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We provide explicit examples of finite time L ∞ -blow up for the solutions of 2 × 2 reaction-diffusion systems for which three main properties hold: positivity is preserved for all time, the total mass is uniformly controlled and the growth of the nonlinear reaction terms is superquadratic. They are obtained by choosing the space dimension large enough. This is to be compared with recent global existence results of uniformly bounded solutions for the same kind of systems with quadratic or even slightly superquadratic growth depending on the dimension. Such blow up may occur even with homogeneous Neumann boundary conditions. All these L ∞ -blowing up solutions may be extended as weak global solutions. Blow up examples are also provided in space dimensions one, two and three with various growths.

1. Introduction. The main goal of this paper is to provide examples of blow up in finite time for 2 × 2 reaction-diffusion systems of the form

       ∂ t u 1 -d 1 ∆u 1 = f 1 (u 1 , u 2 ) on (0, T ) × B N , ∂ t u 2 -d 2 ∆u 2 = f 2 (u 1 , u 2 ) on (0, T ) × B N , "good " boundary conditions on (0, T ) × ∂B N , u 1 (0, •) = u 0 1 ≥ 0, u 2 (0, •) = u 0 2 ≥ 0, (1) 
where B N is the open unit ball in R N , d 1 , d 2 ∈ (0, +∞), f 1 , f 2 : [0, +∞) 2 → R are regular nonlinearities such that the nonnegativity of the solutions to (1) is preserved for all time which, as it is well-known, is equivalent to

(P) quasipositivity: f 1 (0, s 2 ) ≥ 0, f 2 (s 1 , 0) ≥ 0, ∀s 1 , s 2 ∈ [0, +∞), (2) 
and such that the following 'mass dissipativity' condition holds (M) dissipativity: f 1 (s 1 , s 2 ) + f 2 (s 1 , s 2 ) ≤ 0, ∀s 1 , s 2 ∈ [0, +∞).

(
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This last property implies that the L 1 (B N )-norm of the solutions u 1 (t), u 2 (t) of [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF] does not blow up in finite time (= control of the total mass for all time).

It is well-known that, for u 0 1 , u 0 2 ∈ L ∞ (B N ) + , there exist T ∈ (0, +∞] and a classical solution to (1) on [0, T ). If all the d i are equal, then T = +∞ so that global classical existence holds. However, if the d i are different from each other, it is known that the two conditions (P), (M) are in general not sufficient to provide global classical solutions on [0, +∞) as proved in [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF], [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF] where examples of solutions blowing up in L ∞ (B N ) in finite time are described for this class of systems.

A main new result proved here (see Theorem 2.1) is that actually, for all d = 2 + η, η > 0, there exists a choice of d 1 , d 2 ∈ (0, +∞), of the space dimension N and of the nonlinearities f 1 , f 2 satisfying (P), (M) and the growth condition (G) below, for which the solution to [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF] blows up in L ∞ (B N ) in finite time T < +∞ :

(G) d-growth: |fi(s1, s2)| ≤ C0 + C1(s1 + s2) d , ∀s1, s2 ∈ [0, +∞), i = 1, 2, (4) 
where C 0 , C 1 ∈ [0, +∞). The point is that finite time blow up may occur for any superquadratic growth.

This result has to be analyzed in parallel with the recent results in [START_REF] Fellner | Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions[END_REF], [START_REF] Fellner | Global classical solutions to quadratic systems with mass control in arbitrary dimensions[END_REF] saying that, for any dimension N , there exists η > 0, depending on the dimension N , such that, if the growth of f 1 , f 2 at infinity is at most d = 2 + η, then all solutions of [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF] are global in time: in particular, the L ∞ (B N )-norm of u 1 (t), u 2 (t) is bounded on all intervals [0, T ]. Note that these global existence results are proved in [START_REF] Fellner | Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions[END_REF], [START_REF] Fellner | Global classical solutions to quadratic systems with mass control in arbitrary dimensions[END_REF] even for all m×m systems, m ≥ 2, with the properties (P), (M), (G). Theorem 2.1 shows that these results are in some sense optimal. Besides [START_REF] Fellner | Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions[END_REF], [START_REF] Fellner | Global classical solutions to quadratic systems with mass control in arbitrary dimensions[END_REF], several papers had provided global existence results of classical solutions for close to quadratic systems like [START_REF] Ya | Solvability in the large of a system of reaction-diffusion equations with the balance condition[END_REF], [START_REF] Goudon | Regularity analysis for systems of reaction-diffusion equations[END_REF], [START_REF] Caputo | Solutions of the 4-species quadratic reactiondiffusion systems are bounded and C ∞ -smooth, in any space dimension[END_REF], [START_REF] Ph | Global existence for reaction-diffusion systems with dissipation of mass and quadratic growth[END_REF]. More results may also be found in [START_REF] Cupps | Uniform boundedness for reaction-diffusion systems with mass dissipation[END_REF], [START_REF] Tang | Global classical solutions to reaction-diffusion systems in one and two dimensions[END_REF], [START_REF] Laamri | Global existence of classical solutions for a class of reaction-diffusion systems[END_REF], [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF], [START_REF] Pierre | Dissipative reaction-diffusion systems with quadratic growth[END_REF]. We refer to the introduction in [START_REF] Fellner | Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions[END_REF] where a nice state of art on these questions is described.

Obviously, given η > 0 and f 1 , f 2 with a 2+η growth, to obtain blow up examples, it is necessary to work in space dimensions N which are higher and higher when η is smaller and smaller.

Four more facts are also interesting about these blow up examples.

1) First it turns out that, not only the L ∞ -norm blows up at time t = T , but also the L m -norm for all m ≥ N (1 + η)/2, N large.

2) Next these T -blowing up solutions can nevertheless be extended as global weak solutions on [0, +∞) of the corresponding system (1) (see Section 7).

