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Abstract. We provide explicit examples of finite time L∞-blow up for the

solutions of 2 × 2 reaction-diffusion systems for which three main properties
hold: positivity is preserved for all time, the total mass is uniformly controlled

and the growth of the nonlinear reaction terms is superquadratic. They are
obtained by choosing the space dimension large enough. This is to be compared

with recent global existence results of uniformly bounded solutions for the

same kind of systems with quadratic or even slightly superquadratic growth
depending on the dimension. Such blow up may occur even with homogeneous

Neumann boundary conditions. All these L∞-blowing up solutions may be

extended as weak global solutions. Blow up examples are also provided in
space dimensions one, two and three with various growths.

1. Introduction. The main goal of this paper is to provide examples of blow up4

in finite time for 2× 2 reaction-diffusion systems of the form5 
∂tu1 − d1∆u1 = f1(u1, u2) on (0, T )×BN ,
∂tu2 − d2∆u2 = f2(u1, u2) on (0, T )×BN ,
”good ” boundary conditions on (0, T )× ∂BN ,
u1(0, ·) = u01 ≥ 0, u2(0, ·) = u02 ≥ 0,

(1)

where BN is the open unit ball in RN , d1, d2 ∈ (0,+∞), f1, f2 : [0,+∞)2 → R are6

regular nonlinearities such that the nonnegativity of the solutions to (1) is preserved7

for all time which, as it is well-known, is equivalent to8

(P) quasipositivity: f1(0, s2) ≥ 0, f2(s1, 0) ≥ 0, ∀s1, s2 ∈ [0,+∞), (2)

and such that the following ’mass dissipativity’ condition holds9

(M) dissipativity: f1(s1, s2) + f2(s1, s2) ≤ 0, ∀s1, s2 ∈ [0,+∞). (3)

This last property implies that the L1(BN )-norm of the solutions u1(t), u2(t) of (1)10

does not blow up in finite time (= control of the total mass for all time).11

12
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It is well-known that, for u01, u
0
2 ∈ L∞(BN )+, there exist T ∈ (0,+∞] and a1

classical solution to (1) on [0, T ). If all the di are equal, then this solution can be2

extended to a global classical solution on [0,+∞). However, if the di are differ-3

ent from each other, it is known that the two conditions (P), (M) are in general4

not sufficient to provide global classical solutions on [0,+∞) as proved in [11], [12]5

where examples of solutions blowing up in L∞(BN ) in finite time are described for6

this class of systems.7

8

A main new result proved here (see Theorem 2.1) is that actually, for all d =9

2 +η, η > 0, there exists a choice of d1, d2 ∈ (0,+∞), of the space dimension N and10

of the nonlinearities f1, f2 satisfying (P), (M) and the growth condition (G) below,11

for which the solution to (1) blows up in L∞(BN ) in finite time T < +∞ :12

(G) d-growth: |fi(s1, s2)| ≤ C0 + C1(s1 + s2)d, ∀s1, s2 ∈ [0,+∞), i = 1, 2, (4)

where C0, C1 ∈ [0,+∞). The point is that finite time blow up may occur for any su-13

perquadratic growth.14

This result has to be analyzed in parallel with the recent results in [4], [5] saying that,15

for any dimension N , there exists η > 0, depending on the dimension N , such that, if the16

growth of f1, f2 at infinity is at most d = 2 + η, then all solutions of (1) are global in17

time: in particular, the L∞(BN )-norm of u1(t), u2(t) is bounded on all intervals [0, T ].18

Note that these global existence results are proved in [4], [5] even for all m×m systems,19

m ≥ 2, with the properties (P), (M), (G). Theorem 2.1 shows that these results are in20

some sense optimal. Besides [4], [5], several papers had provided global existence results21

of classical solutions for close to quadratic systems like [7], [6], [2], [14]. More results may22

also be found in [3], [15], [8], [1], [13]. We refer to the introduction in [4] where a nice state23

of art on these questions is described.24

25

Obviously, given η > 0 and f1, f2 with a 2 + η growth, to obtain blow up examples, it26

is necessary to work in space dimensions N which are higher and higher when η is smaller27

and smaller.28

Four more facts are also interesting about these blow up examples.29

1) First it turns out that, not only the L∞-norm blows up at time t = T , but also the30

Lm-norm for all m ≥ N(1 + η)/2, N large.31

2) Next these T -blowing up solutions can nevertheless be extended as global weak solu-32

tions on [0,+∞) of the corresponding system (1) (see Section 7).33

3) We also prove (see Theorem 2.2) ) that the same kind of solutions provide blow up34

examples for the following kind of systems:35 
∂tu1 − d1∆u1 = c1(t, x)uα1 u

β
2 on (0, T )×BN ,

∂tu2 − d2∆u2 = c2(t, x)uα1 u
β
2 on (0, T )×BN ,

”good ” boundary conditions on (0, T )× ∂BN ,
u1(0, ·) = u0

1 ≥ 0, u2(0, ·) = u0
2 ≥ 0,

(5)

where c1 + c2 ≤ 0, c1, c2 ∈ L∞(QT ) and α+ β = 2 + η with η > 0 as small as we want.36

4) The boundary conditions of the examples provided in Theorem 2.1 are nonhomo-37

geneous boundary conditions. We also describe blowing up examples for systems with38

homogeneous Neumann boundary conditions, up to replacing fi, i = 1, 2 by more general39

(still regular) nonlinearities gi = gi(t, x, s1, s2). This is indicated in Theorem 2.3.40

41

An optimal dependence of N in terms of η or d is not explicitly known in the main
result of Theorem 2.1. What comes out in the proof of this theorem [see (28)], is that one
should choose N large enough so that

2N − θ
N − θ ≤ d = 2 + η ⇔ N ≥ θ(1 + η−1),
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where θ ∈ (4/3,+∞). This means that we should have N > 4(1 + η−1)/3.1

Another natural question is, given the dimension N , to find the optimal growth which2

provides global existence (or blow up in finite time) for nonlinearities satisfying the main3

properties (P), (M). As proved in [11], [12], examples of blow up may occur even in4

dimension N = 1 by choosing a large enough growth for the nonlinearity. It is known that5

in dimension N = 1, global existence is proved for at most cubic growth [see [6], [15]], but6

the optimal growth is not known.7

To progress in this understanding, we give in Section 8 explicit blow up examples in
the following cases :

N = 1, d = 6; N = 2, d = 7/2; N = 3, d = 3.

