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Abstract :

We employ a discrete simulation adapted from molecular dynamics techniques in order to study the mechanics of
entangled semiflexible fibres. A previous model represent a fibre as a "pearl necklace" [Rodney et al. (2005)].
Successive configurations are obtained by minimizing a potential energy made of linking, bending and interaction
terms. This "node" model however imposes limitations both on the computing time (large number of nodes) and
on how to model the non-penetrability between fibres. In order to level off these limitations, a new fibre model
is developed here, in which the fibres are discretised as a succession of segments. Implementation of friction
forces in this "spring" model allows a better understanding of the hysteresis observed experimentally during cyclic
compressions of entangled materials.

Résumé :

Nous utilisons une simulation discrete adaptée de techniques de dynamique moléculaire afin d’étudier la méca-
nique de fibres semiflexibles enchevétrées. Un précédent modele représente les fibres a la maniere de "colliers
de perles” [Rodney et al. (2005)]. Les configurations successives sont obtenues par minimisation d’une éner-
gie potentielle comprenant des termes de liaison, de courbure, et d’interaction entre fibres. Ce modele « neeuds »
nous impose des limitations a la fois sur le temps de calcul (grand nombre de neeuds) et sur la modélisation de
la non-pénétrabilité des fibres. Afin de pallier a ces difficultés, un deuxiéme modele de fibres est développé ici.
Dans celui-ci, les fibres sont discrétisées en "collier de nouilles”, par une succession de segments. L’insertion
de forces de frottement dans le modele « segments » permet une étude plus approfondie de I’ hystérésis observée
expérimentalement lors de compressions cycliques de milieux enchevétrés.
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1 Introduction

Entangled materials are made of fibres arranged together in various manners with no permanent
cross-link such as sheep wool, glass wool or steel wool... They exhibit a specific mechanical
behavior.

van Wyk (1946) developed a mechanical model for the compression of random fibre net-
works, based on the statistics of contact formation and fibre bending between contact points.
Toll (1998) improved this model by accounting for the fibre orientation. He confirmed the
exponent of 3 relating the applied pressure to the volume fraction for 3D random orientations
and found an exponent of 5 for 2D networks. Another analytical and statistical approach was
developed by Baudequin et al. (1999) for large compressions. In this work, in good agreement
with experimental results on glass wools, the strain-stress curve follows a power law with an
exponent equal to —3/2.

Another point of view to probe what happens in fibre assemblies is computer simulations.
In the range of large deformations, Durville (2005) used the kinematical beam theory and de-
termined proximity zones between fibres to study the loading curve and the number of contacts
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between them during compressions. He obtained results in good agreement with Baudequin
model for large deformations and with van Wyk model for small deformations. Fibres can
also be modeled by Love-Kirchhoff model, as recently done by Bertails (2006) to perform
simulations on realistic hair. This model was also used by Beil et al. (2002) to study moderate
compressions. Their simulations show a reasonable ability to predict the undetermined constant
in van Wyk’s equation, although they were limited to a small number of fibres and boundary
condition effects were not addressed with precision. In Bertails’ and Beil’s simulations as in
Durville’s ones, static and sliding frictions were taken into account. A third manner to model
fibres is the one used by Rodney et al. (2005) on which our work is based. This "node model" is
based on Molecular Dynamics simulations used for polymers. Fibres are discretised by nodes
such that the number of nodes per fibre is equal to the fibre aspect ratio (ratio of the length
to the diameter of the fibres) and the node diameter is equal to the fibre diameter. The nodal
positions are the degrees of freedom of the model. Traction and bending stiffnesses, as well as
non-penetrability between fibres are modeled by means of a potential energy. In order to study
the entanglement transition, isostatic compressions were performed on initially random fibre
configurations. At each compression increment, an energy relaxation is performed to obtain
an equilibrium configuration. For all the range of aspect ratios studied (from 10 to 100), three
states could be identified. At low density, the fibres do not interact at equilibrium ("free-fiber
state"). At higher densities, the fibres strongly interact and lock each other, with a finite number
of contacts and an energy that increases rapidly with the density ("entangled state"). Between
these two states, there is a "mechanical transition" region where no equilibrium is reached. This
method yielded a stress versus relative density in good agreement with van Wyk model for large
aspect ratios. But the main restriction of this "node model" is the fact that the computational
load increases rapidly with the fibre aspect ratio that was consequently limited to a value of 100,
lower than in most real materials, as for example those studied by Poquillon et al. (2005).