3) We also prove (see Theorem 2.2) ) that the same kind of solutions provide blow up examples for the following kind of systems:

       ∂ t u 1 -d 1 ∆u 1 = c 1 (t, x)u α 1 u β 2 on (0, T ) × B N , ∂ t u 2 -d 2 ∆u 2 = c 2 (t, x)u α 1 u β 2 on (0, T ) × B N , "good " boundary conditions on (0, T ) × ∂B N , u 1 (0, •) = u 0 1 ≥ 0, u 2 (0, •) = u 0 2 ≥ 0, (5) 
where 

c 1 + c 2 ≤ 0, c 1 , c 2 ∈ L ∞ (Q T )
g i = g i (t, x, s 1 , s 2 ). This is indicated in Theorem 2.3.
An optimal dependence of N in terms of η or d is not explicitly known in the main result of Theorem 2.1. What comes out in the proof of this theorem [see (28)], is that one should choose N large enough so that

2N -θ N -θ ≤ d = 2 + η ⇔ N ≥ θ(1 + η -1 ),
where θ ∈ (4/3, +∞). This means that we should have N > 4(1 + η -1 )/3.

Another natural question is, given the dimension N , to find the optimal growth which provides global existence (or blow up in finite time) for nonlinearities satisfying the main properties (P), (M). As proved in [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF], [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF], examples of blow up may occur even in dimension N = 1 by choosing a large enough growth for the nonlinearity. It is known that in dimension N = 1, global existence is proved for at most cubic growth [see [START_REF] Goudon | Regularity analysis for systems of reaction-diffusion equations[END_REF], [START_REF] Tang | Global classical solutions to reaction-diffusion systems in one and two dimensions[END_REF]], but the optimal growth is not known.

To progress in this understanding, we give in Section 8 explicit blow up examples in the following cases :

N = 1, d = 6; N = 2, d = 7/2; N = 3, d = 3.
2. Statement of the main results. Some notation. Here B N denotes the open euclidian unit ball in R N , Q T = (0, T )×B N , Σ T = (0, T )×∂B N . We also denote by

C ∞ (A 1 , A 2 ) the family of C ∞ -mappings from A 1 to A 2 where A i ⊂ R Ni , i = 1, 2,
and N 1 , N 2 are positive integers. If A 2 = R, we simply denote C ∞ (A 1 ).

Theorem 2.1. Let d := 2 + η, η ∈ (0, +∞) and T ∈ (0, +∞). Then there exist

f 1 , f 2 ∈ C ∞ [0, +∞) 2 satisfying (P) + (M) + (G), d 1 , d 2 ∈ (0, +∞), a dimension N large enough, u 0 1 , u 0 2 ∈ C ∞ (B N ) + , α 1 , α 2 ∈ C ∞ ([0, T ]) + and u 1 , u 2 nonnegative C ∞ -solutions of (1) with u 1 (t, x) = α 1 (t), u 2 (t, x) = α 2 (t) on Σ T ,
and such that

lim t→T - u 1 (t) L m (B N ) = lim t→T - u 2 (t) L m (B N ) = +∞, for m ≥ N (d -1)/2. Moreover, for λ close to 1 (M λ ) f 1 (s 1 , s 2 ) + λf 2 (s 1 , s 2 ) ≤ 0, ∀s 1 , s 2 ∈ [0, +∞). ( 6 
)
Remark 2.1. Despite the blow up of u 1 (t), u 2 (t) at time t = T , it turns out that the solutions u i provided by Theorem 2.1 can be extended to the whole interval [0, +∞)

as weak global solutions of the system (1) on the whole interval [0, +∞). By weak solution, we mean that the nonlinear terms

f i (u 1 , u 2 ), i = 1, 2 are in L 1 ((0, τ ) × B N )
for all τ ∈ (0, +∞) and u 1 , u 2 are solutions in the sense of distributions or in the sense of the 'variation of constants' formula. This is a consequence of the fact that, in the blow up examples, not only f 1 + f 2 ≤ 0 holds, but also f 1 + λf 2 ≤ 0 for some λ = 1. This provides the L 1 -bound on the nonlinear terms and this is sufficient for the existence of weak global solutions. All this is made more precise in Section 7.

Theorem 2.2. Let d := 2 + η, η ∈ (0, +∞), α, β ∈ (1, +∞) with α + β = d and T ∈ (0, +∞). Then there exist a dimension N large enough, d 1 , d 2 ∈ (0, +∞) and

c 1 , c 2 ∈ C ∞ [0, T ) × B N ∩ L ∞ (Q T ), u 0 1 , u 0 2 ∈ C ∞ (B N ) + , α 1 , α 2 ∈ C ∞ ([0, T ]) + ,
and u 1 , u 2 nonnegative C ∞ -solutions of the system (5) with u i = α i , i = 1, 2 on Σ T and such that It turns out that we can also use the same kind of solutions to construct new blowing up solutions for similar systems, but with homogeneous Neumann boundary conditions. Here the nonlinearities depend also on (t, x). This is the purpose of the next theorem.

c 1 (t, x) + c 2 (t, x) ≤ 0, ∀(t, x) ∈ Q T , lim t→T - u 1 (t) L m (B N ) = lim t→T - u 2 (t) L m (B N ) = +∞, for m ≥ N (d -1)/2.
Theorem 2.3. Let d := 2 + η, η ∈ (0, +∞) and T ∈ (0, +∞). Then there exist τ 0 ∈ [0, T ), g 1 , g 2 ∈ C ∞ [τ 0 , T ) × B N × [0, +∞) 2 satisfying (P ) + (M λ ) + (G ) below, d 1 , d 2 ∈ (0, +∞), a dimension N large, v 0 1 , v 0 2 ∈ C ∞ (B N ) + and v 1 , v 2 nonnegative C ∞ -solutions of        ∂ t v 1 -d 1 ∆v 1 = g 1 (t, x, v 1 , v 2 ) in (τ 0 , T ) × B N , ∂ t v 2 -d 2 ∆v 2 = g 2 (t, x, v 1 , v 2 ) in (τ 0 , T ) × B N , ∂ ν v 1 = 0 = ∂ ν v 2 on (τ 0 , T ) × B N , v i (τ 0 , •) = v 0 i ≥ 0, (7) 
and such that

lim t→T - v 1 (t) L m (B N ) = lim t→T - v 2 (t) L m (B N ) = +∞, for m ≥ N (d -1)/2.
Here the conditions (P ) + (M λ ) + (G ) are the same as (P) + (M λ ) + (G), but with a (t, x)-dependence, namely,

∀(t, x) ∈ [τ0, T ] × BN , ∀(s1, s2) ∈ [0, +∞) 2 , (P ) g1(t, x, 0, s2) ≥ 0, g2(t, x, s1, 0) ≥ 0, (M λ ) g1(t, x, s1, s2) + λg2(t, x, s1, s2) ≤ 0, ∀λ close to 1, (G ) |g1(t, x, s1, s2)| + |g2(t, x, s1, s2)| ≤ C0 + C1(s1 + s2) d . (8) 
3.