2. Statement of the main results. Some notation. Here BN denotes the open eu-8

clidian unit ball in RN , QT = (0, T ) × BN , ΣT = (0, T ) × ∂BN . We also denote by9

C∞(A1, A2) the family of C∞-mappings from A1 to A2 where Ai ⊂ RNi , i = 1, 2, and10

N1, N2 are positive integers. If A2 = R, we simply denote C∞(A1).11

Theorem 2.1. Let d := 2 + η, η ∈ (0,+∞) and T ∈ (0,+∞). Then there exist f1, f2 ∈
C∞

(
[0,+∞)2

)
satisfying (P) + (M) + (G), d1, d2 ∈ (0,+∞), a dimension N large enough,

u0
1, u

0
2 ∈ C∞(BN )+, α1, α2 ∈ C∞([0, T ])+ and u1, u2 nonnegative C∞-solutions of (1) with

u1(t, x) = α1(t), u2(t, x) = α2(t) on ΣT ,

and such that

lim
t→T−

‖u1(t)‖Lm(BN ) = lim
t→T−

‖u2(t)‖Lm(BN ) = +∞,

for m ≥ N(d− 1)/2. Moreover, for λ close to 112

(Mλ) f1(s1, s2) + λf2(s1, s2) ≤ 0, ∀s1, s2 ∈ [0,+∞). (6)

Remark 2.1. Despite the blow up of u1(t), u2(t) at time t = T , it turns out that the13

solutions ui provided by Theorem 2.1 can be extended to the whole interval [0,+∞) as14

weak global solutions of the system (1) on the whole interval [0,+∞). By weak solution, we15

mean that the nonlinear terms fi(u1, u2), i = 1, 2 are in L1 ((0, τ)×BN ) for all τ ∈ (0,+∞)16

and u1, u2 are solutions in the sense of distributions or in the sense of the ’variation of17

constants’ formula. This is a consequence of the fact that, in the blow up examples, not18

only f1 + f2 ≤ 0 holds, but also f1 + λf2 ≤ 0 for some λ 6= 1. This provides the L1-bound19

on the nonlinear terms and this is sufficient for the existence of weak global solutions. All20

this is made more precise in Section 7.21

Theorem 2.2. Let d := 2 + η, η ∈ (0,+∞), α, β ∈ (1,+∞) with α + β = d and T ∈
(0,+∞). Then there exist a dimension N large enough, d1, d2 ∈ (0,+∞) and{

c1, c2 ∈ C∞
(
[0, T )×BN

)
∩ L∞(QT ),

u0
1, u

0
2 ∈ C∞(BN )+, α1, α2 ∈ C∞([0, T ])+,

and u1, u2 nonnegative C∞-solutions of the system (5) with ui = αi, i = 1, 2 on ΣT and
such that

c1(t, x) + c2(t, x) ≤ 0, ∀(t, x) ∈ QT ,
lim
t→T−

‖u1(t)‖Lm(BN ) = lim
t→T−

‖u2(t)‖Lm(BN ) = +∞,

for m ≥ N(d− 1)/2.22

Remark 2.2. The solutions u1, u2 appearing in this result are the same as those in23

Theorem 2.1. Only the interpretation of the nonlinear part changes. In particular, they24

blow up in Lm(BN ) as t→ T− for the same values of m.25

It turns out that we can also use the same kind of solutions to construct new blowing26

up solutions for similar systems, but with homogeneous Neumann boundary conditions.27

Here the nonlinearities depend also on (t, x). This is the purpose of the next theorem.28
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Theorem 2.3. Let d := 2 + η, η ∈ (0,+∞) and T ∈ (0,+∞). Then there exist τ0 ∈1

[0, T ), g1, g2 ∈ C∞
(
[τ0, T )×BN × [0,+∞)2

)
satisfying (P′) + (M′λ) + (G′) below, d1, d2 ∈2

(0,+∞), a dimension N large, v01 , v
0
2 ∈ C∞(BN )+ and v1, v2 nonnegative C∞-solutions of3 

∂tv1 − d1∆v1 = g1(t, x, v1, v2) in (τ0, T )×BN ,
∂tv2 − d2∆v2 = g2(t, x, v1, v2) in (τ0, T )×BN ,
∂νv1 = 0 = ∂νv2 on (τ0, T )×BN ,
vi(τ0, ·) = v0i ≥ 0,

(7)

and such that

lim
t→T−

‖v1(t)‖Lm(BN ) = lim
t→T−

‖v2(t)‖Lm(BN ) = +∞,

for m ≥ N(d− 1)/2.4

Here the conditions (P′) + (M′λ) + (G′) are the same as (P) + (Mλ) + (G), but with5

a (t, x)-dependence, namely,6

∀(t, x) ∈ [τ0, T ]×BN , ∀(s1, s2) ∈ [0,+∞)2,
(P′) g1(t, x, 0, s2) ≥ 0, g2(t, x, s1, 0) ≥ 0,
(M′λ) g1(t, x, s1, s2) + λg2(t, x, s1, s2) ≤ 0, ∀λ close to 1,

(G′) |g1(t, x, s1, s2)|+ |g2(t, x, s1, s2)| ≤ C0 + C1(s1 + s2)d.

(8)

7

3. Steps of the proof of Theorem 2.1. The main idea in the proof of Theorem 2.18

is similar to the approach in [11], [12]. It consists in working with functions u1, u2 of the9

form10

ui(t, x) =
ai(T − t) + bir

2

[(T − t) + r2]γ
, r = |x|, i = 1, 2, (9)

where a1, a2, b1, b2 will be well-chosen in (0,+∞), as well as γ ∈ (1, 2) and the dimension11

N (large enough), in such a way that there exist d1, d2 ∈ (0,+∞) and two functions f1, f212

as described in Theorem 2.1 for which13

∂tui − di∆ui = fi(u1, u2), in (0, T )×BN , i = 1, 2. (10)

The values of u1, u2 on ∂BN are obviously C∞-functions. Moreover the L∞(BN )-norm of14

u1(t), u2(t) blows up as t→ T− since γ > 1. More precisely, we directly check (see Lemma15