To reach larger aspect ratios, we develop here a new model in which the fibers are discretised
by springs, the number of springs per fibre depending on the accuracy wished for the simulation.

2 Computational model

In this part, we will explain the similarities and the differences between the node model and
its evolution: the spring model. In the spring model, the equilibrium distance between two
consecutive nodes on a fibre is no longer fixed to the fibre diameter. The dependence between
the fibre diameter D and the length ¢ of a spring lies on the bending stiffness of the fibre: since
a spring can not bend, not enough springs lead to stiff fibres. This point will be discussed later.
As proposed by Rodney et al. (2005), the behavior of the fibre system is modeled using a
potential energy. In the case of the present model, even if the forces are still applied to nodes
(segment ends), the potential energy is now computed from spring lengths and orientations.

K Sii K
E= S g ,£+1)2+ 3 TB(@—W)M
(3,i+1) consecutive (i—1,i,i41) consecutive
K T4
> — H(D =i )1~ 33)5/2

(4,7)non consecutive

The above potential energy is composed of three terms. The first one is a linear spring
between consecutive nodes that models the resistance either to traction or compression. The
second term introduces the bending stiffness by means of angular springs between consecutive
segments. The angle of 7 is the equilibrium angle and forces the fibres to be straight when
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no force is applied. The third term models the contacts between fibres and in particular their
non-interpenetrability. It is a repulsive potential chosen as Hertz potential, that acts between
non-consecutive springs when their distance becomes less than the fibre diameter DD, which is
implied by the Heaviside step function H (). The distance between springs r; ; is that of clos-
est approach, computed according to the method of Kumar et al. (2001). Depending on the
configuration, the vector of closest approach is either perpendicular to the two springs or links
one spring to one end of the other spring (see fig 1), or it may link one end of a spring to an end
of the other spring.

i+1(t-5t)

Figure 2: Test on spring displacement: does a

Figure 1: Schematic representation of spring- spring cross the surface created by the motion
spring interaction. of any other spring?

The main advantage of discretising the fibres by springs is to decrease the number of degrees
of freedom per fibre. As mentioned in the literature (see Kumar et al. (2001); Bertails (2006)),
the drawback of this method is to lead to spring crossings between two simulation steps. Deter-
mining whether the motion of a given spring intersects any other spring is therefore of crucial
importance for the integrity of the simulation. For this reason, we test during the first 200 re-
laxation steps of each compression increment whether a spring crosses the surface created by
the motion of any other spring, as illustrated in fig 2. In such a case, the time step is decreased
and all spring displacements are recomputed. This test is not performed for all simulation steps
because it strongly increases the computational load and it is of importance only during the first
simulation steps of each increment.

We also implemented a Coulomb-like friction at contacts points, in order to study the in-
fluence of sliding between fibres. We apply a friction force with a norm equal to the repulsive
normal force between springs multiplied by a friction coefficient. It is applied in the plane per-
pendicular to the repulsive normal force with a direction opposite to the relative velocity of the
considered spring with respect to the other contact spring.

In order to validate this model, we compared its predictions with that of the node model.
As shown in fig 3, we first studied the bending behavior of a single fibre clamped at one end
and subjected to a vertical force F' applied to its other end. We performed simulations for a
fibre with an aspect ratio of 20 and compared these results with Finite Element simulations.

The most important result is the good agreement all methods all over the applied force range.
This shows that the fibre follows a power law well-known in beam theory, % = %(%)35.
Moreover, in both spring and node models, the bending stiffness can be computed analytically:
K = 1?524(1 — £)(1 — 5&) where ¢ is spring length and L is the fibre length between its two

extremities. Since the stiffness depends on the spring length, equal to D in the case of the node
model, the bending coefficient Kz in the spring model was made dependent on the number of
springs per fibre in order to keep the same . An observation is that a fibre described by only
4 springs is slightly stiffer for deflection larger than six times the fibre diameter. But we have
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Figure 4: Number of contacts per fibre as a func-
tion of relative density for various aspect ratios
a; diamond: o = 20, square: « = 100, circle:
a = 200. Open symbols correspond to the node
model, filled symbols to the springs model.

Figure 3: Dimensionless deflection as a function
of dimensionless applied force for a fibre of as-
pect ratio 20, clamped at one end and subjected
to a vertical force F applied to its other end.

only performed simulations in the small deformations range, i.e. in the range of deformations
where the spring model and the Finite Elements are in good agreement.