Steps of the proof of Theorem 2.1. The main idea in the proof of Theorem 2.1 is similar to the approach in [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF], [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF]. It consists in working with functions u1, u2 of the form

ui(t, x) = ai(T -t) + bir 2 [(T -t) + r 2 ] γ , r = |x|, i = 1, 2, (9) 
where a1, a2, b1, b2 will be well-chosen in (0, +∞), as well as γ ∈ (1, 2) and the dimension N (large enough), in such a way that there exist d1, d2 ∈ (0, +∞) and two functions f1, f2

as described in Theorem 2.1 for which

∂tui -di∆ui = fi(u1, u2), in (0, T ) × BN , i = 1, 2. ( 10 
)
The values of u1, u2 on ∂BN are obviously C ∞ -functions. Moreover the L ∞ (BN )-norm of u1(t), u2(t) blows up as t → T -since γ > 1. More precisely, we directly check (see Lemma

3.1) that lim t→T - ui(t) L m (B N ) = +∞, ∀m ≥ N 2(γ -1) , i = 1, 2. (11) 
Thus Theorem 2.1 will be proved if we can achieve [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey[END_REF] with regular functions f1, f2 satisfying (P), (M), (G) with d = 2 + η ≥ γ/(γ -1). It will be a consequence of the three following lemmas.

First note that ui, i = 1, 2, is of the following form:

ui(t, x) = (T -t) 1-γ ρi r 2 T -t , ρi(σ) = ai + biσ (1 + σ) γ , i = 1, 2. ( 12 
)
We have the following technical lemma.

Lemma 3.1. Let u1, u2 be given by [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF].

For i = 1, 2, we have in (0, T ) × BN ∂tui -di∆ui = (T -t) -γ (1 + σ) -(γ+2) [Ai + Biσ + Ciσ 2 ], σ = r 2 /(T -t), (13) 
where Ai, Bi, Ci are real numbers given by

   Ai = (γ -1)ai -2diN (bi -γai), Bi = (γ -1)[2ai + bi(1 + 2diN + 4di)] + (bi -γai)[4di(γ + 1) -2diN + 1], Ci = (γ -1)[ai + bi(1 + 2diN -4γdi)] + bi -γai. ( 14 
)
As a consequence

∂tu1 -d1∆u1 + ∂tu2 -d2∆u2 = (T -t) -γ (1 + σ) -(γ+2) [A + Bσ + Cσ 2 ], (15) 
   A = (γ -1)a -2N E + 2N γG, B = (γ -2)a + γb + [2N (γ -2) + 8γ]E -2γ[2(γ + 1) -N ]G, C = -a + γb + 2(γ -1)(N -2γ)E, ( 16 
)
where only the four following quantities are involved

a := a1 + a2, b := b1 + b2, E := b1d1 + b2d2, G := d1a1 + d2a2. (17) 
Moreover, lim t→T -ui(t) L m (B N ) = +∞ if m ≥ N/2(γ -1).
The proof of this lemma is elementary (see below). Next we check that ∂tui -di∆ui may be written as a function of u1, u2. This is the purpose of the following lemma. Here Q denotes the set of rational numbers.

Lemma 3.2. Let u1, u2 be given by [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF]. Assume

γ ∈ (1, 2) ∩ Q, a1b2 -a2b1 = 0. ( 18 
)
Then for i = 1, 2, there exists a C ∞ -function Pi : (0, +∞) 2 → R 2 which is homogeneous of degree γ = γ/(γ -1) and such that

∂tui -di∆ui = Pi(u1, u2) in (0, T ) × BN , (19) |Pi 
(s1, s2)| ≤ K(s1 + s2) γ , ∀(s1, s2) ∈ (0, +∞) 2 , for some K ∈ (0, +∞), (20) 
Pi(a1

+ b1σ, a2 + b2σ) = (1 + σ) 2-γ γ-1 [Ai + Biσ + Ciσ 2 ], ∀σ ∈ (0, +∞). ( 21 
)
Remark 3.1. By homogeneous of degree γ , we mean that

Pi(λs1, λs2) = λ γ Pi(s1, s2), ∀λ ∈ (0, +∞), (s1, s2) ∈ (0, +∞) 2 . ( 22 
)
This lemma will be proved below. But let us continue describing the scheme of the proof of Theorem 2.1. A main step is now to prove that we can choose the various parameters ai, bi, di, i = 1, 2, d, γ and the dimension N such that the functions P1, P2 appearing in Lemma 3.2 satisfy

P1(s1, s2) + P2(s1, s2) ≤ 0, ∀(s1, s2) ∈ (0, +∞) 2 . ( 23 
)
By (21), this inequality will be satisfied for (s1, s2) = (a1 + b1σ, a2 + b2σ), σ ∈ (0, +∞) if and only if A + Bσ + Cσ 2 ≤ 0, ∀σ ∈ (0, +∞), where A, B, C are defined in [START_REF] Tang | Global classical solutions to reaction-diffusion systems in one and two dimensions[END_REF] and ( 16) of Lemma 3.1. It will be the case if

A < 0, C < 0, B 2 < 4AC. ( 24 
)
And we then construct the Pi so that this inequality extends to all (s1, s2) ∈ (0, +∞) 2 .

The main point in the proof of Theorem 2.1 is that we can choose the various parameters in the definition (9) so that (24) holds for A, B, C as defined in Lemma 3.1. This is the purpose of the following main lemma where we use the following notation.

