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Unlike autoimmune diseases, there is no known constitutive and disease-defining biomarker for systemic
autoinflammatory diseases (SAIDs). Kawasaki disease (KD) is one of the ‘‘undiagnosed” types of SAIDs
whose pathogenic mechanism and gene mutation still remain unknown. To address this issue, we have
developed a sequential computational workflow which clusters KD patients with similar gene expression
profiles across the three different KD phases (Acute, Subacute and Convalescent) and utilizes the resulting
clustermap to detect prominent genes that can be used as diagnostic biomarkers for KD. Self-Organizing
Maps (SOMs) were employed to cluster patients with similar gene expressions across the three phases
through inter-phase and intra-phase clustering. Then, false discovery rate (FDR)-based feature selection
was applied to detect genes that significantly deviate across the per-phase clusters. Our results revealed
five genes as candidate biomarkers for KD diagnosis, namely, the HLA-DQB1, HLA-DRA, ZBTB48,
TNFRSF13C, and CASD1. To our knowledge, these five genes are reported for the first time in the litera-
ture. The impact of the discovered genes for KD diagnosis against the known ones was demonstrated
by training boosting ensembles (AdaBoost and XGBoost) for KD classification on common platform and
cross-platform datasets. The classifiers which were trained on the proposed genes from the common plat-
form data yielded an average increase by 4.40% in accuracy, 5.52% in sensitivity, and 3.57% in specificity
than the known genes in the Acute and Subacute phases, followed by a notable increase by 2.30% in accu-
racy, 2.20% in sensitivity, and 4.70% in specificity in the cross-platform analysis.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Systemic autoinflammatory diseases (SAIDs) are a set of evolv-
ing groups of conditions sharing a core of phenotypical similarities
[1,2]. They encompass several rare disorders which have been
characterized by extensive clinical and biological inflammation,
with no specific age or gender distribution in the human popula-
tion. Genetic mutations that may cause dysregulation of the innate
immune system underlie the etiology of some SAIDs. Although
they were proposed to constitute a continuum of disorders with
potential overlap, SAIDs should not be confused with the autoim-
mune family of diseases, related to adaptive immune system dys-
function and response to self-antigen(s) [3]. Primary physical
manifestations of SAIDs typically involve fever, rash, joint involve-
ment, lymphadenopathy, and musculoskeletal symptoms. Due to
the numerous symptoms observed in the different SAID-related
conditions and their lack of specificity, diagnosis is challenging.
Unlike autoimmune diseases whose autoantibodies are a tool for
ascertaining the diagnosis, there is no known constitutive and
disease-defining biomarker for SAIDs. Although inflammasome
activation is thought to be a common pathophysiological pathway,
the complex network of cytokine cascades together with multiple
cell type activation makes difficult the use of these features as
diagnostic or classification markers for SAIDs.
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Kawasaki disease (KD) is a specific type of SAID which causes
inflammation in the walls of medium-sized arteries throughout
the body [4–6]. The underlying inflammation tends to affect the
coronary arteries, which supply blood to the heart muscle and is
the leading cause of pediatric acquired heart disease [7]. KD is also
referred to in the literature as mucocutaneous lymph node syn-
drome (MLNS) because it also affects the glands, the skin tissues,
and the mucous membranes inside the mouth, nose, and throat
[8]. Signs of KD include high fever and peeling skin. KD mainly
affects genetically susceptible infants and children. It has been
characterized as an ‘‘undiagnosed” type of SAID for which no gene
mutation has been identified so far and whose pathogenic mecha-
nism remains unknown. Other examples of such SAID types
include the neutrophilic dermatosis [9], and the recurrent peri-
carditis [10].

Apart from the conventional and widely used differential
expression analysis which uses statistical approaches to identify
statistically significant differences in the gene expression profiles,
such as the Kruskal Wallis, machine learning (ML) has been
deployed in the domain of autoimmune diseases for: (i) the molec-
ular classification of patients with systemic sclerosis [11], (ii) the
risk stratification of patients who have been diagnosed with sys-
temic lupus erythematosus (SLE) [12], (iii) the prediction of Celiac
disease [13], and (iv) the prediction of systemic lupus erythemato-
sus using white-blood RNA-sequencing data [14]. Furthermore, ML
has been used to shed light into the pathogenic mechanisms in
rheumatic diseases [15], and for drug repurposing prediction in
immune-mediated cutaneous diseases [16]. As far as SAIDs are
concerned, there is a reported lack of significant scientific out-
comes regarding the underlying pathogenic mechanisms. More
specifically, ML has been deployed in two studies using Single
Nucleotide Polymorphisms (SNPs) to predict intravenous
immunoglobulin (IVIG) resistance in KD patients and discriminate
those with higher risk of developing coronary artery abnormalities
[17], as well as, to detect associations between post-IVIG IgG levels
and clinical findings to understand the action of IVIG [18].

None of these studies, however, have reported outcomes which
are related to the pathogenic mechanisms of KD. According to our
knowledge, no studies have been reported so far regarding the
analysis of Kawasaki disease by means of ML analysis on time-
series based gene expression data. So far, most of the works in
the field have focused only on the analysis of the associated SNPs
[19,20,21]. In addition, the reported biomarkers for KD diagnosis
have been experimentally determined in laboratory studies
[22,23] without the application of any data driven computational
workflows. In KD, the diagnosis process is primarily clinical and
relies on the collection of detailed patient’s history to fully under-
stand the pattern of symptoms associated with the flair to catego-
rize the patient’s condition. However, those criteria do not allow
the definition of homogeneous groups of patients regarding the
prognosis and response to therapy since even if a positive response
to treatment is observed, it can be misleading as immunomodulat-
ing agents do not specifically target SAID mechanisms [24]. In
addition, the lack of homogeneous groups of patients with KD
regarding the underlying pathogenic mechanisms of the disease
along with the discovery of data-driven biomarkers for KD devel-
opment and diagnosis remain a clinical unmet need.