3.1) that16

lim
t→T−

‖ui(t)‖Lm(BN ) = +∞, ∀m ≥ N

2(γ − 1)
, i = 1, 2. (11)

Thus Theorem 2.1 will be proved if we can achieve (10) with regular functions f1, f2 sat-17

isfying (P), (M), (G) with d = 2 + η ≥ γ/(γ − 1). It will be a consequence of the three18

following lemmas.19

20

First note that ui, i = 1, 2, is of the following form:21

ui(t, x) = (T − t)1−γρi
(

r2

T − t

)
, ρi(σ) =

ai + biσ

(1 + σ)γ
, i = 1, 2. (12)

We have the following technical lemma.22

Lemma 3.1. Let u1, u2 be given by (9). For i = 1, 2, we have in (0, T )×BN23

∂tui − di∆ui = (T − t)−γ(1 + σ)−(γ+2)[Ai +Biσ + Ciσ
2], σ = r2/(T − t), (13)

where Ai, Bi, Ci are real numbers given by24 
Ai = (γ − 1)ai − 2diN(bi − γai),
Bi = (γ − 1)[2ai + bi(1 + 2diN + 4di)] + (bi − γai)[4di(γ + 1)− 2diN + 1],
Ci = (γ − 1)[ai + bi(1 + 2diN − 4γdi)] + bi − γai.

(14)

As a consequence25

∂tu1 − d1∆u1 + ∂tu2 − d2∆u2 = (T − t)−γ(1 + σ)−(γ+2)[A+Bσ + Cσ2], (15)
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1 
A = (γ − 1)a− 2NE + 2NγG,
B = (γ − 2)a+ γb+ [2N(γ − 2) + 8γ]E − 2γ[2(γ + 1)−N ]G,
C = −a+ γb+ 2(γ − 1)(N − 2γ)E,

(16)

where only the four following quantities are involved2

a := a1 + a2, b := b1 + b2, E := b1d1 + b2d2, G := d1a1 + d2a2. (17)

Moreover, limt→T− ‖ui(t)‖Lm(BN ) = +∞ if m ≥ N/2(γ − 1).3

The proof of this lemma is elementary (see below). Next we check that ∂tui − di∆ui4

may be written as a function of u1, u2. This is the purpose of the following lemma. Here5

Q denotes the set of rational numbers.6

Lemma 3.2. Let u1, u2 be given by (9). Assume7

γ ∈ (1, 2) ∩Q, a1b2 − a2b1 6= 0. (18)

Then for i = 1, 2, there exists a C∞-function Pi : (0,+∞)2 → R2 which is homogeneous8

of degree γ′ = γ/(γ − 1) and such that9

∂tui − di∆ui = Pi(u1, u2) in (0, T )×BN , (19)
10

|Pi(s1, s2)| ≤ K(s1 + s2)γ
′
, ∀(s1, s2) ∈ (0,+∞)2, for some K ∈ (0,+∞), (20)

11

Pi(a1 + b1σ, a2 + b2σ) = (1 + σ)
2−γ
γ−1 [Ai +Biσ + Ciσ

2], ∀σ ∈ (0,+∞). (21)

Remark 3.1. By homogeneous of degree γ′, we mean that12

Pi(λs1, λs2) = λγ
′
Pi(s1, s2), ∀λ ∈ (0,+∞), (s1, s2) ∈ (0,+∞)2. (22)

This lemma will be proved below. But let us continue describing the scheme of the proof13

of Theorem 2.1. A main step is now to prove that we can choose the various parameters14

ai, bi, di, i = 1, 2, d, γ and the dimension N such that the functions P1, P2 appearing in15

Lemma 3.2 satisfy16

P1(s1, s2) + P2(s1, s2) ≤ 0, ∀(s1, s2) ∈ (0,+∞)2. (23)

By (21), this inequality will be satisfied for (s1, s2) = (a1 + b1σ, a2 + b2σ), σ ∈ (0,+∞) if
and only if

A+Bσ + Cσ2 ≤ 0, ∀σ ∈ (0,+∞),

where A,B,C are defined in (15) and (16) of Lemma 3.1. It will be the case if17

A < 0, C < 0, B2 < 4AC. (24)

And we then construct the Pi so that this inequality extends to all (s1, s2) ∈ (0,+∞)2.18

The main point in the proof of Theorem 2.1 is that we can choose the various param-19

eters in the definition (9) so that (24) holds for A,B,C as defined in Lemma 3.1. This is20

the purpose of the following main lemma where we use the following notation.21

22

Notation. Writing a function D : R 7→ R as D(N) = O(N−α), α ∈ R, means that

lim sup
N→+∞

|D(N)|Nα < +∞.

Lemma 3.3. In the definition (9) of u1, u2, let us choose23 {
a1 = 1/N2, a2 = 2N −N−2, b1 = b2 = 1/

√
N,

d1 =
√
N, d2 = 1/N3, γ = 2− θ/N, θ ∈ (4/3,+∞) ∩Q.

(25)

Then as N → +∞, the values A,B,C, as defined in Lemma 3.1, satisfy24 
A = −2θ +O(N−

1
2 ) < 0, C = −(8 + 2θ) +O(N−

1
2 ) < 0,

B2 − 4AC = 64(4− 3θ) +O(N−
1
2 ) < 0,

A+Bσ + Cσ2 ≤ A−B2/4C = 8(4−3θ)
4+θ

+O(N−
1
2 ) < 0, ∀σ ∈ [0,+∞).

(26)
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Moreover (18) is satisfied and the functions P1, P2 can be chosen in Lemma 3.2 so that1

they satisfy (23) and even2

P1(s1, s2) + λP2(s1, s2) ≤ 0, ∀(s1, s2) ∈ (0,+∞)2, (27)

for λ close to 1.3

4. Proof of Theorem 2.1. Theorem 2.1 is a consequence of Lemmas 3.1, 3.2, 3.3. We4

will prove these lemmas below. But let us first show how these lemmas imply Theorem5

2.1.6

We consider the functions u1, u2 as defined in (9) with the choice of parameters a1, a2, b1, b2, d1, d2, γ7

given in Lemma 3.3 with θ > 4/3 and N large enough so that8

γ′ =
2N − θ
N − θ ≤ d = 2 + η. (28)

We also impose θ ∈ Q. Consequently γ ∈ Q and also γ ∈ (1, 2) for N > θ. For this9

choice of the parameters, a2b1 − a1b2 = 2N1/2 +O(N−5/2) 6= 0 for N large.10

Thus by Lemma 3.2, there exist two C∞-functions P1, P2 : (0,+∞)2 → R such that

∂tui − di∆ui = Pi(u1, u2), in (0, T )×BN ,

|Pi(s1, s2)| ≤ K(s1 + s2)γ
′
,∀(s1, s2) ∈ (0,+∞)2, i = 1, 2, for some K ∈ (0 +∞).