Notation. Writing a function D : R → R as

D(N ) = O(N -α ), α ∈ R, means that lim sup N →+∞ |D(N )|N α < +∞.
Lemma 3.3. In the definition (9) of u1, u2, let us choose

a1 = 1/N 2 , a2 = 2N -N -2 , b1 = b2 = 1/ √ N , d1 = √ N , d2 = 1/N 3 , γ = 2 -θ/N, θ ∈ (4/3, +∞) ∩ Q. ( 25 
)
Then as N → +∞, the values A, B, C, as defined in Lemma 3.1, satisfy

     A = -2θ + O(N -1 2 ) < 0, C = -(8 + 2θ) + O(N -1 2 ) < 0, B 2 -4AC = 64(4 -3θ) + O(N -1 2 ) < 0, A + Bσ + Cσ 2 ≤ A -B 2 /4C = 8(4-3θ) 4+θ + O(N -1 2 ) < 0, ∀σ ∈ [0, +∞). ( 26 
)
Moreover ( 18) is satisfied and the functions P1, P2 can be chosen in Lemma 3.2 so that they satisfy (23) and even

P1(s1, s2) + λP2(s1, s2) ≤ 0, ∀(s1, s2) ∈ (0, +∞) 2 , (27) 
for λ close to 1. We consider the functions u1, u2 as defined in [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF] with the choice of parameters a1, a2, b1, b2, d1, d2, γ given in Lemma 3.3 with θ ∈ (4/3, +∞) ∩ Q and N large enough so that

γ = 2N -θ N -θ ≤ d = 2 + η. ( 28 
)
Since by assumption θ ∈ Q, we have γ ∈ Q. Moreover γ ∈ (1, 2) for N > θ. For this choice of the parameters, a2b1 -a1b2 = 2N 1/2 + O(N -5/2 ) = 0 for N large.

Thus by Lemma 3.2, there exist two C ∞ -functions P1, P2 : (0, +∞)

2 → R such that ∂tui -di∆ui = Pi(u1, u2), in (0, T ) × BN , |Pi(s1, s2)| ≤ K(s1 + s2) γ , ∀(s1, s2) ∈ (0, +∞) 2 , i = 1, 2, for some K ∈ (0 + ∞).
By Lemma 3.3, we can even choose P1, P2 so that (27) holds for λ close to 1.

Note that there exists mN ∈ (0, +∞) such that

ui(t, x) ≥ mN , ∀(t, x) ∈ [0, T ] × BN , i = 1, 2.
Indeed, we may choose mN = (T + 1) 1-γ min{a1, a2, b1, b2} as it can be seen by writing

ui(t, x) = (T -t + r 2 ) 1-γ ai + biσ 1 + σ . Let us introduce ϕ ∈ C ∞ ([0, +∞), [0, +∞)) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on [0, mN /2], ϕ ≡ 1 on [mN , +∞).
Let us denote fi(s1, s2) := ϕ(s1)ϕ(s2)Pi(s1, s2), i = 1, 2 on [0, +∞) 2 . Then ∂tui -di∆ui = fi(u1, u2), in (0, T ) × BN , and f1, f2 are exactly as described in Theorem 2.1. More precisely, and for future reference, we even have

fi(s1, s2) = 0, ∀(s1, s2) ∈ [0, +∞) 2 \ [mN /2, +∞) 2 . ( 29 
) Next we have u 0 i ∈ C ∞ (BN ) and αi ∈ C ∞ ([0, T ]) for i = 1, 2 since u 0 i (x) = (T + r 2 ) -γ (aiT + bir 2 ), αi(t) = (T -t + 1) -γ (ai(T -t) + bi), i = 1, 2.
Now, we know by Lemma 3.1, that the L m (BN )-norm of ui(t), i = 1, 2 blows up if Let us now prove these three lemmas.

m ≥ N [2(γ -1)] -1 . Here γ is chosen [see (28)] so that γ ≤ d, that is (γ -1) -1 ≤ d -1. If m ≥ N (d -1)/2, then m ≥ N [2(γ -1)] -
Proof of Lemma 3.1. This result is derived by technical but easy computations. We may use (see [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF]

) ui = (T -t) 1-γ ρi(σ), σ = r 2 /(T -t) so that ∂tui = (γ -1)(T -t) -γ ρi(σ) + r 2 (T -t) 2 (T -t) 1-γ ρ i (σ), ∂rui = (T -t) 1-γ 2r T -t ρ i r 2 T -t , ∂rrui = (T -t) 1-γ 4r 2 (T -t) 2 ρ i r 2 T -t + 2 T -t ρ i r 2 T -t , N -1 r ∂rui + ∂rrui = (T -t) -γ 2N ρ i (σ) + 4σρ i (σ) . ∂tui -di∆ui = (T -t) -γ (γ -1)ρi(σ) + (σ -2diN )ρ i (σ) -4diσρ i (σ) .
With the choice of ρi(σ) = (ai + biσ)/(1 + σ) γ , we have

ρ i (σ) = bi -γai + bi(1 -γ)σ (1 + σ) γ+1 , ρ i (σ) = bi(1 -γ) (1 + σ) γ+1 - (γ + 1)[bi -γai + bi(1 -γ)σ] (1 + σ) γ+2 .
This leads to

∂tui -di∆ui = (T -t) -γ (1 + σ) -(γ+2) Ai + Biσ + Ciσ 2 , (30) 
where Ai, Bi, Ci are given as stated in Lemma 3.1.

By summing for i = 1, 2 these two expressions, we obtain the claims ( 15)-( 16)-(17) of Lemma 3.1. It is important to notice that this sum can be written only in terms of the four parameters a, b, E, G.

Finally we compute the L m (BN )-norm of ui(t). For some CN ∈ (0, +∞)

B N u m i (t, x)dx = CN (T -t) m(1-γ) 1 0 r N -1 ρ m i r 2 /(T -t) dr. By setting σ = r 2 /(T -t) ⇔ r = √ T -t √ σ, we have B N u m i (t, x)dx = CN 2 (T -t) N 2 +m(1-γ) (T -t) -1 0 σ N 2 -1 ρ m i (σ)dσ. As σ N 2 -1 ρ m i (σ) is equivalent to σ N 2 -1+m(1-γ) , up to a positive constant, as σ → +∞, we have N 2 < m(γ -1) ⇒ +∞ 0 σ N 2 -1 ρ m i (σ)dσ < +∞.
As a consequence, in this case B N u m i (t, x)dx behaves like (T -t) Proof of Lemma 3.2. We are looking for two functions Pi(•, •), i = 1, 2 such that