We also simulated incremental isostatic compressions of fiber systems. Different assemblies
of homogeneous aspect ratio fibres are initially placed in the cell and oriented at random. We
studied fibre arrangements by following the number of contacts per fibre during the compres-
sions with respect to the relative system density, as shown in Fig. 4. The shape of the curves
obtained with the both models are nearly identical. We can conclude that for fibres of aspect
ratio equal to 20, only 4 springs can be used to model a fibre, instead of 20 nodes. In the same
manner, fibres with a aspect ratio of 100 can be modeled by only 15 springs, leading to a large
decrease in the number of degrees of freedom in the simulation. We can also see that it is pos-
sible with the spring model, to perform simulations of fibres of aspect ratio up to 200, which is
close to the aspect ratio of 250 measured by Masse et al. (2006) for steel wools.

3 Results and discussion
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Figure 5: Contacts per fibre as a function of the relative density during isostatic compressions of 4-spring
fibres of aspect ratio 20 with and without friction.

In this part, we discuss the first results obtained with the spring model concerning the in-
fluence of sliding friction and hysteresis between successive compressions and relaxations. We
studied the influence of sliding friction during isostatic compressions of an entangled assembly
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of fibres of aspect ratio equal to 20, modeled with 4 springs. As shown in fig 5, the simulations
were performed with friction (friction coefficient of 0.5) and without friction. A first result
is that applying friction forces shifts the transition (i.e. the region of rapid increase of contact
number) to lower densities and lower contact numbers. Another result is that after the transition,
there is superposition of the curves. This is due to the fact that beyond the transition the fibres
lock each other and cannot move, and therefore cannot slide on each other. Thus, the influence
of sliding friction on the number of contacts is significant only during the mechanical transition.
Nevertheless, sliding friction leads to an increase of stress from about 100% after the transition
to about 10% for the highest simulated relative density.
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Figure 7: Stress-strain curve of the second com-
Figure 6: Contacts per fibre as a function of rel- pression/relaxation cycle either with friction or

ative density for 4-spring fibres of aspect ratio without friction (friction coefficient of 0.5).
20.

We are also interested in the hysteresis that is observed experimentally during compres-
sion/relaxation cycles (see Ref. Poquillon et al. (2005)). This phenomenon may be attributed
either to the friction between fibres and/or irreversible fibre rearrangements. We performed cy-
cles of compressions followed by relaxations, going to larger compression rates at each cycle.
Relaxations were performed by incrementally increasing the cell volume until it was back to its
initial value. The resulting number of contacts per fibre as a function of the relative density is
presented in fig 6 for fibres made of 4 springs with an aspect ratio of 20. The curves are shown
for the first three cycles. They follow a master curve that corresponds to a one-way compression,
as mentioned by Masse et al. (2006) in experimental compressions of steel wools. In fig 7, we
plotted the stress-strain curve of the second compression/relaxation cycle either with or without
friction. In both cases, an hysteresis is visible. As already mentioned above, the compression
with friction is shifted to lower deformations. But most importantly, there is hysteresis even
without friction. We can therefore conclude that hysteresis is at least partly due to irreversible
rearrangements of the fibres. It is also worth noting that, even if the curves obtained for single
compressions are superposed beyond the transition (fig 5), sliding friction has an effect on the
fibres arrangement which explains the difference in the stress between the two curves in fig 7
even after the transition.

4 Conclusion

This work shows that the number of degrees of freedom of a fibre assembly can be reduced by
discretising the fibres by springs without any loss of reliability. Indeed for isostatic compres-
sions, results obtained with the spring model are in good agreement with those obtained with the
node model in the range of small deformations for fibres of various aspect ratios. Moreover, the
study of sliding friction shows that sliding influences the system mainly during the mechanical
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transition, i.e. when the fibres start to be in contact and the network is not already locked. It
would be interesting to implement in our model static friction forces. Finally the simulations of
compresion/relaxation cycles show that hysteresis is partly due to irreversible rearrangements
of the fibres. Sliding friction has not a strong influence on this phenomenon. One perspective of
this work is to perform simulations based on realistic initial configurations. To do this, images
of steel wools have been obtained, in collaboration with J.P. Masse and L. Salvo, by using 3D
X-ray tomography. Our aim is to skeletonise and discretise in springs the X-ray tomography
images. We would then be able to perform simulations based on realistic initial configurations
extracted from real samples.
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