To address these needs, and mainly the need for KD diagnosis,
we propose a computational pipeline which clusters KD patients
with similar gene expression profiles across the three different
KD phases, namely, the Acute (A), Subacute (SA) and Convalescent
(C), and uses the resulting clustermap to detect prominent genes as
biomarkers for KD diagnosis. To do so, we construct Self-
Organizing Maps (SOMs) to group patients with similar gene
expressions into homogeneous clusters across the three phases.
Then, we apply FDR-based feature selection to detect genes that
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significantly deviate across the clusters on each phase. As a last
step, we extract the final set of proposed genes as those that are
present across all phases and compare their performance against
known KD genes in the literature by training two ML algorithms
for KD classification. According to the results, five prominent genes
for KD diagnosis are proposed for the first time, namely the HLA-
DQB1, HLA-DRA, ZBTB48, TNFRSF13C, and CASD1. These genes
were used to develop a KD boosting classifier which yielded better
performance against the one trained on the known KD genes in
terms of increased accuracy, sensitivity, specificity, and AUC. To
our knowledge, this is the first ML-based computational workflow
using intra-phase and inter-phase clustering for KD genomic data
analysis towards the discovery of biomarkers for KD diagnosis. Fur-
ther examination of the proposed genes in terms of functional
analysis, as well as, clinical validation may unveil new insights
concerning the pathogenesis of KD and the underlying genetic
mechanisms.

In the following sections, Section 2 describes the inter-phase
and intra-phase patient clustering using SOMs, the extraction of
the proposed set of KD genes, and the comparison process of the
proposed KD genes against the known ones. Section 3 describes
the results regarding the SOM prototypes, the proposed set of
genes for KD diagnosis and the classification comparison between
the known and the proposed KD genes. The obtained results and
the derived findings are discussed in Section 4 along with a brief
description of our future work in Section 5.
2. Materials and methods

2.1. Microarray data

Microarray data were collected from the Gene Expression
Omnibus (GEO) public functional genomics data repository [25]
for: (i) common platform analysis, where diagnostic biomarkers
for KD are extracted from time-series gene expression data across
three different KD phases followed by a validation of the extracted
biomarkers against the known ones in the literature, and (ii) cross-
platform analysis, where the proposed diagnostic biomarkers are
further compared against the known KD genes through the inte-
gration of six more datasets. The clinical characteristics of all the
patients are presented in detail in Supplementary Table 1.

2.1.1. Common platform data (with probes) for the detection of
diagnostic biomarkers

The first dataset (GSE9863) includes 20 patients who have been
diagnosed with Kawasaki across three different phases of the dis-
ease [26], namely, the A (Acute), SA (Subacute), and C (Convales-
cent), with a total number of 37,653 recorded genes per phase
(size: 20x37653x3) which was used for the identification of the
proposed diagnostic biomarkers for KD. The second dataset
(GSE47683) consists of 59 patients who have been diagnosed with
a different disease (renal-transplant patients) and 8 healthy sub-
jects [27] (67 patients in total), with the same number of recorded
genes (size: 67x37653). This dataset was utilized as the control
group since it was the only dataset in GEO that uses the same
experimental platform (i.e., GPL6271) like GSE9863 and thus the
same gene probes can be used as input to the classifiers. Due to
the significant lack of patient samples in GPL6271, the sample size
was considered as adequate for the application of the proposed
computational workflow.

2.1.2. Cross-platform data for the validation of the proposed diagnostic
biomarkers

In this case, the impact of the proposed set of diagnostic
biomarkers for KD from the dataset GSE9863 (Table 1) was further



Table 1
A summary of the datasets which participated in the common platform analysis.

Platform Dataset Disorder Values Patient samples

GPL6271 GSE9863
[26]

Kawasaki Log2
median
ratio

20 KD
(at three phases)

GPL6271 GSE47683
[27]

Renal
transplantation

Normalized
log ratio

67 Non-KD (8
healthy subjects)
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evaluated against the known KD genes on six more datasets across
two different platforms, namely the GLP570 and the GLP10558
(Table 2). It should be noted that these two platforms were
selected as they both contain all the employed genes (proposed
and known) of the current study. However, the corresponding
probes are not identical with those of GPL6271, therefore the med-
ian expression value was extracted per gene, wherever many
probes are referring to the same gene. According to Table 2, the
six datasets consist of patients who have been diagnosed with
Kawasaki along with other analogous diseases like systemic juve-
nile idiopathic arthritis (SJIA) or other inflammatory ones, as well
as, autoimmune diseases like systemic lupus erythematosus
(SLE), and other infectious diseases like Human Adenovirus (HAdV)
and Group A streptococcus (GAS). These datasets were selected
after a screening of GEO database using the following search terms
- ‘‘KD” OR ‘‘Kawasaki” OR ‘‘SLE” OR ‘‘lupus erythematosus” OR
‘‘SJIA” OR ‘‘juvenile idiopathic arthritis”. Results were filtered to
keep only whole blood datasets with at least 20 patients of the
same disease. In the GSE68004 dataset, the 13 patients which were
annotated as incomplete KD were excluded from the analysis.
According to Table 1, the total number of patient samples in the
cross-platform analysis was 1,347; 558 with KD and 789 as non-
KD (154 healthy).
2.2. The proposed computational workflow