∂tui -di∆ui = Pi(u1, u2) = Pi (T -t) 1-γ ρ1(σ), (T -t) 1-γ ρ2(σ) , σ = r 2 /(T -t). ( 31 
)
According to [START_REF] Pierre | Dissipative reaction-diffusion systems with quadratic growth[END_REF] in Lemma 3.1, and by the expected γ -homogeneity of Pi, this is equivalent to

(1 + σ) -(γ+2) [Ai + Biσ + Ciσ 2 ] = (1 + σ) γ 2 /(1-γ) Pi(a1 + b1σ, a2 + b2σ), ⇔ (1 + σ) 2-γ γ-1 [Ai + Biσ + Ciσ 2 ] = Pi(a1 + b1σ, a2 + b2σ), ∀σ ∈ [0, +∞). ( 32 
)
Let us write γ = p/q ∈ (2, +∞) ∩ Q with p, q two coprime positive integers. Then

γ = p/(p -q), (2 -γ)/(γ -1) = (p -2q)/q > 0.
Thus (32) may be rewritten

(1 + σ) p-2q q [Ai + Biσ + Ciσ 2 ] = Pi(a1 + b1σ, a2 + b2σ), (33) 
which also implies

(1 + σ) p-2q [Ai + Biσ + Ciσ 2 ] q = {Pi(a1 + b1σ, a2 + b2σ)} q . ( 34 
)
Here p > 2q and the left-hand side is a polynomial of degree at most p in σ. It is easy to see that, since a1b2 -a2b1 = 0, the family of p + 1 polynomials

{(a1 + b1σ) k (a2 + b2σ) p-k , k = 0, ..., p},
is a linear basis of the linear space of polynomials of degree at most p. Indeed, let us analyze the relation

p k=0 µ k (a1 + b1σ) k (a2 + b2σ) p-k ≡ 0, µ k ∈ R, ∀k = 0, ..., p.
Assume by contradiction that there exists r ∈ {0, ..., p} such that µ k = 0, ∀k = 0, ..., r -1, µr = 0.

Then after dividing by (a1 + b1σ) r , the above relation may be rewritten

p k=r µ k (a1 + b1σ) k-r (a2 + b2σ) p-k = 0.
If r = p, this obviously implies µr = 0 whence a contradiction. If r < p, choosing σ = -a1/b1 leads to µr(a2 -b2a1/b1) p-r = 0, whence again µr = 0 thanks to the assumption (18) on ai, bi, i = 1, 2, and this is a contradiction.

We are now going to define the convenient function Pi. Going back to the polynomial of degree at most p involved in (34), we can claim that there exist

λ i k ∈ R, k = 0, ..., p such that for all σ ∈ R (1 + σ) p-2q [Ai + Biσ + Ciσ 2 ] q = p k=0 λ i k (a1 + b1σ) k (a2 + b2σ) p-k . ( 35 
)
Assume first that q is odd. Let us define

Pi(s1, s2) := p k=0 λ k s k 1 s p-k 2 1/q , (s1, s2) ∈ [0, +∞) 2 . ( 36 
)
Note that Pi is homogeneous of degree p/q and

(1 + σ)

p-2q q [Ai + Biσ + Ciσ 2 ] = Pi(a1 + b1σ, a2 + b2σ). ( 37 
)
According to (30), this implies [see also (31), (32)]

∂tui -di∆ui = Pi(u1, u2) in QT . ( 38 
)
Moreover, we directly see on the definition (36) of Pi that for (s1, s2) ∈ [0, +∞)

| Pi(s1, s2)| ≤ p k=0 |λ k | 1/q (s1 + s2) p/q = C(s1 + s2) γ .
Now, for the regularity of Pi, it is obvious from its definition (36) that Pi is C ∞ around each point (s1, s2) for which Pi(s1, s2) = 0. We are going to modify it into a new function Pi which will be in C ∞ (0, +∞) 2 with the same main properties. For this, let us assume without loss of generality in (18) that a1b2 -a2b1 > 0 or b2/b1 > a2/a1 and let us consider the function

s ∈ (0, +∞) → X := a2 + b2s a1 + b1s ∈ I := a2 a1 , b2 b1 .
It is C ∞ with derivative (a1b2 -a2b1)/(a1 + b1s) 2 > 0 on (0, +∞). Thus its inverse

ψ : I → (0, +∞) is also C ∞ .
From (36), we may write Pi(s1, s2) = s p/q 1 Pi(1, s2/s1), and thanks to the relation (37) and the p/q homogeneity of Pi, we have

Pi(1, X) = [a1 + b1ψ(X)] -p/q [1 + ψ(X)] (p-2q)/q [Ai + Biψ(X) + Ciψ(X) 2 ]. ( 39 
)
Whence the C ∞ -property of X ∈ I → Pi(1, X) and therefore of Pi(s1, s2) on I where we set

I := {(s1, s2) ∈ (0, +∞) 2 ; s2/s1 ∈ I}.
Actually, X ∈ R → Pi(1, X) is continuous and does not vanish in a neighborhood of the extremities of I, namely

X = a2/a1 ⇔ ψ(X) = 0, Pi(1, X) = Aia -p/q 1 , X = b2/b1 ⇔ ψ(X) = +∞, Pi(1, X) = Cib -p/q 1 .
Thus, as noticed before thanks to the definition (36), X → Pi(1, X) is C ∞ even on some open interval J containing I. We now introduce a function χ ∈ C ∞ ([0, +∞)) such that:

0 ≤ χ ≤ 1, χ ≡ 1 on I, χ ≡ 0 on [0, +∞) \ J. ( 40 
)
And we set Pi(s1, s2) := s p/q 1 χ(s2/s1) Pi(1, s2/s1) = χ(s2/s1) Pi(s1, s2). Thus Pi is C ∞ on all of (0, +∞) 2 and coincides with Pi on I. It follows that we may replace Pi by Pi in the relations (37) and (38). This ends the proof of Lemma 3.2 when q is odd.

Assume now that q is even. We start again from the relation (35) from which we deduce

(1 + σ) (p-2q)/q [Ai + Biσ + Ciσ 2 ] = Pi(a1 + b1σ, a2 + b2σ)sign{Ai + Biσ + Ciσ 2 }, (41) 
where we again set

Pi(s1, s2) := p k=0 λ i k s k 1 s p-k 2 1/q = s p/q 1 Pi(1, s2/s1), ∀(s1, s2) ∈ (0, +∞) 2 , (42) 
and where sign(r) = 1, ∀r ∈ (0, +∞), sign(0) = 0, sign(r) = -1, ∀r ∈ (-∞, 0).