By Lemma 3.3, we can even choose P1, P2 so that (27) holds for λ close to 1.11

12

Note that there exists mN ∈ (0,+∞) such that

ui(t, x) ≥ mN , ∀(t, x) ∈ [0, T ]×BN , i = 1, 2.

Indeed, we may choose mN = (T + 1)1−γ min{a1, a2, b1, b2} as it can be seen by writing

ui(t, x) = (T − t+ r2)1−γ
ai + biσ

1 + σ
.

Let us introduce ϕ ∈ C∞ ([0,+∞), [0,+∞)) such that

0 ≤ ϕ ≤ 1, ϕ ≡ 0 on [0,mN/2], ϕ ≡ 1 on [mN ,+∞).

Let us denote fi(s1, s2) := ϕ(s1)ϕ(s2)Pi(s1, s2), i = 1, 2 on [0,+∞)2. Then

∂tui − di∆ui = fi(u1, u2), in (0, T )×BN ,
and f1, f2 are exactly as described in Theorem 2.1. More precisely, and for future reference,13

we even have14

fi(s1, s2) = 0, ∀(s1, s2) ∈ [0,+∞)2 \ [mN/2,+∞)2. (29)

Next we have u0
i ∈ C∞(BN ) and αi ∈ C∞([0, T ]) for i = 1, 2 since{

u0
i (x) = (T + r2)−γ(aiT + bir

2),
αi(t) = (T − t+ 1)−γ(ai(T − t) + bi), i = 1, 2.

Now, we know by Lemma 3.1, that the Lm(BN )-norm of ui(t), i = 1, 2 blows up if15

m ≥ N [2(γ− 1)]−1. Here γ is chosen [see (28)] so that γ′ ≤ d, that is (γ− 1)−1 ≤ d− 1. If16

m ≥ N(d− 1)/2, then m ≥ N [2(γ − 1)]−1 and the Lm(BN )-norm of ui(t) blows up. This17

ends the proof of the main Theorem 2.1, assuming Lemmas 3.1, 3.2, 3.3.18

19

Let us now prove these three lemmas.20

21

Proof of Lemma 3.1. This result is derived by technical but easy computations. We
may use (see (12)) ui = (T − t)1−γρi(σ), σ = r2/(T − t) so that

∂tui = (γ − 1)(T − t)−γρi(σ) +
r2

(T − t)2 (T − t)1−γρ′i(σ),

∂rui = (T − t)1−γ
(

2r

T − t

)
ρ′i

(
r2

T − t

)
,
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∂rrui = (T − t)1−γ
[

4r2

(T − t)2 ρ
′′
i

(
r2

T − t

)
+

2

T − tρ
′
i

(
r2

T − t

)]
,

N − 1

r
∂rui + ∂rrui = (T − t)−γ

[
2Nρ′i(σ) + 4σρ′′i (σ)

]
.

∂tui − di∆ui = (T − t)−γ
[
(γ − 1)ρi(σ) + (σ − 2diN)ρ′i(σ)− 4diσρ

′′
i (σ)

]
.

With the choice of ρi(σ) = (ai + biσ)/(1 + σ)γ , we have

ρ′i(σ) =
bi − γai + bi(1− γ)σ

(1 + σ)γ+1
,

ρ′′i (σ) =
bi(1− γ)

(1 + σ)γ+1
− (γ + 1)[bi − γai + bi(1− γ)σ]

(1 + σ)γ+2
.

This leads to1

∂tui − di∆ui = (T − t)−γ(1 + σ)−(γ+2) [Ai +Biσ + Ciσ
2] , (30)

where Ai, Bi, Ci are given as stated in Lemma 3.1.2

By summing for i = 1, 2 these two expressions, we obtain the claims (15)-(16)-(17) of3

Lemma 3.1. It is important to notice that this sum can be written only in terms of the4

four parameters a, b, E,G.5

Finally we compute the Lm(BN )-norm of ui(t). For some CN ∈ (0,+∞)∫
BN

umi (t, x)dx = CN (T − t)m(1−γ)
∫ 1

0

rN−1ρmi
(
r2/(T − t)

)
dr.

By setting σ = r2/(T − t)⇔ r =
√
T − t

√
σ, we have∫

BN

umi (t, x)dx =
CN
2

(T − t)
N
2
+m(1−γ)

∫ (T−t)−1

0

σ
N
2
−1ρmi (σ)dσ.

As σ
N
2
−1ρmi (σ) is equivalent to σ

N
2
−1+m(1−γ), up to a postive constant, as σ → +∞, we

have
N

2
< m(γ − 1)⇒

∫ +∞

0

σ
N
2
−1ρmi (σ)dσ < +∞.

As a consequence, in this case
∫
BN

umi (t, x)dx behaves like (T − t)
N
2
+(1−γ)m, up to a con-6

stant, as t → T− and therefore tends to +∞. The conclusion is the same in the equality7

case N = 2m(γ − 1) since then
∫
BN

um(t, x)dx behaves like | log(T − t)| as t→ T−.8

9

Proof of Lemma 3.2. We are looking for two functions Pi(·, ·), i = 1, 2 such that10

∂tui − di∆ui = Pi(u1, u2) = Pi
(
(T − t)1−γρ1(σ), (T − t)1−γρ2(σ)

)
. (31)

According to (13) in Lemma 3.1, and by the expected γ′-homogeneity of Pi, this is equiv-
alent to

(1 + σ)−(γ+2)[Ai +Biσ + Ciσ
2] = (1 + σ)γ

2/(1−γ)Pi(a1 + b1σ, a2 + b2σ),
11

⇔ (1 + σ)
2−γ
γ−1 [Ai +Biσ + Ciσ

2] = Pi(a1 + b1σ, a2 + b2σ), ∀σ ∈ [0,+∞). (32)

Let us write γ′ = p/q ∈ (2,+∞) ∩Q with p, q two coprime positive integers. Then

γ = p/(p− q), (2− γ)/(γ − 1) = (p− 2q)/q > 0.