In this work, we focus on the development of a data-driven,
computational workflow (Fig. 1) to provide new insights into the
KD pathogenic mechanisms, through: (i) the inter-phase (or per-
phase) clustering of KD patients with common genetic profiles
across the Acute, Subacute, and Convalescent phases by
constructing 3x3 Self-Organizing Maps (SOMs), (ii) the intra-
phase clustering of KD patients by projecting the KD patients with
similar per-phase clusters into a second stage SOM to detect super-
clusters, (iii) the selection of important genes across each phase
using the super-clustering labels of the second-stage SOM, as a
target vector, by applying FDR-based feature selection, (iv) the
extraction of prominent genes as those that are present across all
three clinical phases, and (v) the performance comparison of the
Table 2
A summary of the datasets which participated in the cross-platform analysis.

Platform Dataset Disease Value

GPL570 GSE80060
[28]

SJIA Linear
values

GSE61635 SLE RMA s
GPL10558 GSE73461

[29]
KD, other inflammatory, bacterial/viral
infections

Illumi

GSE63881
[30]

KD Z-scor

GSE68004
[31]

KD, HAdV, GAS Avera

GSE73463
[29]

KD Illumi
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proposed KD genes against other known KD genes from the labora-
tory findings in the literature.

At the final stage (Fig. 1, Comparison process), the computa-
tional workflow is evaluated on common platform (on each KD
phase) and cross-platform gene expression data from KD and
Non-KD patients (Tables 1 and 2) using the proposed and the
known KD genes, separately, for performance comparison. To do
so, boosting ensembles are trained on each integrated dataset
using error reduction. Performance evaluation measures are com-
puted through a repeated stratified 10-fold cross-validation proce-
dure to capture the performance of the ensembles without any
biases during the training stage. The outcomes of the models are
compared against their classification accuracy, sensitivity, speci-
ficity, and area under the ROC curve (AUC).

2.3. Genetic data curation and cross-platform meta-analysis

2.3.1. Genetic data curation
An automated framework for data curation developed in a pre-

vious work [32] was adjusted to detect outliers and incompatible
fields across time-series gene expression data structures. Multi-
variate methods, such as, the isolation forests and the local outlier
factor were deployed to detect genetic samples that deviate from
the standard distribution. The genetic samples were also tested
for joint variabilities by calculating the covariance matrix and dis-
carding genes with significantly high covariance. Any missing
genetic samples were replaced with zero. Any incompatible fields
and outliers were removed from the computational workflow to
prior to the imputation process to avoid data contamination yield-
ing high-quality genetic data.

2.3.2. Meta-analysis
Due to the variation of the range of values across the microarray

data which were obtained from the six datasets across the GPL570
and GPL10558 platforms (Table 2), as well as, from the two data-
sets in the GPL6271 (Table 1), a meta-analysis procedure was per-
formed on each individual dataset based on the quantile
normalization approach [33,34]. Specifically, the average of each
quantile across the proposed KD genes was used as the reference
to transform (adjust) their distributions. The same process was
applied on the known KD genes. Since one gene might have more
than one probes, the median of the probes was extracted per gene,
prior to the quantile normalization process.

2.4. Per-phase (inter-phase) patient clustering using Self-Organizing
Maps (SOMs)

The first curated genetic dataset was sorted across the KD
phases and concatenated onto the 3D space to formulate a
20x37653x3 data structure, where the 1st dimension corresponds
s Patient samples

scale RMA normalized relative expression 206 Non-KD (22 healthy)

ignal intensity in log2 scale 129 Non-KD (30 healthy)
na calculated signal intensity 78 KD, 381 Non-KD (55

healthy)
e normalization 171 KD (10 healthy)

ge normalization 76 KD, 73 Non-KD (37 heathy)

na calculated signal intensity 233 KD



Fig. 1. An illustration of the proposed computational workflow.
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to the patients, the 2nd dimension corresponds to the genetic sam-
ples and the 3rd dimension corresponds to the phases (i.e., A, SA,
and C). Then, a SOM was trained on the samples from each phase
to cluster the patients with similar genetic profiles. A Self-
Organizing Map (SOM) [35,36] is an unsupervised artificial neural
network (ANN)-based method which reduces the dimensionality of
the input data space into a lower dimension that represents the
distributions of the data in the form of a map. The generated
map, which is also known as Kohonen map, is a discretized version
of the input space in the two-dimensional space, where each cell in
the map represents a cluster. The clusters in the map are also
referred to as prototypes.