We deduce from (41) and the p/q homogeneity of Pi that, for all X ∈ I,

Pi(1, X)sign Ai + Biψ(X) + Ciψ(X) 2 = (a1 + b1ψ(X)) -p/q (1 + ψ(X)) (p-2q)/q [Ai + Biψ(X) + Ciψ(X) 2 ] (43) 
and this function of X is C ∞ on I. Since Pi(1, X) does not vanish near the extremities of the interval I, it is also locally C ∞ there. Moreover sign Ai + Biψ(X) + Ciψ(X) 2 is constant as X tends to these extremities from inside I. It follows that the function of X appearing in (43) may be extended in a C ∞ -way to an open interval J containing I.

Using the same function χ as above (see (40)), by setting Pi(s1, s2) := s p/q 1 χ(s2/s1) Pi(1, s2/s1)sign Ai + Biψ(s2/s1) + Ciψ 2 (s2/s1) we define a C ∞ -function on (0, +∞) 2 which is p/q-homogeneous and satisfies

Pi(a1 + b1σ, a2 + b2σ) = (1 + σ) (p-2q)/q [Ai + Biσ + Ciσ 2 ], ∀σ ∈ [0, +∞)
and therefore (see (31), (32), (33) )

∂tui -di∆ui = Pi(u1, u2) on QT .
This ends the proof of Lemma 3.2.

Proof of Lemma 3.3. As a consequence of the choice of the parameters in Lemma 3.3, we obtain

a = a1 + a2 = 2N, b = b1 + b2 = 2/ √ N , E = d1b1 + d2b2 = √ N (1/ √ N ) + N -3 (1/ √ N ) = 1 + O(N -7/2 ), G = d1a1 + d2a2 = √ N N -2 + N -3 [2N -(1/N 2 )] = O(N -3/2
). It follows from the formulas (16) in Lemma 3.1 that for N large

A = [1 -θ/N ]2N -2N [1 + O(N -7/2 )] + 2N [2 -θ/N ]O(N -3/2 ) = -2θ + O(N -1/2 ), C = -2N +[2-θ/N ]2/ √ N +2[1-θ/N ][N -4+2θ/N ][1+O(N -7/2 )] = -(8+2θ)+O(N -1/2 ), B = [-θ/N ]2N + [2 -θ/N ][2/ √ N ] + [2N (-θ/N ) + 8(2 -θ/N )][1 + O(N -7/2 )] -2[2 -θ/N ][2(3 -θ/N ) -N ][O(N -3/2 )] = 16 -4θ + O(N -1/2 ). B 2 -4AC = 16[4 -θ] 2 -8θ(8 + 2θ) + O(N -1/2 ) = 64[4 -3θ] + O(N -1/2 ).
With the choice of θ > 4/3, we obtain A < 0, C < 0, B 2 -4AC < 0 for N large as claimed in Lemma 3.3.

Since the maximum of σ ∈ R → A + Bσ + Cσ 2 is reached for σ = -B/2C, we deduce

A + Bσ + Cσ 2 ≤ A -B 2 /4C = -K θ + O(N -1 2 ), ∀σ ∈ [0, +∞) (44) 
with K θ := 8(3θ -4)/(4 + θ) > 0.

On the other hand, a2b1 -a1b2 = 2N 1/2 + O(N -5/2 ) = 0 and γ ∈ (1, 2) ∩ Q so that (18) is satisfied and we may apply Lemma 3.2. Using now the relation (21) in this Lemma 3.2 together with (44), we obtain that

(P1 + P2)(a1 + b1σ, a2 + b2σ) ≤ -K θ + O(N -1 2 ), ∀σ ∈ [0, +∞).
By the p/q-homogeneity of P1 + P2, we deduce that

(P1 + P2)(1, X) ≤ -K θ a -p/q 1 + O(N -1 2 ), ∀X ∈ I,
where I is defined as in the previous proof of Lemma 3.2. Since I is bounded, so is P2(1, X) for X ∈ I. It follows that for λ close to 1 and N large enough, we may claim that

(P1 + λP2)(1, X) ≤ - K θ a -p/q 1 2 , ∀X ∈ I.
Up to reducing J and the support of the function χ in (40) of the proof of Lemma 3.2, we may claim that

(P1 + λP2)(1, X) ≤ - K θ a -p/q 1 4 , ∀X ∈ J.
By homogeneity, this implies that

(P1 + λP2)(s1, s2) ≤ 0, ∀(s1, s2) ∈ (0, +∞) 2 .
This ends the proof of Lemma 3.3.

5.

Proof of Theorem 2.2. We use the same functions u1, u2 as those introduced in the proof of Theorem 2.1 and defined in [START_REF] Pierre | Weak solutions and supersolutions in L 1 for reaction-diffusion systems[END_REF], and we choose γ as in (28), namely such that

γ ≤ d ⇔ γ ≥ d/(d -1). ( 45 
)
We deduce from (30) that

∂tui -di∆ui = Ai(T -t) 2 + Bi(T -t)r 2 + Cir 4 (T -t + r 2 ) γ+2 , i = 1, 2.
Given α, β as indicated in the statement of Theorem 2.2, we may understand this expression as being of the form ∂tui -di∆ui = ci(t, x)u α 1 u β 2 , where we define

ci(t, x) := Ai(T -t) 2 + Bi(T -t)r 2 + Cir 4 (T -t + r 2 ) γ+2 u -α 1 u -β 2 , ⇒ ci(t, x) = (T -t + r 2 ) γ(d-1)-2 [Ai(T -t) 2 + Bi(T -t)r 2 + Cir 4 ] [a1(T -t) + b1r 2 ] α [a2(T -t) + b2r 2 ] β . Obviously ci is C ∞ on [0, T ) × BN . Let us check that it is in L ∞ (QT ) as follows. Let H := T -t + r 2 . We use T -t ≤ H, r 2 ≤ H, ai(T -t) + bir 2 ≥ min{ai, bi}H.
Thus for some K1, K2 ∈ (0, +∞), and using that γ(d -1)

-2 ≥ γ(d -1) -d ≥ 0, we have |ci(t, x)| ≤ H γ(d-1)-2 [[Ai| + |Bi| + |Ci|]H 2 K1H α+β ≤ K2H γ(d-1)-d ≤ K2(T + 1) γ(d-1)-d .
Finally, we see that the sign of c1 +c2 is the same as the sign of A(T -t) 2 +B(T -t)r 2 +Cr 4 , that is c1 + c2 ≤ 0 since A < 0, C < 0, B 2 -4AC < 0 by Lemma 3.3. This ends the proof of Theorem 2.2.