Thus (32) may be rewritten12

(1 + σ)
p−2q
q [Ai +Biσ + Ciσ

2] = Pi(a1 + b1σ, a2 + b2σ), (33)

which also implies13

(1 + σ)p−2q[Ai +Biσ + Ciσ
2]q = {Pi(a1 + b1σ, a2 + b2σ)}q. (34)

Here p > 2q and the left-hand side is a polynomial of degree at most p in σ. It is easy to
see that, since a1b2 − a2b1 6= 0, the family of p+ 1 polynomials

{(a1 + b1σ)k(a2 + b2σ)p−k, k = 0, ..., p},
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is a linear basis of the linear space of polynomials of degree at most p. Indeed, let us
analyze the relation

p∑
k=0

µk(a1 + b1σ)k(a2 + b2σ)p−k ≡ 0, µk ∈ R, ∀k = 0, ..., p.

Assume by contradiction that there exists r ∈ {0, ..., p} such that

µk = 0, ∀k = 0, ..., r − 1, µr 6= 0.

Then after dividing by (a1 + b1σ)r, the above relation may be rewritten
p∑
k=r

µk(a1 + b1σ)k−r(a2 + b2σ)p−k = 0.

If r = p, this obviously implies µr = 0 whence a contradiction. If r < p, choosing σ =1

−a1/b1 leads to µr(a2 − b2a1/b1)p−r = 0, whence again µr = 0 thanks to the assumption2

(18) on ai, bi, i = 1, 2, and this is a contradiction.3

We are now going to define the convenient function Pi. Going back to the polynomial4

of degree at most p involved in (34), we can claim that there exist λik ∈ R, k = 0, ..., p such5

that for all σ ∈ R6

(1 + σ)p−2q[Ai +Biσ + Ciσ
2]q =

p∑
k=0

λik(a1 + b1σ)k(a2 + b2σ)p−k. (35)

Assume first that q is odd. Let us define7

P̃i(s1, s2) :=

{
p∑
k=0

λks
k
1s
p−k
2

}1/q

, (s1, s2) ∈ [0,+∞)2. (36)

Note that P̃i is homogeneous of degree p/q and8

(1 + σ)p−2q[Ai +Biσ + Ciσ
2] = P̃i(a1 + b1σ, a2 + b2σ). (37)

According to (30), this implies [see also (31), (32)]9

∂tui − di∆ui = P̃i(u1, u2) in QT . (38)

Moreover, we directly see on the definition (36) of P̃i that for (s1, s2) ∈ [0,+∞)

|P̃i(s1, s2)| ≤

{
p∑
k=0

|λk|

}1/q

(s1 + s2)p/q = C(s1 + s2)γ
′
.

Now, for the regularity of P̃i, it is obvious from its definition (36) that P̃i is C∞ around

each point (s1, s2) for which P̃i(s1, s2) 6= 0. We are going to modify it into a new function
Pi which will be in C∞

(
(0,+∞)2

)
with the same main properties. For this, let us assume

without loss of generality in (18) that a1b2−a2b1 > 0 or b2/b1 > a2/a1 and let us consider
the function

s ∈ (0,+∞)→ X :=
a2 + b2s

a1 + b1s
∈ I :=

(
a2
a1
,
b2
b1

)
.

It is C∞ with derivative (a1b2 − a2b1)/(a1 + b1s)
2 > 0 on (0,+∞). Thus its inverse10

ψ : I 7→ (0,+∞) is also C∞.11

From (36), we may write

P̃i(s1, s2) = s
p/q
1 P̃i(1, s2/s1),

and thanks to the relation (37) and the p/q homogeneity of P̃i, we have12

P̃i(1, X) = [a1 + b1ψ(X)]−p/q[1 + ψ(X)](p−2q)/q[Ai +Biψ(X) + Ciψ(X)2]. (39)

Whence the C∞-property of
[
X ∈ I 7→ P̃i(1, X)

]
and therefore of P̃i(s1, s2) on I where

we set
I := {(s1, s2) ∈ (0,+∞)2; s2/s1 ∈ I}.
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Actually, X ∈ R 7→ P̃i(1, X) is continuous and does not vanish in a neighborhood of the
extremities of I, namely

X = a2/a1 ⇔ ψ(X) = 0, P̃i(1, X) = Aia
−p/q
1 ,

X = b2/b1 ⇔ ψ(X) = +∞, P̃i(1, X) = Cib
−p/q
1 .

Thus, as noticed before thanks to the definition (36), X 7→ P̃i(1, X) is C∞ even on some1

open interval J containing I. We now introduce a function χ ∈ C∞([0,+∞)) such that:2

0 ≤ χ ≤ 1, χ ≡ 1 on I, χ ≡ 0 on [0,+∞) \ J. (40)

And we set

Pi(s1, s2) := s
p/q
1 χ(s2/s1)P̃i(1, s2/s1) = χ(s2/s1)P̃i(s1, s2).

Thus Pi is C∞ on all of (0,+∞)2 and coincides with P̃i on I. It follows that we may3

replace P̃i by Pi in the relations (37) and (38). This ends the proof of Lemma 3.2 when q4

is odd.5

6

Assume now that q is even. We start again from the relation (35) from which we deduce7

(1 + σ)(p−2q)/q[Ai +Biσ + Ciσ
2] = P̃i(a1 + b1σ, a2 + b2σ)sign{Ai +Biσ + Ciσ

2}, (41)

where we again set8

P̃i(s1, s2) :=

{
p∑
k=0

λiks
k
1s
p−k
2

}1/q

= s
p/q
1 P̃i(1, s2/s1), ∀(s1, s2) ∈ (0,+∞)2, (42)

and where

sign(r) = 1, ∀r ∈ (0,+∞), sign(0) = 0, sign(r) = −1, ∀r ∈ (−∞, 0).