SOMs generate low dimensional projections of the high-
dimensional data using a training approach known as competitive
learning. According to the competitive learning schema, the Eucli-
dean distance is first computed between the input training sample
and all the existing weight vectors of the neurons in the SOM.
Then, the neuron with the smallest distance is extracted as the best
matching unit (BMU). In fact, the BMU is the neuron whose weight
vector lies closest to the input vector and is usually referred to as
the winning neuron. The weights of the BMU and its nearest neu-
rons are re-adjusted according to the following update function:
wx iþ 1ð Þ ¼ wx ið Þ þ U x; y; ið Þc ið Þ x qð Þ �wx ið Þð Þ; ð1Þ
where wx is the weight vector of node x, i is the step (iteration

number), q is the index of the input feature vector, u is the index of
the BMU, xðqÞ is the input vector for the training sample with index
i, cðiÞ is the learning coefficient which is monotonically decreasing
unproportionally of i, and U x; y; ið Þ is the neighborhood function
which calculates the distance between the neurons x and y, at step
i. The neighborhood function is related with the grid-distance
between the BMU and the input neuron x and shrinks over time
since the weights converge to local estimates (local minima) at a
step time T. The vectors that are close in the high-dimensional
space also end up being mapped to SOM nodes that are close in
the low-dimensional space. The overall process is repeated for each
input vector and for multiple cycles until the grid shrinks, i.e., until
the weight vectors converge to local minima (estimations). The
algorithmic steps for SOM construction are summarized in Algo-
rithm 1.
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Algorithm 1. A pseudocode for the construction of the inter-
phase and intra-phase SOM.
1
 Generate a random weight vector wx for each node x in the
3x3 SOM.
2
 Select a random feature vector as the input vector x0.

3
 Calculate the Euclidean distance between the input vector

and the weight vector.

4
 Identify the node with the smallest Euclidean distance as

the BMU.

5
 Update the weight vector wx0 according to (1).

6
 Repeat Steps 2–5 until the maximum number of iterations

is met or until the grid shrinks (i.e., the weights converge
to local minima).
In the current work, the generated SOM consists of a rectangular
3x3 grid which is initialized on the input data yielding 9 clusters
for the 20 patients. The topology of the grid was set to 3x3 since
we noticed that some of the 9 clusters contained single or no sam-
ples at all and thus a larger grid size would be idle. Each sample in
the grid corresponds to a patient with a multidimensional set of
coordinates which is related to the genetic samples in the data.
The development of the SOMs for inter-phase and intra-phase clus-
tering took place in R 3.6.2 [37].

2.5. Combination of the per-phase clusters to create super-clusters
(intra-phase clustering)

The resulting clustering labels from phases A, SA, and C, say
LA; LSA; and LC , respectively, were organized into a 20x3 data struc-
ture, say LT , as follows:

LT ¼ LA [ LSA [ LC ; ð2Þ
where the i-th row of LT corresponds to the i-th patient and the n-th
column refers to the clustering label on the n-th phase, where
n ¼ 1;2;3. An additional 3x3 SOM was applied on LT to group the
patients with similar per-phase clusters yielding the final SOM. As
a result, the per-phase clustermaps (first stage SOMs) were pro-
jected into a single clustermap (second stage SOM). Clusters with
no samples were discarded from further analysis. The final
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clustermap was analyzed to detect super-clusters using hierarchical
clustering with a dendrogram cut.

2.6. Extraction of prominent KD genes using FDR-based feature
selection

The clustering labels from the final clustermap were used as a
target vector to detect genes that contribute the most towards
the precise discrimination of the KD patients among the superclus-
ters. In each phase, the ANOVA (Analysis of Variance) F-value was
computed between the feature vectors (genes) and the clustering
labels (target vector) to examine the null hypothesis that there is
no significant difference between the variance of the feature vec-
tors and the target vector. Given an input vector z with N individ-
ual independent samples, the ANOVA F-score is defined as [38]:

F ¼
PN

i¼1ni zi � zð Þ2=ðN � 1ÞPN
i¼1ðni � 1Þsi2=ðn� NÞ ¼

MST
MSE

; ð3Þ

where z is the mean of the input vector, N is the number of individ-
ual independent samples, and si2is the variance of the i-th sample.
The numerator in (3) is the treatment mean square (MST) which
is equal to the variance between the N individual independent sam-
ples, whereas the denominator is the Mean Square Error (MSE)
which is the variance within the samples. The F-test statistic
assesses whether the N samples between the input vectors and
the target vector are normally distributed with a common variance.
If the population mean values between the input vectors and the
target vector are the same, then the samples approximately follow
an F-distribution with degree of freedom 1 equal to N � 1 and
degree of freedom 2 equal to n� N. The resulting p-values were
adjusted using the Benjamini-Hochberg (BH) procedure with an
alpha value set to 0.01 as an upper bound on the false discovery rate
(FDR). The overall process was repeated for each phase, where
genes with p-values larger than 0.01 were excluded from the pool
of the proposed genes. The latter consists of the genes that appeared
as significant across all phases. The implementation took place in
Python 3.6.3.

2.7. Comparison of the proposed KD genes against the known ones in
the literature

2.7.1. Comparison process in the common platform analysis
The two datasets which were presented in Section 2.1.1

(Table 1) were integrated into a larger data structure with a size
of 87x37657x3, where the proposed genes for KD diagnosis were
evaluated against the known ones. For each phase, the initial data
structure was split into two smaller subsets, namely A and B. Sub-
set A includes only the proposed genes, with size mxk, where k is
the number of the proposed genes and m is the total number of
patients. On the other hand, the subset B includes only the known
KD genes, with sizemxl, where l is the number of the known genes.
In both cases, m is equal to 87 patients. Boosting classifiers were
trained on both subsets, separately, to develop a KD classification
model. The two models were compared against each other in terms
of their accuracy, sensitivity, specificity, and AUC.

