulatory procedures are duplicated
for each active substance, because each antibody is considered as a single biologic in the
combination. Faced with these difficulties, the “single co-formulation”, or the “single cell”
and “single batch” manufacturing should allow the production processes and costs to be
controlled and the regulatory and registration procedures to be simplified [98]. Concretely,
the FDA has already authorized oligoclonal antibody mixtures, prepared according to the
“single co-formulation” strategy, for use in phase I and II clinical trials [82]. Moreover,
the FDA has approved phase I trials with Sym004 [99] and MM-151 [100], obtained using
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the “single co-formulation” strategy, to be tested as a “single biologic” in oncology. The
combination of trastuzumab and pertuzumab plus hyaluronidase, produced by single
co-formulation, has been approved by the FDA and EMA. Therefore, it is necessary to
choose, already at the preclinical stage, the production strategy of oligoclonal mixtures to
reduce risks and costs. It remains to be seen how the FDA and EMA will consider, from a
regulatory point of view, the new oligoclonal antibody mixtures prepared using “single
cell” and “single batch” manufacturing.

Compared with single-agent therapies, determining the optimal dose and schedule
of each mAb is crucial in combination regimens. An oligoclonal mixture is formulated
according to a stoichiometric ratio of antibodies defined at the time of the initial regulatory
application for an investigational new drug. Due to the specific pharmacokinetics of each
antibody (absorption, distribution, metabolism and excretion), the initial stoichiometric
formulation is unlikely to be maintained in the patient during treatment. This problem
must be addressed in preclinical studies. The dose and treatment sequence choice should
take into account the specific pharmacokinetic features of each antibody in the mixture.
For example, the stoichiometric ratio of the six antibodies in the Sym013 mixture varies
in vivo over time in function of target exposure, ranging from high for EGFR to medium or
low for HER2 and HER3. The mechanisms of action of the oligoclonal mixture, compared
with each antibody in the mixture, must be determined in relevant preclinical models to
support clinical development.

The challenge today is to better understand signaling networks with the ultimate
aim of developing combination regimens or adaptive sequential strategies that translate
high partial response rates to durable complete responses. Clinical observations highlight
the importance of flexible approaches to optimize the dose and schedule of mAb-based
combinations [101]. The toxicity potentiation observed in some combination trials [23]
underscores the need of careful dose titration in phase I clinical trials. The two clinically
approved combinations use the antibody doses identified in the monotherapy clinical
trials. However, the dose chosen in phase I clinical trials of new antibody combinations
may not necessarily be the same as the dose approved for monotherapy. For instance, a
recent follow-on study evaluated the combination of vemurafenib and ipilimumab using a
sequential schedule of administration [102]. This regimen demonstrated a substantially
improved safety profile, with marked reduction of hepatotoxicity compared with the
previous study in which ipilimumab and vemurafenib were administered concurrently.
This study clearly highlights the clinical development challenges and risks of combining
anti-cancer antibodies at standard doses and schedules. In addition, it is clear that the
optimal dose and schedule for a given combination may differ in function from the indi-
cation due to differences in disease biology and/or co-morbidities in the various patient
populations. Although pre-clinical animal models have limitations, they can be useful to
assess the therapeutic potential of specific combinations by unraveling their mechanisms of
action and providing insights into the underlying biology of various therapeutic strategies.
Moreover, in the context of cancer therapies, mathematical and computational approaches
are becoming more and more relevant to overcome the various challenges related to the
optimization of combined protocols to obtain synergistic effects [103–105].

7. Conclusions: Towards a Therapeutic Polyclonal Immune Response?

The immune system has naturally evolved towards a polyclonal humoral response.
The development of oligoclonal antibody combinations and mixtures to improve the
existing targeted therapies is approaching the goal of mimicking the natural humoral
immune response. However, practical and regulatory biological constraints must be
overcome to enrich this pharmacological class of antibodies.
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