We deduce from (41) and the p/q homogeneity of P̃i that, for all X ∈ I,9 {
P̃i(1, X)sign

(
Ai +Biψ(X) + Ciψ(X)2

)
= (a1 + b1ψ(X))−p/q(1 + ψ(X))(p−2q)/q[Ai +Biψ(X) + Ciψ(X)2]

(43)

and this function of X is C∞ on I. Since P̃i(1, X) does not vanish near the extremities
of the interval I, it is also locally C∞ there. Moreover sign

(
Ai +Biψ(X) + Ciψ(X)2

)
is constant as X tends to these extremities from inside I. It follows that the function of
X appearing in (43) may be extended in a C∞- way to an open interval J containing I.
Using the same function χ as above (see (40)), by setting

Pi(s1, s2) := s
p/q
1 χ(s2/s1)P̃i(1, s2/s1)sign

(
Ai +Biψ(s2/s1) + Ciψ

2(s2/s1)
)

we define a C∞-function on (0,+∞)2 which is p/q-homogeneous and satisfies

Pi(a1 + b1σ, a2 + b2σ) = (1 + σ)(p−2q)/q[Ai +Biσ + Ciσ
2], ∀σ ∈ [0,+∞)

and therefore (see (31), (32), (33) )

∂tui − di∆ui = Pi(u1, u2) on QT .

This ends the proof of Lemma 3.2.10

11

Proof of Lemma 3.3. As a consequence of the choice of the parameters in Lemma 3.3,
we obtain

a = a1 + a2 = 2N, b = b1 + b2 = 2/
√
N,

E = d1b1 + d2b2 =
√
N(1/

√
N) +N−3(1/

√
N) = 1 +O(N−7/2),

G = d1a1 + d2a2 =
√
NN−2 +N−3[2N − (1/N2)] = O(N−3/2).

It follows from the formulas (16) in Lemma 3.1 that for N large

A = [1− θ/N ]2N − 2N [1 +O(N−7/2)] + 2N [2− θ/N ]O(N−3/2) = −2θ +O(N−1/2),

C = −2N+[2−θ/N ]2/
√
N+2[1−θ/N ][N−4+2θ/N ][1+O(N−7/2)] = −(8+2θ)+O(N−1/2),
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B =

{
[−θ/N ]2N + [2− θ/N ][2/

√
N ] + [2N(−θ/N) + 8(2− θ/N)][1 +O(N−7/2)]

−2[2− θ/N ][2(3− θ/N)−N ][O(N−3/2)] = 16− 4θ +O(N−1/2).

B2 − 4AC = 16[4− θ]2 − 8θ(8 + 2θ) +O(N−1/2) = 64[4− 3θ] +O(N−1/2).

With the choice of θ > 4/3, we obtain A < 0, C < 0, B2− 4AC < 0 for N large as claimed1

in Lemma 3.3.2

Since the maximum of σ ∈ R 7→ A+Bσ + Cσ2 is reached for σ = −B/2C, we deduce3

A+Bσ + Cσ2 ≤ A−B2/4C = −Kθ +O(N−
1
2 ), ∀σ ∈ [0,+∞) (44)

with Kθ := 8(3θ − 4)/(4 + θ) > 0.4

On the other hand, a2b1 − a1b2 = 2N1/2 + O(N−5/2) 6= 0 and γ ∈ (1, 2) ∩ Q so that
(18) is satisfied and we may apply Lemma 3.2. Using now the relation (21) in this Lemma
3.2 together with (44), we obtain that

(P1 + P2)(a1 + b1σ, a2 + b2σ) ≤ −Kθ +O(N−
1
2 ), ∀σ ∈ [0,+∞).

By the p/q-homogeneity of P1 + P2, we deduce that

(P1 + P2)(1, X) ≤ −Kθa
−p/q
1 +O(N−

1
2 ), ∀X ∈ I,

where I is defined as in the previous proof of Lemma 3.2. Since I is bounded, so is P2(1, X)
for X ∈ I. It follows that for λ close to 1 and N large enough, we may claim that

(P1 + λP2)(1, X) ≤ −Kθa
−p/q
1

2
, ∀X ∈ I.

Up to reducing J and the support of the function χ in (40) of the proof of Lemma 3.2, we
may claim that

(P1 + λP2)(1, X) ≤ −Kθa
−p/q
1

4
, ∀X ∈ J.

By homogeneity, this implies that

(P1 + λP2)(s1, s2) ≤ 0, ∀(s1, s2) ∈ (0,+∞)2.

This ends the proof of Lemma 3.3.5

5. Proof of Theorem 2.2. We use the same functions u1, u2 as those introduced in the6

proof of Theorem 2.1 and defined in (9), and we choose γ as in (28), namely such that7

γ′ ≤ d ⇔ γ ≥ d/(d− 1). (45)

We deduce from (30) that

∂tui − di∆ui =
Ai(T − t)2 +Bi(T − t)r2 + Cir

4

(T − t+ r2)γ+2
, i = 1, 2.

Given α, β as indicated in the statement of Theorem 2.2, we may understand this expression
as being of the form

∂tui − di∆ui = ci(t, x)uα1 u
β
2 ,

where we define

ci(t, x) :=
Ai(T − t)2 +Bi(T − t)r2 + Cir

4

(T − t+ r2)γ+2
u−α1 u−β2 ,

⇒ ci(t, x) =
(T − t+ r2)γ(d−1)−2[Ai(T − t)2 +Bi(T − t)r2 + Cir

4]

[a1(T − t) + b1r2]α[a2(T − t) + b2r2]β
.

Obviously ci is C∞ on [0, T ) × BN . Let us check that it is in L∞(QT ) as follows. Let
H := T − t+ r2. We use

T − t ≤ H, r2 ≤ H, ai(T − t) + bir
2 ≥ min{ai, bi}H.

Thus for some K1,K2 ∈ (0,+∞), and using that γ(d− 1)− 2 ≥ γ(d− 1)− d ≥ 0, we have

|ci(t, x)| ≤ Hγ(d−1)−2[[Ai|+ |Bi|+ |Ci|]H2

K1Hα+β
≤ K2H

γ(d−1)−d ≤ K2(T + 1)γ(d−1)−d.
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Finally, we see that the sign of c1+c2 is the same as the sign of A(T−t)2+B(T−t)r2+Cr4,1

that is c1 + c2 ≤ 0 since A < 0, C < 0, B2 − 4AC < 0 by Lemma 3.3. This ends the proof2

of Theorem 2.2.3

6. Proof of Theorem 2.3. Let u1, u2 be the solutions obtained in Theorem 2.1. Their4

normal derivatives on ∂BN are given as follows5

∂ru1(t, 1) = 2[(b1−γa1)(T−t)−(γ−1)b1]

(T−t+1)γ+1 , ∂ru2(t, 1) = 2[(b2−γa2)(T−t)−(γ−1)b2]

(T−t+1)γ+1 ,

b1 = N−1/2 = b2, b1 − γa1 = N−1/2 − 2N−2 +O(N−3),
b2 − γa2 = −4N +O(1).