2.7.2. Comparison process in the cross-platform analysis
The six datasets (GSE80060, GSE61635, GSE73461, GSE63881,

GSE68004, GSE73463) which were presented in Section 2.1.2
(Table 2) were integrated into two individual data structures for
each type of genes (i.e., proposed and known), namely C and D.
Subset C includes only the proposed genes, with size nxk, where
k is the number of the proposed genes and m is the total number
of patients, whereas subset D includes only the known KD genes,
with size nxl, where l is the number of the known genes. In both
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cases, n is equal to 1,347 samples. The same boosting classifiers
like in the common platform analysis were trained on both subsets,
separately, to develop a cross-platform KD classification model
where the same performance metrics were deployed to evaluate
the classification performance of the models.
2.7.3. Boosting through error reduction
Tree ensemble classifiers with boosting through error reduc-

tion, such as, the AdaBoost (Adaptive Boosting) [39] and the
XGBoost (Extreme Gradient Boosting) [40] were deployed as
robust supervised machine learning algorithms towards the devel-
opment of the KD classification models. Boosting adopts a sequen-
tial strategy, where a set of weak learners is trained on the training
subset and on each boosting round the next model learns from the
errors that were made by the previous model. On each boosting
round, the algorithm reweights the features according to the mis-
classification rate. Thus, features that misclassify the target receive
a larger weight than the features with small misclassification rate.
Then, the next model focuses on the features with the larger
weights to improve the overall classification performance. The pro-
cedure is repeated until the number of boosting rounds is met.

The AdaBoost (Adaptive Boosting) classifier [39] is an ensemble
classifier which combines a set of N-weak learners in a sequential
error reduction fashion, where the final output of the classifier is a
weighted sum of the weak classifiers. The final classifier can be
expressed as:

FN dð Þ ¼
XN
i¼1

f iðdÞ; ð4Þ

where d is the input vector, FN dð Þ is the final classifier, f iðdÞ is a
weak classifier, and N is the number of boosting rounds. The
sequential version of (4) can be expressed as:

Fi dð Þ ¼ Fi�1 dð Þ þ aihi dð Þ ¼ Fi�1 dð Þ þ f i dð Þ; ð5Þ

where Fi dð Þ is the ensemble at step i, ai is the weight that is given to
the classifier at step i, and hi dð Þ is the outcome of the weak classifier
at step i.

The Gradient Boosting algorithm [40] is also an ensemble clas-
sifier which combines a set of weak learners into a stronger classi-
fier where on each boosting round the algorithm minimizes the
gradient of a loss function to optimize the overall performance of
the classifier. At step i the gradient boosting classifier seeks for a
weak learner, say f iðdÞ, so that:

Fi dð Þ ¼ Fi�1 dð Þ þ f iðdÞ: ð6Þ
Assuming that y is the predicted value at step i the goal is to

minimize the cost function:

Fi dð Þ ¼ Fi�1 dð Þ þ argminf

Xn
j¼1

L yj; Fi�1 dj
� �þ f iðdjÞ

� �þ r

 !
; ð7Þ

where yj is the predicted value for the input sample dj, Lð:Þ is the
error loss function, n is the number of samples, and r is a regulariza-
tion term that is used to avoid overfitting. In the case of tree learn-
ers [40], the regularization term is defined as in:

r ¼ cM þ 1
2
k
XJ

j¼1

wj
2; ð8Þ

where c; k are scalars, M is the number of leaves in each tree
learner, and w is the weight on the leaves. The implementation
was performed in Python 3.6.3 [41] using the XGBoost [40].
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3. Results

3.1. SOM prototypes

The rectangular grid of the second stage (intra-phase) SOM is
depicted in the left-hand side of Fig. 2. The SOM consists of five
clusters (prototypes), where, cluster 1 consists of six patients
(KD3004, KD3014, KD3033, KD3037, KD3047, KD3054), cluster 3
consists of five patients (KD1502, KD1505, KD3016, KD3019,
KD3038), cluster 7 consists of two patients (KD3027, KD3028),
cluster 8 consists of one patient (KD3049), and cluster 9 consists
of six patients (KD1506, KD3007, KD3046, KD3058, KD3059,
KD3064). Note that the clusters 2, 4, 5, and 6 of the 3x3 SOM were
empty since no samples were projected in those grid cells.

To merge prototypes with similar patterns, the five clusters
were aggregated into super-clusters by applying hierarchical
clustering on the Euclidean distances between them yielding
the four prototypes (super-clusters) which are depicted in the
right-hand side of Fig. 2. More specifically, the dendrogram
which was generated by hierarchical clustering was partitioned
into four super-clusters, where, super-cluster 1 consists of the
patients in cluster 1, super-cluster 2 consists of the six patients
in cluster 3, super-cluster 3 consists of the two patients in cluster
7 and super-cluster 4 is the union of clusters 8 and 9. The labels
of the super-clusters were used subsequently to identify the pro-
posed genes.
3.2. Proposed genes for KD diagnosis

The FDR-based feature selection schema was able to identify
the following gene reference IDs as significant (p < 0.01,
Benjamini-Hochberg adjusted) across all three phases: 15658,
15660, 22055, 26049, and 35359. The proposed genes for KD diag-
nosis are presented in Table 3. It should be noted that in order to
map the gene IDs to the available gene probes and since the
employed KD dataset does not provide any information on the uti-
lized genes (ID, name or description) we performed a BLAST (Basic
Local Alignment Search Tool) search on GenBank [42], to detect the
most homolog sequence and subsequently the corresponding gene.
The gene CASD1 achieved the highest score in phase A (F-
score = 19.93), the gene TNFRSF13C in phase SA (F-score = 15.74),
and the gene CASD1 again for phase C (F-score = 12.12).
Fig. 2. An illustration of the second stage SOM
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3.3. Classification comparison of the proposed KD genes against the
known ones