6. Proof of Theorem 2.3. Let u1, u2 be the solutions obtained in Theorem 2.1. Their normal derivatives on ∂BN are given as follows

∂ru1(t, 1) = 2[(b 1 -γa 1 )(T -t)-(γ-1)b 1 ] (T -t+1) γ+1 , ∂ru2(t, 1) = 2[(b 2 -γa 2 )(T -t)-(γ-1)b 2 ] (T -t+1) γ+1 , b1 = N -1/2 = b2, b1 -γa1 = N -1/2 -2N -2 + O(N -3 ), b2 -γa2 = -4N + O(1). (46) Obviously for N large ∂ru1(t, 1) ≤ 0, ∀t ∈ [τ0, T ], τ0 := (T -γ + 1) + (< T ), ∂ru2(t, 1) ≤ 0, ∀t ∈ [0, T ]. ( 47 
)
We now introduce the solutions βi, i = 1, 2 of

   ∂tβi -di∆βi = 0 in (τ0, T ) × BN , ∂ν βi = -∂rui(t, 1) on (τ0, T ) × ∂BN , βi(τ0, •) ≡ 0. ( 48 
)
By the C ∞ -property of ∂rui(t, 1), these solutions are also in C ∞ (QT ). Moreover, thanks to (47), and by maximum principle, we have βi(t, x) ≥ 0 on [τ0, T ) × BN . We now introduce for i = 1, 2 vi(t, x) := ui(t, x) + βi(t, x) ≥ 0 so that ∂ν vi = ∂rvi(t, 1) = 0 on ΣT .

And according to Theorem 2.1 and the definition of βi, we have

∂tvi -di∆vi = ∂tui -di∆ui = fi(u1, u2) = gi(t, x, v1, v2) in QT , i = 1, 2,
where we set gi(t, x, s1, s2) := fi(s1 -β1(t, x), s2 -β2(t, x)).

Here the functions fi are extended by 0 outside [0, +∞) 2 and with the help of (29), we see that they are C ∞ on R 2 . The functions gi defined in this way satisfy (P ), (M λ ), (G ) since, by nonnegativity of βi:

g1(t, x, 0, s2) = f1(-β1(t, x), s2 -β2(t, x)) = 0, g2(t, x, s1, 0) = f2(s1 -β1(t, x), -β2(t, x)) = 0, (g1 + λg2)(t, x, s1, s2) = (f1 + λf2)(s1 -β1(t, x), s2 -β2(t, x)) ≤ 0 [using (6)], |gi(t, x, s1, s2)| = |fi(s1 -β1(t, x), s2 -β2(t, x))| ≤ C0 + C1[(s1 -β1(t, x)) + + (s2 -β2(t, x) + ] d ⇒ |gi(t, x, s1, s2)| ≤ C 0 + C 1 |s1 + s2| d , where C 0 , C 1 depend on C0, C1, d, βi L ∞ (Q T )
. Finally, the L m (BN )-norm of vi(t) blows up as t → T -together with the L m (BN )-norm of ui(t). This ends the proof of Theorem 2.3.

7. About global weak solutions. Let us prove here that the solutions u1, u2 obtained in Theorem 2.1 may be extended to global weak solutions of the same system. For this we will use the approach of the previous section and, as a first step, we extend the functions v1, v2 to weak solutions on [0, +∞). This will provide extensions of u1, u2 as well.

Let us start by extending the functions βi as the solutions on [0, +∞) of

       ∂tβi -di∆βi = 0 in (τ0, +∞) × BN , ∂ν βi = -∂rui(t, 1) on (τ0, T ) × ∂BN -∂rui(T, 1) on (T, +∞) × ∂BN , βi(τ0, •) ≡ 0. (49) 
These extensions are C ∞ on [τ0, +∞) × BN . We also extend the nonlinear function gi as follows for (t, x) ∈ (τ0, +∞) × BN gi(t, x, s1, s2) := fi(s1 -β1(t, x), s2 -β2(t, x)), ∀(s1, s2) ∈ [0, +∞) 2 .

They satisfy the same properties (P ), (M λ ), (G ) on [τ0, +∞). We now apply Theorem 5.9 in [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey[END_REF] to the system

       ∂tv1 -d1∆v1 = g1(t, x, v1, v2) in (τ0, +∞) × BN , ∂tv2 -d2∆v2 = g2(t, x, v1, v2) in (τ0, +∞) × BN , ∂ν v1 = 0 = ∂ν v2 on (τ0, +∞) × BN , vi(τ0, •) = v 0 i = ui(τ0, •) + β(τ0, •). (50) 
Indeed, thanks to the property (M λ ), any good approximation of this system with bounded nonlinearities g n i in place of gi and the same regular data at t = τ0, will provide approximate regular solutions v n i such that, for all S ∈ [τ0, +∞) sup

n≥1 (τ 0 ,S)×B N |g n i (t, x, v n 1 (t, x), v n 2 (t, x))| < +∞, i = 1, 2,
We may for instance choose

g n i (t, x, s1, s2) := gi(t, x, s1, s2) 1 + n -1 [(|g1| + |g2|)(t, x, s1, s2)] ,
so that |g n i | ≤ n. These approximate functions g n i satisfy also (P ), (M λ ) and it is easy to prove that these properties imply the above L 1 ((τ0, S) × BN )-bounds (see e.g. Proposition 5.1 in [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey[END_REF]). As a consequence, and as proved in [START_REF] Pierre | Global Existence in Reaction-Diffusion Systems with Dissipation of Mass : a Survey[END_REF], these approximate solutions v n i converge to a weak solution of (50) which means that vi(t) = Si(t -τ0)v 0 i + that since all inequalities are strict in this example, we could slightly modify it to obtain a blowing up example with growth 3 -σ for some small σ > 0.