(46)

Obviously for N large6 {
∂ru1(t, 1) ≤ 0, ∀t ∈ [τ0, T ], τ0 := (T − γ + 1)+(< T ),
∂ru2(t, 1) ≤ 0, ∀t ∈ [0, T ].

(47)

We now introduce the solutions βi, i = 1, 2 of7 
∂tβi − di∆βi = 0 in (τ0, T )×BN ,
∂νβi = −∂rui(t, 1) on (τ0, T )× ∂BN ,
βi(τ0, ·) ≡ 0.

(48)

By the C∞-property of ∂rui(t, 1), these solutions are also in C∞(QT ). Moreover, thanks to
(47), and by maximum principle, we have βi(t, x) ≥ 0 on [τ0, T )×BN . We now introduce
for i = 1, 2

vi(t, x) := ui(t, x) + βi(t, x) ≥ 0 so that ∂νvi = ∂rvi(t, 1) = 0 on ΣT .

And according to Theorem 2.1 and the definition of βi, we have

∂tvi − di∆vi = ∂tui − di∆ui = fi(u1, u2) = gi(t, x, v1, v2) in QT , i = 1, 2,

where we set

gi(t, x, s1, s2) := fi(s1 − β1(t, x), s2 − β2(t, x)).

Here the functions fi are extended by 0 outside [0,+∞)2 and with the help of (29), we
see that they are C∞ on R2. The functions gi defined in this way satisfy (P′), (M′λ), (G′)
since, by nonnegativity of βi:

g1(t, x, 0, s2) = f1(−β1(t, x), s2 − β2(t, x)) = 0,
g2(t, x, s1, 0) = f2(s1 − β1(t, x),−β2(t, x)) = 0,
(g1 + λg2)(t, x, s1, s2) = (f1 + λf2)(s1 − β1(t, x), s2 − β2(t, x)) ≤ 0 [using (6)],
|gi(t, x, s1, s2)| = |fi(s1 − β1(t, x), s2 − β2(t, x))|
≤ C0 + C1[(s1 − β1(t, x))+ + (s2 − β2(t, x)+]d

⇒ |gi(t, x, s1, s2)| ≤ C′0 + C′1|s1 + s2|d,

where C′0, C
′
1 depend on C0, C1, d, ‖βi‖L∞(QT ). Finally, the Lm(BN )-norm of vi(t) blows8

up as t → T− together with the Lm(BN )-norm of ui(t). This ends the proof of Theorem9

2.3.10

7. About global weak solutions. Let us prove here that the solutions u1, u2 obtained11

in Theorem 2.1 may be extended to global weak solutions of the same system. For this we12

will use the approach of the previous section and, as a first step, we extend the functions13

v1, v2 to weak solutions on [0,+∞). This will provide extensions of u1, u2 as well.14

Let us start by extending the functions βi as the solutions on [0,+∞) of15 
∂tβi − di∆βi = 0 in (τ0,+∞)×BN ,

∂νβi =

{
−∂rui(t, 1) on (τ0, T )× ∂BN
−∂rui(T, 1) on (T,+∞)× ∂BN ,

βi(τ0, ·) ≡ 0.

(49)
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These extensions are C∞ on [τ0,+∞)×BN . We also extend the nonlinear function gi
as follows for (t, x) ∈ (τ0,+∞)×BN

gi(t, x, s1, s2) := fi(s1 − β1(t, x), s2 − β2(t, x)), ∀(s1, s2) ∈ [0,+∞)2.

They satisfy the same properties (P′), (M′λ), (G′) on [τ0,+∞). We now apply Theorem1

5.9 in [10] to the system2 
∂tv1 − d1∆v1 = g1(t, x, v1, v2) in (τ0,+∞)×BN ,
∂tv2 − d2∆v2 = g2(t, x, v1, v2) in (τ0,+∞)×BN ,
∂νv1 = 0 = ∂νv2 on (τ0,+∞)×BN ,
vi(τ0, ·) = v0i = ui(τ0, ·) + β(τ0, ·).

(50)

Indeed, thanks to the property (M′λ), any good approximation of this system with bounded
nonlinearities gni in place of gi and the same regular data at t = τ0, will provide approxi-
mate regular solutions vni such that, for all S ∈ [τ0,+∞)

sup
n≥1

∫
(τ0,S)×BN

|gni (t, x, vn1 (t, x), vn2 (t, x))| < +∞, i = 1, 2,

We may for instance choose

gni (t, x, s1, s2) :=
gi(t, x, s1, s2)

1 + n−1[(|g1|+ |g2|)(t, x, s1, s2)]
,

so that |gni | ≤ n. These approximate functions gni satisfy also (P′), (M′λ) and it is easy to
prove that these properties imply the above L1 ((τ0, S)×BN )-bounds (see e.g. Proposition
5.1 in [10]). As a consequence, and as proved in [10], these approximate solutions vni
converge to a weak solution of (50) which means that

vi(t) = Si(t− τ0)v0i +

∫ t

τ0

Si(t− s)gi (s, ·, v1(s, ·), v2(s, ·)) ds, i = 1, 2,

where Si(t) denotes the semigroup generated by the operator −di∆ on BN with homoge-3

neous Neumann boundary conditions.4

These weak solution coincides on the interval [τ0, T ) with the classical solution of (7)
as found in Theorem 2.3. Indeed, since v0i ∈ L∞(BN ), it is classical to prove that the ap-
proximate solution (vn1 , v

n
2 ) stays uniformly bounded, independently of n, on some interval

[τ0, τ1] ⊂ [τ0, T ]. To see it, we might for instance use the inequalities

∂tv
n
i − di∆vni ≤ |gi(t, x, vn1 , vn2 )| ≤ C′0 + C′1|vn1 + vn2 |d.