3.3.1. Known KD genes
The known KD genes from the literature are presented in Table 4

along with the corresponding ID_REF and a short description.
Based on the work in [43] and the associated genes which are
listed, we detected those that are also listed in [27] which, as
already mentioned, uses the same experimental platform with
the employed KD dataset but also provides the corresponding gene
IDs. Probes with IDs 253, 29,567 belong to the TLR6 (Toll-like
receptor 6) family which is related with pathogen recognition
and activation of innate immunity. Probes with IDs 9368, 34,805
correspond to the COPB2 gene (COPI Coat Complex Subunit Beta
2) family which is part of the Golgi coatomer complex [44] that
constitutes the coat of nonclathrin-coated vesicles and is essential
for Golgi budding and vesicular trafficking. Probe ID 12,792 corre-
sponds to the FCGR2A (Fc Fragment Of IgG Receptor IIa) which
belongs to the family of immunoglobulin Fc receptor genes that
exist on the surface of many immune response cells.

The probe with ID 26,786 is the CD40 molecule which is essen-
tial for mediating a broad variety of immune and inflammatory
responses [44]. Probe IDs 33880, 37,136 belong to the BLK Proto-
Oncogene family whose protein is involved in B-cell receptor sig-
naling and development and finally the gene with ID 34,697 is
the Caspase 3 (CASP3) which is highly involved in the execution-
phase of cell apoptosis [44].
3.3.2. KD classification outcomes
3.3.2.1. Common platform analysis. Each gene expression dataset
from Table 1 was adjusted based on the quantile normalization
process which was described in Section 2.2. No outliers or genes
with joint variability were detected in the two datasets. The perfor-
mance evaluation results of the XGBoost on both the proposed and
the known genes are presented in Table 5. The procedure was
repeated using the AdaBoost algorithm as a second boosting clas-
sifier to further compare the classification outcomes among the
two cases (Table 5). A repeated stratified 10-fold cross validation
procedure was applied for the performance evaluation of both
boosting schemas, where four measures were averaged across
the folds, namely, the accuracy, sensitivity, specificity, and AUC.
Through the stratified strategy, the number of KD patients is the
along with the detected super-clusters.



Table 3
The proposed set of genes for KD diagnosis.

ID_REF Gene ID ANOVA F-scores (with p < 0.01,
BH-adjusted)

A SA C

15,658 HLA-DQB1 9.79 10.05 10.51
15,660 HLA-DRA 11.12 9.95 9.03
22,055 ZBTB48 13.74 11.25 11
26,049 TNFRSF13C 12.22 15.74 11.59
35,359 CASD1 19.93 9.37 12.12

Table 4
Known genes for KD diagnosis.

ID_REF Gene
ID

Description

253 TLR6 Toll-like receptor 6 as plays a fundamental role in
pathogen recognition and activation of innate immunity29,567

9368 COPB2 COPI Coat Complex Subunit Beta 2 constitutes the coat of
nonclathrin-coated vesicles and is essential for Golgi
budding and vesicular trafficking

34,805

12,792 FCGR2A Fc Fragment Of IgG Receptor IIa encodes a family
member of immunoglobulin Fc receptor genes found on
the surface of many immune response cells

26,186 CD40 The CD40 molecule belongs to the TNF-receptor
superfamily and is a receptor on antigen-presenting cells
of the immune system which is essential for mediating a
broad variety of immune and inflammatory responses

33,880 BLK BLK Proto-Oncogene is a protein which has a functional
role in B-cell receptor signaling and B-cell development37,136

34,697 CASP3 Caspase 3 is a gene whose encoded protein is a cysteine-
aspartic acid protease that plays a central role in the
execution-phase of cell apoptosis
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same across each fold. The corresponding ROC curves of the
XGBoost and the AdaBoost are depicted in Fig. 3 for phases A, SA,
and C and for each training case (case 1: on the dataset with the
proposed genes and case 2: on the dataset with the known KD
genes). In both boosting schemas, the proposed set of genes
yielded a notable performance on the Acute and Subacute phases
which is reflected by the high-performance evaluation results in
Table 5.

Regarding the XGBoost algorithm (Table 5), the classification
outcomes using the known set of genes yielded accuracy 0.956
for phase A, 0.989 for phase SA, and 0.989 for phase C, and the
AUC scores were 0.981, 0.988, and 0.995, respectively (Fig. 3). On
the other hand, the performance of the XGBoost on the proposed
set of genes was higher in phases A and SA, yielding accuracy 1.0
for phase A and SA, and 0.978 for phase C, where the AUC scores
were 0.995 across all phases (with a standard deviation � 0.1).
Table 5
Performance evaluation results for the XGBoost and the AdaBoost across the three phases

XGBoost
Set of genes Accuracy Sensitivity

A SA C A SA C

Known 0.956 0.989 0.989 0.918 0.975 0.97
Proposed 1 1 0.978 1 1 0.98
AdaBoost
Set of genes Accuracy Sensitivity

A SA C A SA C
Known 0.944 0.911 0.954 0.929 0.925 0.97
Proposed 1 0.976 0.989 1 0.968 0.99
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Although in phase C the sensitivity of the XGBoost on the proposed
set of genes was 1.1% higher than the one on the known set of
genes, the specificity was smaller thus yielding a slightly reduced
performance.