8.2. Blow up with a 7/2-growth in dimension N = 2. An example with such a growth was already mentioned in [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF]. We give here another one, easier to compute. Let us choose the following parameters with > 0 small enough. Thus this provides a blow up example with growth γ = 7/2 and an L m (BN )-norm blowing up for m ≥ 5/2. Again, since all inqualities are strict, we could find another example with growth 7/2 -σ for some σ > 0. This provides a blow up example with growth γ = 6 and with an L m (BN )-norm blowing up for m ≥ 5/2. As above again, we could improve it to a lower growth 6 -σ for some σ > 0.

4 )

 4 and α + β = 2 + η with η > 0 as small as we want. The boundary conditions of the examples provided in Theorem 2.1 are nonhomogeneous boundary conditions. We also describe blowing up examples for systems with homogeneous Neumann boundary conditions, up to replacing f i , i = 1, 2 by more general (still regular) nonlinearities

Remark 2 . 2 .

 22 The solutions u 1 , u 2 appearing in this result are the same as those in Theorem 2.1. Only the interpretation of the nonlinear part changes. In particular, they blow up in L m (B N ) as t → T -for the same values of m.

4 .

 4 Proof of Theorem 2.1. Theorem 2.1 is a consequence of Lemmas 3.1, 3.2, 3.3. We will prove these lemmas below. But let us first show how these lemmas imply Theorem 2.1.

1

 1 and the L m (BN )-norm of ui(t) blows up. This ends the proof of the main Theorem 2.1, assuming Lemmas 3.1, 3.2, 3.3.

N 2 +

 2 (1-γ)m , up to a constant, as t → T -and therefore tends to +∞. The conclusion is the same in the equality case N = 2m(γ -1) since then B N u m (t, x)dx behaves like | log(T -t)| as t → T -.

t τ 0 8 . 1 .

 081 Si(t -s)gi (s, •, v1(s, •), v2(s, •)) ds, i = 1, 2, where Si(t) denotes the semigroup generated by the operator -di∆ on BN with homogeneous Neumann boundary conditions. Blow up with a cubic growth in dimension N = 3. Here we choose with ∈ (0, 1) small enough,γ = 3/2, a = 10, b = 1, E = 1, G = .Then, aE -bG = 10 -= 0 andA = (γ -1)a -6E + 6γG = 5 -6 + 9 = -1 + 9 < 0, C = -a + γb + 2(γ -1)(3 -2γ)E = -10 + 3/2 + 0 = -17/2 < 0, B = (γ -2)a + γb + [6(γ -2) + 8γ]E -2γ[2(γ + 1) -3]G = 11/2 -) = -15/4 + O( ) < 0.Thus (51) holds so that this provides a blowing up example with growth γ = 3. By Lemma 3.1, for m ≥ 3, the L m (BN )-norm of the solution blows up as t → T -. Note

γ = 7 / 5 ,

 75 a = 4, b = , E = 1, G = . then aE -bG = 4 -2 5568] + O( ) = -448 125 + O( ) < 0.

8. 3 .

 3 Blow up with a 6-growth in dimension N = 1. Here we choose γ = 6/5, a = 5, b = 1/2, E = 1, G = 1/10. then aE -bG = 5 -1/20 = 0 and A = 1 -2 + 6/25 = -19/25 < 0, C = -5 + 3/5 + 2(1/5)(1 -12/5) = -22/5 -14/25 = -124/25 < 0, B = -4 + 3/5 + 8 -12.17/250 = 473/125. 125 2 [B 2 -4AC] = 473 2 -4.95.620 = 223729 -235600 = -11871 < 0.

These weak solution coincides on the interval [τ0, T ) with the classical solution of [START_REF] Ya | Solvability in the large of a system of reaction-diffusion equations with the balance condition[END_REF] as found in Theorem 2.3. Indeed, since v 0 i ∈ L ∞ (BN ), it is classical to prove that the approximate solution (v n 1 , v n 2 ) stays uniformly bounded, independently of n, on some interval [τ0, τ1] ⊂ [τ0, T ]. To see it, we might for instance use the inequalities

Thus the limit (v1, v2) is therefore a classical solution on [τ0, τ1]. By uniqueness of classical solutions for the reaction-diffusion system [START_REF] Ya | Solvability in the large of a system of reaction-diffusion equations with the balance condition[END_REF], both solutions coincide at least on [τ0, τ1],

and subsequently on the whole interval [τ0, T ] by a classical continuity argument.

Finally, if we now set ui(t, x) := vi(t, x) -βi(t, x), i = 1, 2 on the whole domain [τ0, +∞) × BN , we find a global weak solution of the initial system (1) on [0, +∞) which extends the (classical) solution obtained on [0, T ) in Theorem 2.1. It remains to get convinced that ui ≥ 0 for all t. This can be seen by noticing that

Thus u n i ≥ 0 and this is preserved at the limit.

8. Some more explicit examples in small dimensions. We use here Lemma 3.1 and Lemma 3.2. All blow up examples we are going to describe here are defined as in ( 9) so that they blow up as t → T -. Moreover by Lemma 3.2, we know that we can then find P1, P2 so that (19) holds, namely

The goal is then to choose all parameters involved in the definition (9) well enough so that (24) holds, namely

where A, B, C are defined in Lemma 3.1. Then, exactly as in the proof of Theorem 2.1, we prove that the previous inequalities implies that P1 + P2 ≤ 0 and that P1, P2 can then slightly be modified into functions f1, f2 satisfying (P), (M) and [START_REF] Cañizo | Improved duality estimates and applications to reaction-diffusion equations[END_REF]. Moreover the growth at infinity of f1, f2 is at most γ .

The following technical proposition is very useful to help finding examples of blow up.

Notations are as in Lemma 3.1.

Proposition 8.1. Let a, b, E, G ∈ (0, +∞). Then we can find ai, bi, di, i = 1, 2 ∈ (0, +∞)

Proof of Proposition 8.1. Let us choose d1, d2 such that

Then, given the four parameters a, b, E, G, a solution to (52) is given by

We easily check that, with this choice, the relations (52), (53) are satisfied and all parameters are positive. The relation (53) will be used to check (18).