Thus the limit (v1, v2) is therefore a classical solution on [τ0, τ1]. By uniqueness of classical5

solutions for the reaction-diffusion system (7), both solutions coincide at least on [τ0, τ1],6

and subsequently on the whole interval [τ0, T ] by a classical continuity argument.7

Finally, if we now set ui(t, x) := vi(t, x) − βi(t, x), i = 1, 2 on the whole domain

[τ0,+∞) × BN , we find a global weak solution of the initial system (1) on [0,+∞) which
extends the (classical) solution obtained on [0, T ) in Theorem 2.1. It remains to get con-
vinced that ui ≥ 0 for all t. This can be seen by noticing that uni := vni − βi is a classical
solution on [τ0,+∞) of

∂tu
n
i − di∆uni = gni (t, x, vn1 , v

n
2 ) = fni (un1 , u

n
2 ),

with boundary conditions ∂νu
n
i = −∂rβi ≥ 0 with a quasi-positive nonlinearity (fn1 , f

n
2 ).8

Thus uni ≥ 0 and this is preserved at the limit.9

8. Some more explicit examples in small dimensions. We use here Lemma 3.1 and
Lemma 3.2. All blow up examples we are going to describe here are defined as in (9) so
that they blow up as t → T−. Moreover by Lemma 3.2, we know that we can then find
P1, P2 so that (19) holds, namely

∂tui − di∆ui = Pi(u1, u2), in QT , i = 1, 2.
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The goal is then to choose all parameters involved in the definition (9) well enough so that1

(24) holds, namely2

A < 0, C < 0, B2 − 4AC < 0, (51)

where A,B,C are defined in Lemma 3.1. Then, exactly as in the proof of Theorem 2.1,3

we prove that the previous inequalities implies that P1 + P2 ≤ 0 and that P1, P2 can then4

slightly be modified into functions f1, f2 satisfying (P), (M) and (1). Moreover the growth5

at infinity of f1, f2 is at most γ′.6

The following technical proposition is very useful to help finding examples of blow up.7

Notations are as in Lemma 3.1.8

Proposition 8.1. Let a, b, E,G ∈ (0,+∞). Then we can find ai, bi, di, i = 1, 2 ∈ (0,+∞)9

such that10

a1 + a2 = a, b1 + b2 = b , b1d1 + b2d2 = E, a1d1 + a2d2 = G, (52)
11

a1b2 − a2b1 =
aE − bG
d2 − d1

. (53)

Proof of Proposition 8.1. Let us choose d1, d2 such that

0 < d1 < min{Eb−1, Ga−1} ≤ max{Eb−1, Ga−1} < d2.

Then, given the four parameters a, b, E,G, a solution to (52) is given by

a1 =
ad2 −G
d2 − d1

, a2 =
G− ad1
d2 − d1

, b1 =
bd2 − E
d2 − d1

, b2 =
E − bd1
d2 − d1

.

We easily check that, with this choice, the relations (52), (53) are satisfied and all param-12

eters are positive. The relation (53) will be used to check (18).13

Remark 8.1. In what follows, we give several explicit choices of parameters which lead14

to blow up examples according to the analysis of the previous sections. Thanks to the15

Proposition 8.1, it is sufficient to provide the values of a, b, E,G such that (51) holds for16

the corresponding values of A,B,C.17

8.1. Blow up with a cubic growth in dimension N = 3. Here we choose with
ε ∈ (0, 1) small enough,

γ = 3/2, a = 10, b = 1, E = 1, G = ε.

Then, aE − bG = 10− ε 6= 0 and

A = (γ − 1)a− 6E + 6γG = 5− 6 + 9ε = −1 + 9ε < 0,

C = −a+ γb+ 2(γ − 1)(3− 2γ)E = −10 + 3/2 + 0 = −17/2 < 0,

B = (γ − 2)a+ γb+ [6(γ − 2) + 8γ]E − 2γ[2(γ + 1)− 3]G = 11/2− 6ε.

B2 − 4AC =
112

4
− 4

17

2
+ 0(ε) = −15/4 +O(ε) < 0.

Thus (51) holds so that this provides a blowing up example with growth γ′ = 3. By18

Lemma 3.1, for m ≥ 3, the Lm(BN )-norm of the solution blows up as t → T−. Note19

that since all inequalities are strict in this example, we could slightly modify it to obtain20

a blowing up example with growth 3− σ for some small σ > 0.21
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8.2. Blow up with a 7/2-growth in dimension N = 2. An example with such a
growth was already mentioned in [12]. We give here another one, easier to compute. Let
us choose the following parameters with ε > 0 small enough.

γ = 7/5, a = 4, b = ε, E = 1, G = ε.

then aE − bG = 4− ε2 6= 0 and

A =
2

5
a− 4E +

28

5
G =

8

5
− 4 +O(ε) = −12

5
+O(ε) < 0,

C = −a+
7

5
b− 16

25
E = −4− 16

25
+O(ε) = −116

25
+O(ε) < 0,

B = −3

5
a+

7

5
b+

44

5
E − 142

25
G = −12

5
+

44

5
+O(ε) =

32

5
+O(ε).

B2 − 4AC =
322

25
− 4

12

5

116

25
+O(ε) =

1

125
[5120− 5568] +O(ε) = −448

125
+O(ε) < 0.

Thus this provides a blow up example with growth γ′ = 7/2 and an Lm(BN )-norm1

blowing up for m ≥ 5/2. Again, since all inqualities are strict, we could find another2

example with growth 7/2− σ for some σ > 0.3

8.3. Blow up with a 6-growth in dimension N = 1. Here we choose

γ = 6/5, a = 5, b = 1/2, E = 1, G = 1/10.

then aE − bG = 5− 1/20 6= 0 and

A = 1− 2 + 6/25 = −19/25 < 0,

C = −5 + 3/5 + 2(1/5)(1− 12/5) = −22/5− 14/25 = −124/25 < 0,

B = −4 + 3/5 + 8− 12.17/250 = 473/125.

1252[B2 − 4AC] = 4732 − 4.95.620 = 223729− 235600 = −11871 < 0.

This provides a blow up example with growth γ′ = 6 and with an Lm(BN )-norm4

blowing up for m ≥ 5/2. As above again, we could improve up it to a lower growth 6− σ5

for some σ > 0.6
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