As far as the AdaBoost algorithm is concerned, the increased
performance of the proposed set of genes against the known ones
is preserved, however, with an increased performance across all
three phases. According to Table 5, the known set of genes yielded
accuracy 0.944 for phase A, 0.911 for phase SA, and 0.954 for phase
C, where the AUC scores were 0.950, 0.947, and 0.967, respectively.
On the other hand, the performance of the AdaBoost algorithm on
the proposed set of genes was higher in all phases, yielding accu-
racy 1.0 for phase A, 0.976 for phase SA, and 0.989 for phase C.
The sensitivity values were 1, 0.968, 0.993 and the specificity val-
ues were 1, 0.986, and 0.986, respectively, yielding increased AUC
scores across all phases.

In total, the classifiers yielded an average increase by 4.40% in
the accuracy, 5.52% in sensitivity, and 3.57% in specificity com-
pared with the known set of genes in phases A and SA. The contri-
bution of the proposed set of genes appears to be significantly
higher in phase A and SA, a fact which is also present in the Ada-
Boost schema. This implies that the high tendency of the proposed
genes against the known genes is preserved in these two phases
apart from the boosting schema. Regarding phase C, the high per-
formance is maintained in the AdaBoost whereas in the GBT the
reduced specificity results in a slightly smaller performance.

3.3.2.2. Cross-platform analysis. Each gene expression dataset
(GSE80060, GSE61635, GSE73461, GSE63881, GSE68004,
GSE73463) from Table 2 was individually transformed (adjusted)
using the quantile normalization process as it is described in Sec-
tion 2.2. No outliers or genes with joint variability were detected.
The median of the probes was extracted in the case of genes with
more than one probes as described in Section 2.3.1. The trans-
formed data were then integrated into two different data struc-
tures which included the proposed biomarkers and the known
diagnostic biomarkers, respectively. The non-KD patients (includ-
ing patients who have been diagnosed with SLE, SJIA or other
inflammatory diseases, bacterial or viral infections, HAdV and
GAS) were annotated with a value 0 whereas the KD patients were
annotated with a value 1 to solve a binary classification problem
using the XGBoost and the AdaBoost classifiers.

Regarding the XGBoost algorithm (Fig. 4), the classification out-
comes using the known set of genes yielded accuracy 0.847, sensi-
tivity 0.845, specificity 0.894, and AUC 0.906, respectively. On the
other hand, the performance of the XGBoost algorithm on the pro-
posed set of genes was higher (Fig. 4), yielding accuracy 0.872, sen-
sitivity 0.869, specificity 0.939, and AUC 0.927. As for the AdaBoost
algorithm (Fig. 4), the increased performance of the proposed set of
genes against the known ones is once more preserved, however,
with a reduced performance than the XGBoost, like in the common
platform analysis. The classification outcomes from the known set
for both the known and the proposed set of genes.

Specificity AUC

A SA C A SA C

5 0.986 1 1 0.981 0.988 0.995
6 1 1 0.971 0.995 0.995 0.995

Specificity AUC
A SA C A SA C

0 0.957 0.9 0.940 0.950 0.947 0.967
3 1 0.986 0.986 0.995 0.995 0.995



Fig. 3. A comparison of the Receiver Operating Characteristic (ROC) curves (the true positive rate against the false positive rate) between the GBT (XGBoost) algorithm which
was trained on the dataset with the proposed genes (red line) and the known KD genes (blue line), for phases A, SA, and C. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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of genes yielded accuracy 0.848, sensitivity 0.846, specificity 0.892,
and AUC 0.905. On the other hand, the performance of the Ada-
Boost algorithm on the proposed set of genes was higher (Fig. 4),
yielding accuracy 0.868, sensitivity 0.865, specificity 0.94, and
AUC 0.919. In total, both classifiers yielded an average increase
by 2.30% in the accuracy, 2.20% in sensitivity, 4.70% in specificity,
and in 1.70% in AUC.
4. Discussion

In this work, we present a data driven workflow for the analysis
of time-series gene expression data in Kawasaki Disease (KD)
towards the discovery of the underlying mechanisms for KD diag-
nosis through the formation of homogeneous clusters of KD
patients with similar gene expression profiles across three phases,
namely, the Acute (A), Subacute (SA) and Convalescent (C), and the
detection of novel biomarkers for KD diagnosis. Self-Organizing
Maps (SOMs) were constructed to group patients with similar gene
3065
expressions into concise inter-phase clusters. FDR-based feature
selection was applied to detect genes that significantly deviate
across the inter-phase clusters yielding the intra-phase clusters
which in turn are grouped into super-clusters. The set of proposed
genes is extracted as the set of the dominant genes across all
phases. The performance of the proposed genes against the known
KD genes, determined experimentally, was finally assessed by
training two ML algorithms based on boosting ensembles for KD
classification.

Our results reveal five prominent genes for KD diagnosis which
are proposed for the first time, namely the HLA-DQB1, HLA-DRA,
ZBTB48, TNFRSF13C, and CASD1. The KD classifiers which were
trained on the proposed genes yielded better performance against
those trained on the known ones, in terms of increased accuracy,
sensitivity, specificity, and AUC. In the common platform analysis,
the sample size in GPL6271 was considered as adequate for the
application of the proposed computational workflow due to the
significant lack of available KD patients, in terms of time-series
expression profiling. To further test the discrimination perfor-



Fig. 4. A comparison of the Receiver Operating Characteristic (ROC) curves (the true positive rate against the false positive rate) between the GBT (XGBoost) algorithm (on the
left hand side) and the AdaBoost algorithm (on the right hand side) which were trained on the proposed genes (red line) and the known KD genes (blue line) across the cross-
platform data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Relation of the proposed set of genes with KD studies in the literature.

ID_REF GB_LIST Gene ID Description

15,658 AI431505 HLA-DQB1 Association of the SNPs in HLA class II
genes were documented as
susceptibility genes of KD in GWAS
reports [45]

15,660 AI434629 HLA-DRA

22,055 AA810410 ZBTB48 Zinc finger protein 124 (circZNF124)
has been found to be significantly
down-regulated in untreated patients
with Kawasaki disease [46]

26,049 AA864899 TNFRSF13C TNFRSF13C is a target gene of miR-122
in RAW 264.7 cells’ inflammatory
responses [47]

35,359 AI250844 CASD1 The role of CAS1 protein has been
associated with the immune system in
various works [48–50]
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mance of the proposed set of diagnostic biomarkers across other
types of similar diseases, a cross-platform analysis was also con-
ducted through the transformation and subsequent integration of
six datasets from two different platforms (GPL570, GPL10558).
The integrated dataset included 1,347 patient samples, where the
non-KD group included patients with SJIA and SLE, which are char-
acterized by certain clinical similarities with the KD patients. To
our knowledge, this is the first data-driven workflow which con-
structs SOMs on the three clinical phases of KD based on time-
series gene expression data towards the discovery of five candidate
diagnostic biomarkers for KD with increased discrimination perfor-
mance against other analogous diseases. The Self-Organizing Maps
were constructed in a straightforward way to enable the clustering
of the KD patients across the three clinical phases of KD, in a two-
stage manner; the inter-phase and the intra-phase clustering. The
two-stage clustering process yielded homogeneous and concise
clusters of patients which were subsequently merged to identify
four super-clusters. The derived super-clusters were able to cate-
gorize the available KD patients into four subgroups with similar
genetic profiles across the whole duration of the disease and not
on a single clinical phase to better comprehend the mechanisms
of KD onset. The super-clusters were utilized, in a data-driven
way, to extract the most prominent genes through FDR-based fea-
ture selection yielding statistically significant genes for KD
diagnosis.

Both the boosting classifiers highlighted the impact of the pro-
posed genes against the known KD genes, specifically in the Acute
and Subacute phases, yielding an average increase by 4.40% in the
accuracy, 5.52% in sensitivity, 3.57% in specificity, and 2.85% in the
AUC. The performance of the AdaBoost on the proposed set of
genes is significantly higher in all clinical phases of Kawasaki com-
pared against the known set of genes. This increase, however, is not
observed in the Convalescent phase for the GBT schema. These
imply that the proposed set of genes can be used to shed light into
the underlying pathogenic mechanisms and genetic basis of the KD
onset with favorable precision in the first two phases of the dis-
ease. On the other hand, the known KD genes can be used to under-
stand the evolvement of KD in the second clinical phase, where the
patients already start to exhibit clinical manifestations and thus
the pathophysiology is already observed. Regarding the cross-
platform analysis, the boosting classifiers yielded an average
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increase by 2.30% in the accuracy, 2.20% in sensitivity, 4.70% speci-
ficity, and 1.70% in AUC, across the two boosting classifiers. This
suggests that the proposed diagnostic biomarkers for KD present
a notable discrimination performance of KD patients even in cases
where the control group consists of patients that exhibit clinical
similarities with KD. Finally, in both types of analyses, the gene
expression data in the acute phase contribute most to KD predic-
tion than those in the sub-acute and convalescent phases (Table 5)
which is in line with the fact that early identification and timely
IVIG (intravenous immunoglobulin) treatment is the best policy
to treat KD.

The potential relation of the proposed genes with KD according
to previous works reported in the literature is presented in Table 6.
Specifically, for the HLA class II genes, like HLA-DQB1 and
HLA-DRA, certain Single Nucleotide Polymorphisms have been
associated with KD diagnosis in Genome Wide Association Studies
(GWAS) reports [45]. Moreover, zinc finger proteins, like the
ZBTB48, have been found to be down-regulated in KD patients
[46], while increased TNFRSF13C gene expression has been associ-
ated with induced inflammation in RAW 264.7 cells [47]. Finally,
several studies have indicated the role of CASD1 in the immune
system [48–50]. These five genes are reported as biomarkers for
KD diagnosis for the first time in the literature using data-driven
analysis instead of the conventional laboratory analysis.
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5. Future work

The present work mainly focuses on the development of a com-
putational pipeline for the robust detection of candidate diagnostic
biomarkers of KD based on time-series gene expression data. These
markers can be used afterwards as targets in applications of qPCR
(quantitative polymerase chain reaction)-based analysis for the
biological validation of the KD prediction models [51]. Towards
this direction, we plan to include such validation approaches on
our future work, in order to provide a biological proof of concept
regarding the proposed set of diagnostic biomarkers for KD. More-
over, the presented ML-based schema could be applied on other KD
datasets derived from more recent experimental protocols, as well
as, on more SAID-oriented genetic data to provide new insights on
the underlying pathogenic mechanisms and biomarkers of SAIDs,
such as, the Cryopyrin-Associated Autoinflammatory Syndromes
(CAPS), the Hyperimmunoglobulinemia D syndrome (HIDS), and
the Pharyngitis and cervical Adenitis (PFAPA), among others.
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